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Abstract

Given a Lie group action G we show, using the method of equivariant moving frames,
that the local cohomology of the invariant Euler–Lagrange complex is isomorphic to
the Lie algebra cohomology of G.

1 Introduction

The variational bicomplex is a double complex of differential forms defined on the
infinite extended jet bundle J∞(M,p) of p-dimensional submanifolds of a manifold
M . It provides a natural and general differential geometric framework for variational
calculus. The modern form of the theory originates from Vinogradov’s, [33, 34, 35], and
Tulczyjew’s, [32], work. The later contributions of Anderson, [1, 2], have demonstrated
the power and efficacy of the bicomplex formalism for both local and global problems
in the calculus of variations. The variational bicomplex is an important theoretical
tool for studying the geometry of differential equations, [31]. It is used to compute
geometric and topological quantities of interest, including characteristic cohomology,
[8, 9], characteristic classes, [1], Helmholtz conditions, [1], conservation laws, [3, 4], and
null Lagrangians, [23].

Of particular interest is the complex associated with the edge of the augmented vari-
ational bicomplex. The Euler operator or variational derivative is intrinsically defined
as the corner map of this edge complex and for this reason it is called the Euler–
Lagrange complex. This complex provides tools for studying many problems in the
calculus of variations. In the presence of a Lie group action it is natural to investigate
invariant problems in the calculus of variations; to this end it is useful to study the
G-invariant variational bicomplex and its cohomology, [1, 2, 5, 6, 20]. For Lie groups
acting projectably on fiber bundles, Anderson and Pohjanpelto have shown that the
local cohomology of the G-invariant Euler–Lagrange complex is isomorphic to the Lie
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algebra cohomology of G, [5]. An important feature of their proof is that it is construc-
tive and readily lends itself to studying particular examples. Recently, Itskov, [16, 17],
proved, using arguments from C-spectral theory, that the isomorphism still holds for
non-projectable group actions. A drawback of Itskov’s proof is that it is difficult to
apply in particular examples. One purpose of this paper is to give a simplified and
constructive proof of his theorem which can easily be applied to particular problems.
The construction of the isomorphism is completely algorithmic and can in principle be
implemented in symbolic software packages such as Mathematica or Maple.

The proofs found in this paper are natural extensions of the original proofs invented
by Anderson and Pohjanpelto, [1, 2, 5]. A novel feature is the incorporation of the
equivariant moving frame method developed by Fels and Olver, [13, 14], into the con-
structions. For a general finite-dimensional transformation group G, a moving frame
is defined as an equivariant map from an open subset of the jet space of submani-
folds to the Lie group G. Once a moving frame is established, it provides a canonical
mechanism, called invariantization, of associating an invariant differential jet form to
an arbitrary differential jet form. The G-invariant variational complex is obtained in
essence by applying invariantization to the free variational bicomplex. The theoretical
foundations of this construction appear in the work of Kogan and Olver, [19, 20], where
the authors establish a general formula relating invariant variational problems to their
invariant Euler–Lagrange equations. For non-projectable group actions, a key observa-
tion is that the resulting invariant complex relies on three differentials with nonstandard
commutation relations (and so is no longer a bicomplex in the usual form).

The structure of the paper is as follows. In Section 2 we recall some standard facts
about the free variational bicomplex and its cohomology. Sections 3 and 4 contain an
overview of the moving frame construction and the invariantization of the free vari-
ational bicomplex. The main results of the paper appear in Sections 5 and 6. By
introducing an invariant connection on the invariant horizontal total differential oper-
ators we show that the interior rows of the invariant variational bicomplex are locally
exact. From this it follows that the cohomology of the invariant Euler–Lagrange com-
plex H∗(ẼG) is locally isomorphic to the de Rham cohomology H∗(Ω∗G) of invariant
differential forms on J∞(M,p). The moving frame associated to the group action G
gives an immediate local isomorphism between the Lie algebra cohomology H∗(g∗) and
the de Rham cohomology H∗(Ω∗G) from which we conclude that H∗(g∗) ' H∗(ẼG). The
theory is illustrated by three examples in Section 8: the actions of the special Euclidean
and special affine groups on curves in the plane and the action of the special Euclidean
group on surfaces.

2 The Variational Bicomplex

We begin with a brief review of the variational bicomplex. We refer the reader to
[1, 2, 18, 31] for a detailed exposition. Basic results on jet bundles, contact forms, et
cetera can be found in [23, 24, 35, 36].

Let M be a smooth m-dimensional manifold. We denote by Jn = Jn(M,p) the nth

order extended jet bundle of equivalence classes of p-dimensional submanifolds S ⊂ M
under the equivalence relation of nth order contact, where 0 < p < m. The infinite
jet bundle J∞ = J∞(M,p) is defined as the inverse limit of the finite order jet bundles
under the standard projections πn+1

n : Jn+1 → Jn. Differential functions and differential
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forms on Jn will be identified with their pull-backs to the appropriate open subset of
J∞.

Locally we can identify M ' X ×U with the cartesian product of the submanifolds
X and U with local coordinates x = (x1, . . . , xp) and u = (u1, . . . , uq) respectively. The
coordinates on X are considered as independent variables while the coordinates on U
are considered as dependent variables. This induces local coordinates z(∞) = (x, u(∞))
on J∞, where u(∞) denotes the collection of derivatives uαJ , α = 1, . . . , q, #J ≥ 0, of
arbitrary order. Here J = (j1, . . . , jk), with 1 ≤ jν ≤ p, is a symmetric multi-index
of order k = #J . Coordinates z(n) = (x, u(n)) on the jet bundle Jn are obtained by
truncating z(∞) at order n.

Definition 2.1. A differential form θ on J∞ is called a contact form if it is annihilated
by all submanifold jets, that is, θ|j∞S = 0 for every p-dimensional submanifold S ⊂M .

The subbundle of the cotangent bundle T ∗J∞ spanned by the contact one-forms is
called the contact or vertical subbundle and denoted by C(∞). In the local coordinates
(x, u(∞)), every contact one-form is a linear combination of the basic contact one-forms

θαJ = duαJ −
p∑
i=1

uαJ,idx
i, α = 1, . . . , q, #J ≥ 0. (2.1)

On the other hand, the one-forms

dxi, i = 1, . . . , p, (2.2)

span the horizontal subbundle, denoted by H∗. This induces a local splitting T ∗J∞ =
H∗ ⊕ C(∞) of the cotangent bundle. Note that this splitting depends of course on
the chosen coordinates. Any one-form Ω on J∞ can be uniquely decomposed into
horizontal and vertical components, Ω = πH(Ω) + πV (Ω), where πH : T ∗J∞ → H∗ and
πV : T ∗J∞ → C(∞) are the induced horizontal and vertical (or contact) projections.

The splitting of T ∗J∞ induces a bigrading of the differential forms on J∞. The
space of differential forms of horizontal degree r and vertical degree s is denoted by
Ωr,s = Ωr,s(J∞). Then

Ω∗(J∞) = Ω∗ =
∞⊕

r,s=0

Ωr,s. (2.3)

Under the bigrading (2.3), the differential d on J∞ splits into horizontal and vertical
components, d = dH + dV , where dH increases horizontal degree and dV increases
vertical degree. Closure, d2 = d ◦ d = 0, implies

d2
H = 0, dH ◦ dV + dV ◦ dH = 0, d2

V = 0. (2.4)

The horizontal differential of a differential function F is the horizontal one-form

dHF =
p∑
i=1

(DiF )dxi, where Di =
∂

∂xi
+

q∑
α=1

∑
J

uαJ,i
∂

∂uαJ
(2.5)

denotes the usual total derivative with respect to xi. The vertical differential of a
differential function F is the contact one-form

dV F =
q∑

α=1

∑
J

∂F

∂uαJ
θαJ . (2.6)
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To obtain the full variational bicomplex we append to each row a certain quotient
space of the differential forms of maximal horizontal degree. Define the quotient and
standard quotient projections1

Fs = Ωp,s/dH(Ωp−1,s), π : Ωp,s → Fs, s ≥ 1.

The spaces Fs are called the spaces of type s functional forms on J∞. The quotient
projection plays the role of an integration by parts operator and is essential to the
derivation of the Euler–Lagrange equations using the variational bicomplex formalism.
By virtue of (2.4), the composition

δV = π ◦ dV (2.7a)

is a boundary operator from Fs to Fs+1. Finally the Euler operator is defined as

E = π ◦ dV : Ωp,0 → F1. (2.7b)

Definition 2.2. The (augmented) variational bicomplex is the double complex (Ω∗,∗,
dH , dV ) of differential forms on the infinite jet bundle J∞:

...
...

...
...

...

0 // Ω0,3
dH //

dV

OO

Ω1,3
dH //

dV

OO

. . . dH // Ωp−1,3
dH //

dV

OO

Ωp,3

dV

OO

π // F3 //

δV

OO

0

0 // Ω0,2
dH //

dV

OO

Ω1,2
dH //

dV

OO

. . . dH // Ωp−1,2
dH //

dV

OO

Ωp,2

dV

OO

π // F2 //

δV

OO

0

0 // Ω0,1
dH //

dV

OO

Ω1,1
dH //

dV

OO

. . . dH // Ωp−1,1
dH //

dV

OO

Ωp,1

dV

OO

π // F1 //

δV

OO

0

0 // R // Ω0,0
dH //

dV

OO

Ω1,0
dH //

dV

OO

. . . dH // Ωp−1,0
dH //

dV

OO

Ωp,0

dV

OO

E

<<zzzzzzzz

The following theorems summarize the local theory of the variational bicomplex.

Theorem 2.3. For each r = 0, 1, 2, . . . , p, the vertical complex

0 // Ωr
X

(π∞X )∗
// Ωr,0

dV // Ωr,1
dV // Ωr,2

dV // · · ·

is locally exact. Here Ωr
X is the space of r forms over X and π∞X : J∞ → X is the pro-

jection onto the space of independent variables induced by a choice of local coordinates
M ' X × U on the manifold M .

The proof is similar to the proof of the Poincaré lemma for the de Rham complex,
[7, 23].

1This is one of two equivalent approaches. Alternatively the interior Euler operators I : Ωp,s → Ωp,s may
be introduced and the images I(Ωp,s) used instead of the spaces Fs. Both viewpoints will be used in the
sequel.
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Theorem 2.4. For each s ≥ 1, the augmented horizontal complex

0 // Ω0,s
dH // Ω1,s

dH // · · · dH // Ωp,s π // Fs // 0

is locally exact.

One method of proof consists of verifying that

hr,s(ω) =
1
s

k−1∑
#I=0

p∑
j=1

q∑
α=1

#I + 1
p− r + #I + 1

DI [θα ∧ F I,jα (ωj)], (2.8)

where ωj = Dj ω denotes the interior product of ω with Dj , k is the order of ω and

F Iα(ω) =
k−#I∑
#J=0

(
#I + #J

#J

)
(−D)J

(
∂

∂uαI,J
ω

)
(2.9)

are the interior Euler operators, are local horizontal homotopy operators, [1].

Theorem 2.5. The Euler–Lagrange complex E∗(J∞)

0 // R // Ω0,0
dH // Ω1,0

dH // · · · dH // Ωp,0 E // F1
δV // F2

δV // · · ·

is locally exact.

This result may be established using Theorems 2.3 and 2.4 and homological alge-
bra arguments. Alternatively, one may construct explicit homotopy operators, [1, 23].
There is also a global version of Theorem 2.5, giving an isomorphism of the cohomology
of E∗(J∞) with the de Rham cohomology of J∞, [1].

3 Moving Frames

There are now a wide variety of papers on the theory of equivariant moving frames,
[13, 14, 20, 27]. In this section we recall the results relevant to our problem.

Let G be an r-dimensional Lie group acting smoothly on a manifold M . Without
significant loss of generality, we assume that G acts locally effectively on subsets, [25].
Let G(n) denote the nth order prolonged action of G on the jet bundle Jn. Following
Cartan, [11, 12, 30], we denote the image of an n-jet z(n) under the prolonged group
action by the corresponding capital letter Z(n) = g(n) · z(n), g(n) ∈ G(n). The regular
subset Vn ⊂ Jn is the open subset where G(n) acts locally freely and regularly. Thus
the orbits of points in Vn under the prolonged action are of dimension r = dim G. In
[20] it is shown that if the action of G is locally effective on all open subsets of M , then
Vn is nonempty and dense for n sufficiently large.

Definition 3.1. An nth order (right-equivariant) moving frame is a map ρ(n) : Jn → G
which is (locally) G-equivariant, i.e.,

ρ(n)(g(n) · z(n)) = ρ(n)(z(n)) · g−1, z(n) ∈ Jn, g ∈ G,

with respect to the prolonged action of G(n) on Jn, and the right multiplication action of
G on itself. Given a sequence of moving frames ρ(n) consistent with the jet projections
one obtains the (infinite order) moving frame ρ = ρ(∞) : J∞ → G as the projective
limit.
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The fundamental existence theorem for moving frames is as follows, [14].

Theorem 3.2. IfG acts onM , then an nth order moving frame exists in a neighborhood
of z(n) ∈ Jn if and only if z(n) ∈ Vn is a regular jet.

In applications, the construction of a moving frame is based on Cartan’s method of
normalization, [10, 14], which requires the choice of a (local) cross-section Kn ⊂ Vn to
the group orbits. For expository purposes, we assume that Kn is a global cross-section,
which may require shrinking the domain Vn ⊂ Jn of regular jets.

Theorem 3.3. Let G act freely and regularly on Vn ⊂ Jn. Let Kn ⊂ Vn be a cross-
section to the group orbits. For z(n) ∈ Vn, let g = ρ(n)(z(n)) be the unique group
element whose prolongation maps z(n) to the cross-section: g(n) · z(n) ∈ Kn. Then
ρ(n) : Jn → G is a right equivariant moving frame for the group action.

The derivation of a moving frame involves three steps:

1. Compute the explicit local coordinate formulas for the prolonged group transfor-
mations

w(n)(g, z(n)) = Z(n) = g(n) · z(n). (3.1)

2. Choose (typically) a coordinate cross-sectionKn = {z1 = c1, . . . , zr = cr} obtained
by setting r = dimG of the components of z(n) = (x, u(n)) equal to constants.

3. Using the labeling w1, . . . , wr for the components of the transformed cross-section,
solve the normalization equations

w1(g, z(n)) = c1 · · · wr(g, z(n)) = cr, (3.2)

for the group parameters g = (g1, . . . , gr) in terms of the coordinates z(n).

Theorem 3.4. If g = ρ(n)(z(n)) is the moving frame solution to the normalization
equations (3.2), then the components of

I(n)(z(n)) = w(n)(ρ(n)(z(n)), z(n))

form a complete system of differential invariants on the open subset of Jn where the
moving frame is defined.

Note that the r invariants

I1 = w1(ρ(n)(z(n)), z(n)) = c1 . . . Ir = wr(ρ(n)(z(n)), z(n)) = cr (3.3)

defining the cross-section (3.2) are constant. Those invariants are known as the phantom
invariants.

Example 3.5. We consider the action of the Euclidean group SE(2) on planar curves:

X = x cosφ− u sinφ+ a, U = x sinφ+ u cosφ+ b, φ, a, b ∈ R. (3.4)

The prolonged action

UX =
sinφ+ ux cosφ
cosφ− ux sinφ

, UXX =
uxx

(cosφ− ux sinφ)3
, UXXX = · · · ,
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is computed through implicit differentiation. A well known moving frame for this group
action, [13, 14, 15, 19, 20, 27], follows from the cross-section normalization

X = 0, U = 0, UX = 0.

Solving for the group parameters g = (φ, a, b) leads to the right-equivariant2 moving
frame

φ = − tan−1 ux, a = − x+ uux√
1 + u2

x

, b =
xux − u√

1 + u2
x

. (3.5)

The fundamental normalized differential invariants for the moving frame (3.5) are

X 7→ H = 0, U 7→ I0 = 0, UX 7→ I1 = 0,

UXX 7→ I2 = κ =
uxx

(1 + u2
x)3/2

, UXXX 7→ I3 = κs, UXXXX 7→ I4 = κss + 3κ3,

and so on. Here κs = Dκ and κss = (D)2κ where D = (1 + u2
x)−1/2Dx is the Euclidean

arc length derivative.

It is useful to adopt the viewpoint that a moving frame is a section of a certain
bundle over Jn, called the lifted bundle.

Definition 3.6. The nth lifted bundle consists of the bundle πn : Bn = Jn × G → Jn,
with the lifted prolonged group action

g · (z(n), h) = (g(n) · z(n), h · g−1), g ∈ G, (z(n), h) ∈ Bn.

Taking the projective limit of the Bn, we obtain the lifted bundle π : B∞ = J∞ ×G→
J∞.

The components of the evaluation map (3.1) provide a complete system of lifted
differential invariants on Bn. In the projective limit, we write w = w(∞) : B∞ → J∞.
This endows B∞ with a groupoid structure, [21, 22, 30],

B∞
π

||yy
yy

yy
yy w

""FF
FF

FF
FF

J∞ J∞.

An infinite order moving frame ρ : J∞ → G serves to define a local G-equivariant section
σ : J∞ → B∞:

σ(z(∞)) = (z(∞), ρ(z(∞))). (3.6)

Let Ω̂∗ denote the space of differential forms on B∞, which are called lifted differ-
ential forms. A coframe for Ω̂∗ consists of the horizontal and contact one-forms (2.1),
(2.2), and the Maurer–Cartan forms µ1, . . . , µr on G. To simplify notation, we iden-
tify a form on either J∞ or G and its pull-back to B∞ under the standard Cartesian
projections. The Cartesian product structure B∞ = J∞ × G induces a bigrading on
Ω̂∗ = ⊕k,lΩ̂k,l, where Ω̂k,l denotes the space of forms which consist of combinations of
wedge products of k jet components (either dxi or θαJ ) and l Maurer–Cartan forms µk.
Let Ω̂∗J = ⊕kΩ̂k,0 denote the space of pure jet forms on B∞. A jet form may depend
on group parameters, but does not contain Maurer–Cartan forms. Let πJ : Ω̂∗ → Ω̂∗J
denote the jet projection, obtained by equating all Maurer–Cartan forms to zero.

2This moving frame is only locally equivariant, since there remains an ambiguity of π in the prescription
of the rotation angle. We ignore this technical point here and refer to [26] for a detailed discussion.
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4 The Invariant Variational Bicomplex

The theory of moving frames provides a process for invariantizing an arbitrary differ-
ential jet form. The bigrading of the variational bicomplex may be invariantized to
produce a new bigrading and corresponding splitting of the differential, comprising the
invariant variational bicomplex of Kogan and Olver, [19, 20]. For projectable group
actions this new structure agrees with the old. For non-projectable actions, the new bi-
grading is different and the differential splits into three components, giving the invariant
variational bicomplex the structure of a “quasi-tricomplex” and not a bicomplex proper.
We remark that, although Kogan and Olver consider arbitrary differential forms, only
the actually invariant forms in the invariant variational bicomplex are needed for the
present considerations, so our definition of invariant variational bicomplex differs from
that of [19, 20].

Definition 4.1. A locally defined differential form Ω ∈ Ω∗ is said to be G-invariant if

(g(∞))∗Ω = Ω, ∀ g ∈ G.

The collection of G-invariant differential forms is denoted by Ω∗G.

Definition 4.2. The invariantization of a differential form Ω on J∞ is the invariant
differential form

ι(Ω) = σ∗ (πJ(w∗Ω)) .

Lemma 4.3. The invariantization map ι defines a projection, ι2 = ι, from the space
of differential forms Ω∗ onto the space of invariant differential forms Ω∗G.

In terms of the local coordinates z(∞) = (x, u(∞)), define the invariant horizontal
one-forms

$i = ι(dxi), i = 1, . . . , p (4.1)

and the fundamental invariant contact forms

ϑαJ = ι(θαJ ), α = 1, . . . , q, #J ≥ 0. (4.2)

It is important to note that if the group action is non-projectable, then the invariant
horizontal one-forms (4.1) are not purely horizontal forms. If we decompose them into
horizontal and contact components

$i = ωi + ηi, where ωi = πH($i), ηi = πV ($i), (4.3)

their horizontal components ωi ∈ Ω1,0 are the usual contact invariant horizontal forms,
[14]. The invariant contact forms (4.2) are in all cases genuine contact forms and form
a basis for the full contact ideal.

Example 4.4. Consider again the planar Euclidean group SE(2) of Example 3.5. To
obtain the invariant horizontal form (4.1), apply the invariantization map to dx:

ι(dx) = σ∗(πJ(w∗dx))
= σ∗

(
πJ
(

cosφdx− sinφdu− (x sinφ+ u cosφ)dφ+ da
))

= σ∗(cosφdx− sinφdu)
= σ∗

(
(cosφ− ux sinφ)dx− (sinφ)θ

)
,
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where θ = du − uxdx is the usual zero order basic contact form. Pulling back via the
moving frame (3.5) leads to the invariant horizontal one-form

$ = ω + η =
√

1 + u2
x dx+

ux√
1 + u2

x

θ, (4.4)

which is a sum of the contact-invariant arc length form ω = ds =
√

1 + u2
x dx along

with a contact correction term η = ux(1+u2
x)−1/2θ. The invariantization of the contact

forms yields

ϑ =
θ√

1 + u2
x

, ϑ1 =
(1 + u2

x)θx − uxuxxθ
(1 + u2

x)2
,

ϑ2 =
(1 + u2

x)2θxx − 3uxuxx(1 + u2
x)θx + (3u2

xu
2
xx − ux(1 + u2

x)uxxx)θ
(1 + u2

x)7/2
,

(4.5)

and so on.

Theorem 4.5. The invariant horizontal and contact one-forms (4.1), (4.2) form an
invariant coframe on the domain of definition V∞ ⊂ J∞ of the moving frame.

By virtue of Theorem 4.5, proved in [14], any one-form can be uniquely decomposed
into a linear combination of invariant horizontal and invariant contact one-forms. These
two components are called the invariant horizontal and invariant vertical components
of the forms. In this manner, the invariant coframe (4.1), (4.2) is used to bigrade the
space of differential forms on J∞:

Ω∗ =
⊕
r,s

Ω̃r,s,

where Ω̃r,s is the space of forms of invariant horizontal degree r and invariant vertical
degree s.

Let
πr,s : Ω→ Ωr,s, π̃r,s : Ω→ Ω̃r,s (4.6)

denote, respectively, projection of arbitrary differential forms onto the ordinary and
the invariant (r, s)-bigrade. Because of (4.3), horizontal and invariant horizontal forms
differ only by contact forms, so the restrictions of the projections (4.6)

πr,s : Ω̃r,s → Ωr,s, π̃r,s : Ωr,s → Ω̃r,s (4.7)

are mutually inverse.
Invariantization defines a map

ι : Ωr,s → Ω̃r,s
G ⊂ Ω̃r,s

that takes an ordinary form of bigrade (r, s) and produces an invariant form of invariant
bigrade (r, s). In general this map does not commute with the exterior derivative:

dι(Ω) 6= ι(dΩ).

Computation of the correction terms for this lack of commutativity is central to the
construction of the invariant variational bicomplex.
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Before discussing these correction terms, we briefly recall notation for infinitesimal
generators and their prolongations. A Lie algebra element v ∈ g generates a vector
field v̂ (an infinitesimal generator) on M through the usual process:

v̂ =
d

dε

∣∣∣∣
ε=0

(exp(εv) · z). (4.8)

Due to the local effectiveness of the action of G, the Lie algebra g may be identified
with the Lie algebra of infinitesimal generators on M . Thus we drop the notational
distinction between v and v̂. Given a basis v1, . . . ,vr for g there is a corresponding
Lie algebra of infinitesimal generators on M with generators

vκ =
p∑
i=1

ξκ,i(x, u)
∂

∂xi
+

q∑
α=1

φκ,α(x, u)
∂

∂uα
, κ = 1, . . . , r. (4.9)

The expressions for the infinitesimal generators of the prolonged group action G(n)

v(n)
κ = vκ +

q∑
α=1

n∑
#J≥1

φJκ,α(x, u(n))
∂

∂uαJ
, κ = 1, . . . , r,

are given by the standard recursive formula, [23],

φJ,jκ,α = Djφ
J
κ,α −

p∑
i=1

Djξκ,i · uαJ,i.

The infinite prolongation v(∞) may be found in a similar fashion.
The following lemma, called the recurrence formula, exhibits the correction terms

we seek. A proof may be found in [20].

Lemma 4.6. Let µ1, . . . , µr ∈ g∗ be the Maurer–Cartan forms dual to v1, . . . ,vr ∈ g.
If Ω is any differential form on J∞,

dι(Ω) = ι(dΩ) +
r∑

κ=1

νκ ∧ ι[L
v

(∞)
κ

(Ω)] (4.10)

where νκ = ρ∗(µκ) are the pull-backs of the Maurer–Cartan forms µκ via the moving
frame ρ : J∞ → G and L

v
(∞)
κ

(Ω) is the Lie derivative of Ω with respect to v(∞)
κ .

Remark 4.7. An important observation is that the differential forms ν1, . . . , νr can
be determined directly from the recurrence formula (4.10). Indeed, for the r phantom
invariants (3.3), the left-hand side of (4.10) is identically zero, and those r equations
can be used to solve for the r unknown differential forms νκ. The solution to the system
of equations is guaranteed by our regularity assumptions on the group action.

With the observation that for Ω ∈ Ωr,s, dΩ ∈ Ωr+1,s ⊕Ωr,s+1 and vκ(Ω) ∈ Ωr,s ⊕
Ωr−1,s+1 it follows from (4.10) that

dι(Ω) ∈ Ω̃r+1,s
G ⊕ Ω̃r,s+1

G ⊕ Ω̃r−1,s+2
G ⊂ Ω̃r+1,s ⊕ Ω̃r,s+1 ⊕ Ω̃r−1,s+2,
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with the convention that Ω̃−1,s = 0, s ≥ 0. In fact, since any (possibly non-invariant)
Ω ∈ Ω̃r,s is a linear combination with function coefficients of invariant forms of invariant
bigrade (r, s), dΩ decomposes similarly:

dΩ = dHΩ + dVΩ + dWΩ,

dHΩ ∈ Ω̃r+1,s, dVΩ ∈ Ω̃r,s+1, dWΩ ∈ Ω̃r−1,s+2.

This gives the invariant bigraded forms the structure of a quasi-tricomplex :

d2
H = 0, d2

W = 0,

dHdV + dVdH = 0, dVdW + dWdV = 0, d2
V + dHdW + dWdH = 0.

(4.11)

If the action is projectable, Lie differentiation by infinitesimal generators will preserve
the ordinary bigrading, resulting in dW = 0 and reducing the above “quasi-tricomplex”
structure to an ordinary bicomplex (2.4) in dH and dV .

We now introduce the invariant variational bicomplex and the invariant Euler–
Lagrange complex. For s ≥ 1, define the spaces of G-invariant source forms and the
quotient projections

F̃sG = Ω̃p,s
G /dH(Ω̃p−1,s

G ) and π̃ : Ω̃p,s
G → F̃

s
G. (4.12)

Let Ẽ = π̃ ◦ dV : Ω̃p,0
G → F̃1

G and define δV = π̃ ◦ dV : F̃sG → F̃
s+1
G where the latter map

is understood to act on equivalence class representatives. As in the ordinary case, this
action is well defined by the anticommutativity of dH and dV . That δV is a boundary
operator follows from the implication of the relations (4.11), as d2

VΩ̃ = −dHdWΩ̃ for Ω̃
of maximum invariant horizontal degree.

Definition 4.8. The (augmented) invariant variational bicomplex is the quasi-tricom-
plex

(Ω̃∗,∗G , {dH, dV , dW}).

to which we add the vertical complex (F̃∗G, δV) as in Definition 2.2.

Remark 4.9. As mentioned earlier, our definition of the invariant variational bicom-
plex differs from the original definition of Kogan and Olver, [19, 20], in that we consider
only invariant forms.

Following the example of the ordinary variational bicomplex, an edge complex, called
the invariant Euler–Lagrange complex, may be constructed for the invariant variational
bicomplex.

Definition 4.10. The invariant Euler–Lagrange complex is the edge complex

0 // R // Ω̃0,0
G

dH // Ω̃1,0
G

dH // · · · dH // Ω̃p,0
G

Ẽ // F̃1
G

δV // F̃2
G

δV // · · · .

Using the equivariant moving frame method, the explicit expression for the invariant
Euler–Lagrange operator Ẽ : Ω̃p,0

G → F̃1
G, was discovered by Kogan and Olver, [20].

11



5 Local Exactness of the Interior Rows of the

Invariant Variational Bicomplex

In this section the local exactness of the interior rows of the invariant variational bi-
complex is established. Following [5], an invariant connection is introduced and used
to construct invariant homotopy operators for these rows. To define the invariant con-
nection we first introduce a G-invariant splitting of the tangent bundle TJ∞ dual to
the invariant bigrading on Ω∗.

First, recall that a total vector field on J∞ is one which is annihilated by any
contact form. The space of total vector fields forms a subbundle H of TJ∞. In the
local coordinate system M ' X × U , the total differential operators D1, . . . , Dp in
(2.5) form a basis of total vector fields. When a moving frame exists, we can replace
the standard basis of total vector fields by the invariant total differential operators
D1, . . . ,Dp dual to the invariant horizontal forms $1, . . . , $p and

H = span{D1, . . . , Dp} = span{D1, . . . ,Dp}.

Now, let VG be the subbundle of G-invariant vertical vector fields defined as the
span of the vector fields V J

α dual to the basic invariant contact forms ϑαJ . Denoting the
standard pairing between TJ∞ and Ω∗ by 〈·; ·〉, the invariant vertical vector fields V J

α

are defined by the relations

〈V J
α ;$i〉 = 0, 〈V J

α ;ϑβK〉 = δβαδ
J
K ,

where δβα, δJK are Kronecker symbols. Let V denote the subbundle of (vertical) vector
fields annihilated by dπ∞X : TJ∞ → TX. When the group action is not projectable

VG 6= V.

Example 5.1. The vector fields dual to the invariant coframe (4.4), (4.5) are given by
the arc length derivative

D =
Dx√
1 + u2

x

(5.1)

and the invariant vertical vector fields

V 0 =
1√

1 + u2
x

(
−ux

∂

∂x
+

∂

∂u

)
, V 1 = (1 + u2

x)
∂

∂ux
+ 3uxuxx

∂

∂uxx
+ · · · ,

V 2 = (1 + u2
x)3/2

∂

∂uxx
+ · · · , . . . .

(5.2)

We note that dπX(V k) = 0, for k ≥ 1. In general, this equality always holds, that
is dπX(V J

α ) = 0 whenever #J ≥ 1. For a non-projectable action, the only invariant
vertical vector fields with non trivial horizontal component are the vectors Vα dual to
the zero order contact forms ϑα.

Given the subbundles H and VG, the tangent bundle TJ∞ decomposes into a G-
invariant direct sum

TJ∞ = H⊕VG,
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and we can define the projections

Tot: X (J∞)→ Γ(J∞,H) and VertG : X (J∞)→ Γ(J∞,VG)

of a vector field onto its G-invariant horizontal and vertical components. Recall the
notation X for the collection of vector fields on J∞ and Γ for sections of H or VG over
J∞.

Definition 5.2. A horizontal connection on the bundle H of total vector fields is an
R-bilinear map which assigns to a pair of total vector fields X and Y a total vector
field ∇̂XY satisfying

a) ∇̂fXY = f∇̂XY ,

b) ∇̂X(fY ) = X(f)Y + f∇̂XY ,

where f is any smooth differential function.

Definition 5.3. The connection ∇̂ is said to be torsion-free if

∇̂XY − ∇̂YX = [X,Y ].

Definition 5.4. The connection ∇̂ is G-invariant if

Lv(∞)(∇̂XY ) = ∇̂(L
v(∞)X)Y + ∇̂X(Lv(∞)Y ) (5.3)

for all infinitesimal generators v ∈ g and total vector fields X,Y ∈ H. Note that the
right-hand side of (5.3) is well-defined since Lv(∞)X and Lv(∞)Y are total vector fields.

Remark 5.5. Invariant, torsion-free horizontal connections on H can be constructed for
any group action admitting p functionally independent differential invariants Ii(x, u(∞)),
i = 1, . . . , p. Let {R1, . . . ,Rp} be the basis for the distribution of total vector fields
dual to the basis of invariant horizontal forms {dHI1, . . . dHI

p}. As the forms dHIi are
dH-closed and G-invariant, the vector fields Ri commute among themselves and with
the infinitesimal symmetry generators, that is

[Ri,Rj ] = 0 and [v(∞),Ri] = 0

for all i, j and v ∈ g. Define ∇̂ to be the unique horizontal connection on horizontal
vector fields satisfying

∇̂RiRj = 0, for all 1 ≤ i, j ≤ p.

Then this connection is torsion-free and G-invariant.

We extend the connection ∇̂ to the full tangent bundle of TJ∞, in a G-invariant
manner, by setting

∇XZ = ∇̂XTotZ + VertG [X,VertG Z]. (5.4)

To simplify the notation, let
∇i = ∇Ri .

The next lemma is a direct consequence of the G-invariance of ∇.
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Lemma 5.6. Let Ω̃ ∈ Ω̃r,s
G be an invariant differential form. Then for all v ∈ g

Lv(∞)(∇i Ω̃) = 0, i = 1, . . . , p, (5.5)

that is, ∇i Ω̃ ∈ Ω̃r,s
G is an invariant differential form.

The invariant connection may be used to conveniently write the invariant horizontal
differential of a form, [5].

Lemma 5.7. Let Ω ∈ Ωk and ∇ be an invariant connection constructed as above.
Then the invariant horizontal differential of Ω is given by

dHΩ =
p∑
i=1

dHI
i ∧∇i(Ω). (5.6)

The horizontal and invariant horizontal differentials are related to each other through
the projection maps (4.7), [20].

Lemma 5.8. The horizontal and invariant horizontal differentials satisfy the relations

πr+1,s ◦ dH = dH ◦ πr,s, π̃r+1,s ◦ dH = dH ◦ π̃r,s,

for any 0 ≤ r ≤ p and s ≥ 0.

Example 5.9. For the Euclidean group action SE(2), the invariant connection (5.4) is
constructed as follows. Since the arc length derivative (5.1) commutes with itself there
is no need to introduce a new commuting basis of invariant total derivatives. Using the
recurrence relation (4.6) we deduce the structure equations

d$ =κ$ ∧ ϑ+ ϑ1 ∧ ϑ,
dϑ =$ ∧ ϑ1,

dϑ1 =$ ∧ ϑ2 − κ2$ ∧ ϑ− κϑ1 ∧ ϑ,
dϑ2 =$ ∧ ϑ3 − 3κ2$ ∧ ϑ1 − κκs$ ∧ ϑ− κsϑ1 ∧ ϑ,

... .

(5.7)

By duality, we obtain the commutator relations

[D,D] = 0, [D, V 0] = −κD + κ2V 1 + κκsV
2 + · · · ,

[D, V 1] = −V 0 + 3κ2V 2 + · · · , [D, V 2] = −V 1 + · · · , . . . .
(5.8)

among the invariant vector fields (5.1), (5.2). Substituting (5.8) into the definition of
the invariant connection (5.4) we obtain

∇DD = 0, ∇DV 0 = κ2V 1 + κκsV
2 + . . . ,

∇DV 1 = −V 0 + 3κ2V 2 + · · · , ∇DV 2 = −V 1 + · · · ,
(5.9)

from which we deduce the nonzero Christoffel symbols

Γ1
0 = κ2, Γ2

0 = κκs, . . . , Γ0
1 = −1, Γ2

1 = 3κ2, . . . , Γ1
2 = −1, . . . ,

(5.10)
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where the subscript indexing D in Γkij is omitted. We now verify formula (5.6), with the
slight difference that we have used $ and D rather than dHIi andRi in the construction
of the connection. Using the Christoffel symbols (5.10) we obtain

dH$ = $ ∧∇D$ = 0,
dHϑ = $ ∧∇Dϑ = $ ∧ ϑ1,

dHϑ1 = $ ∧∇Dϑ1 = $ ∧ (−κ2ϑ+ ϑ2),
...

which is, as expected, equal to the horizontal component of the structure equations
(5.7).

Since for any contact one-form ϑ the equality

dHϑ =
p∑
i=1

dHI
i ∧Ri(ϑ)

holds, [20], it follows from (5.6) that

Ri(ϑ) = ∇i(ϑ). (5.11)

We emphasize that (5.11) does not generally hold for horizontal one-forms. For example,
for the Euclidean group SE(2) acting on R2 we have

0 = ∇D$ 6= D($) = κϑ,

where ϑ is the zero order invariant contact one-form given in (4.5). We now prove the
main result of this section.

Theorem 5.10. Let G be a Lie group acting effectively on subsets of a manifold M .
Then for each s ≥ 1, the augmented horizontal complex

0 // Ω̃0,s
G

dH // Ω̃1,s
G

dH // · · · dH // Ω̃p,s
G

eπ // F̃sG // 0 (5.12)

is locally exact.

Proof. The regularity assumption on the action of G guarantees the existence of a
moving frame, which is used to obtain p pairwise commuting invariant total differential
operators R1, . . . ,Rp and define the invariant horizontal connection ∇ in (5.4). Using
the invariant horizontal connection we now construct the invariant interior Euler op-
erator Ĩ∇ : Ω̃p,s

G → Ω̃p,s
G . Let V α

J denote the invariant vertical vector fields dual to the
basis of invariant contact one-forms RJ(ϑα). By virtue of (5.11), given Ω̃ ∈ Ω̃p,s we
can write

Ω̃ =
1
s

∑
J

q∑
α=1

RJ(ϑα) ∧
(
V
α
J Ω̃

)
=

1
s

∑
J

q∑
α=1

∇J(ϑα) ∧
(
V
α
J Ω̃

)
=

1
s

∑
J

q∑
α=1

∇J(ϑα ∧ F̃ J∇,α(Ω̃)),

(5.13)
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where the F̃ J∇,α are the interior Euler operators (2.9) expressed in terms of the con-
nection ∇1, . . . ,∇p; symbolically this is achieved by replacing the total differential
operators DJ with ∇J and the vector fields ∂/∂uαJ by V α

J . Using (5.6) we can write

Ω̃ = Ĩ∇(Ω̃) + dH(h̃p,s∇ (Ω̃)), (5.14)

where

Ĩ∇(Ω̃) =
1
s

q∑
α=1

ϑα ∧ F̃∇,α(Ω̃),

h̃p,s∇ (Ω̃) =
1
s

∑
J

p∑
j=1

q∑
α=1

∇J{Rj [ϑα ∧ F̃ J,j∇,α(Ω̃)]}.
(5.15)

Now, let Ω ∈ Ωp,s, Ω̃ = π̃p,s(Ω) and I : Ωp,s → Ωp,s be the standard (non-invariant)
interior Euler operator defined by

I(Ω) =
1
s

q∑
α=1

θα ∧
[∑

J

(−D)J

(
∂

∂uαJ
Ω
)]
. (5.16)

Then there exist differential forms η ∈ Ωp−1,s and η̃ ∈ Ω̃p,s such that

I(Ω) + dH(η) = Ω = πp,s(Ω̃) = πp,s[Ĩ∇(Ω̃) + dH(η̃)]

= πp,s ◦ Ĩ∇ ◦ π̃p,s(Ω) + dH(πp−1,s(η̃)).

As πp,s◦Ĩ∇◦π̃p,s defines an interior Euler operator on Ωp,s it follows from [1, Proposition
5.55] that

I = πp,s ◦ Ĩ∇ ◦ π̃p,s. (5.17)

The equality (5.17) implies that Ĩ∇ is independent of the connection and we write
Ĩ∇ = Ĩ. Since ker I = dHΩp−1,s we conclude from Lemma 5.8 that ker Ĩ = dHΩ̃p−1,s

and
Ĩ(Ω̃p,s

G ) ' F̃sG.

This shows that the invariant horizontal subcomplex

Ω̃p−1,s
G

dH // Ω̃p,s
G

eπ // F̃sG // 0 , s ≥ 1,

is exact. For the first part of the invariant horizontal complex

0 // Ω̃0,s
G

dH // Ω̃1,s
G

dH // · · · dH // Ω̃p,s
G
, s ≥ 1,

invariant horizontal homotopy operators

h̃r,s∇ : Ω̃r,s
G → Ω̃r−1,s

G , 1 ≤ r ≤ p− 1,

are similarly constructed:

h̃r,s∇ (Ω̃) =
1
s

k−1∑
#J=0

p∑
j=1

q∑
α=1

#J + 1
p− r + #J + 1

∇J [ϑα ∧ F̃ J,j∇,α(Ω̃j)], (5.18)

where Ω̃j = Rj Ω̃.
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Example 5.11. Continuing with our running example, we illustrate the constructions
of the last proof by first computing (5.14) explicitly for the invariant three-form Ω̃ =
ϑ2 ∧ ϑ1 ∧$. Beginning with the invariant interior Euler operator we have

Ĩ∇(Ω̃) =
1
2
ϑ ∧ [V 0 Ω̃−∇D(V 1 Ω̃)−∇2

D(V 2 Ω̃)] = ϑ ∧ [2(D3ϑ) + κ2ϑ1] ∧$.

Next,

h̃1,2
∇ (Ω̃) =

1
2

{
D ϑ ∧ F̃ 1

∇(Ω̃) +∇D[D ϑ ∧ F̃ 2
∇(Ω̃)]

}
= −ϑ ∧ D2ϑ,

and the equality

Ω̃ = Ĩ∇(Ω̃) + dH(h̃1,2
∇ (Ω̃)) = ϑ ∧ [2(D3ϑ) + κ2ϑ1] ∧$ +$ ∧∇D(−ϑ ∧ D2ϑ)

=κ2ϑ ∧ ϑ1 ∧$ + (D2ϑ) ∧ ϑ1 ∧$ = ϑ2 ∧ ϑ1 ∧$

is verified. We also check that (5.18) are homotopy operators for Ω̃ = κϑ, for example.
Since Ω̃ is a contact form h̃0,1

∇ (Ω̃) = 0. Thus

h̃1,1
∇ (dHΩ̃) + dH(h̃0,1

∇ (Ω̃)) = h̃1,1
∇ (dHΩ̃)

=ϑ ∧ F̃ 1
∇(κsϑ+ κϑ1) +∇D[ϑ ∧ F̃ 2

∇(κsϑ+ κϑ1) = κϑ = Ω̃.

6 The Local Cohomology of the Invariant Euler–

Lagrange Complex

The purpose of this section is to establish an isomorphism between the invariant de
Rham cohomology of J∞ and the local cohomology of the invariant Euler–Lagrange
complex. This isomorphism will be used in conjunction with the results of Section 7
to produce explicit examples of cohomology classes in the invariant Euler–Lagrange
complex. Section 8 will be devoted to these examples.

Although the “snaking” arguments to follow are somewhat standard in appearance
we include some details due to the appearance of the anomalous dW operator. Recall
the projections π̃r,s and π̃ from (4.7) and (4.12).

Lemma 6.1. Let γ ∈ Ωr
G be d-closed. If r ≤ p and π̃r,0(γ) = 0 or if r = p + s and

(π̃ ◦ π̃p,s)(γ) = 0, then γ is d-exact.

Proof. For r ≤ p, write γ = γ1 + γ2 + · · · + γr where γi ∈ Ω̃r−i,i
G . Since γ is d-closed

these forms satisfy

dHγ1 = 0,
dHγ2 + dVγ1 = 0,
dHγi + dVγi−1 + dWγi−2 = 0, i = 3, . . . , r,
dVγr + dWγr−1 = 0.

(6.1)

The exactness of the interior rows (5.12), combined with the equations (6.1) implies
that there exist invariant differential forms ρi ∈ Ω̃r−i−1,i

G such that

dHρ1 = γ1,

dHρ2 + dVρ1 = γ2,

dHρi + dVρi−1 + dWρi−2 = γi, i = 3, . . . , r − 1,
dVρr−1 + dWρr−2 = γr.

(6.2)
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From (6.2) it follows that

d(ρ1 + ρ2 + ρ3 + · · ·+ ρr−1) = γ,

which proves that γ is d-exact. For r = p + s, the proof is similar except that now
the condition (π̃ ◦ π̃p,s)(γ) = 0 implies, by the exactness of the rows (5.12), that the
invariant type (p, s) component of γ is dH-exact.

Theorem 6.2. The cohomology of the invariant Euler–Lagrange complex Ẽ∗G

0 // R // Ω̃0,0
G

dH // Ω̃1,0
G

dH // · · · dH // Ω̃p,0
G

eE // F̃1
G

δV // F̃2
G

δV // · · ·

is locally isomorphic to the invariant de Rham cohomology of J∞.

Proof. Since the projection map π̃r,s : Ωr+s
G → Ω̃r,s

G satisfies

π̃r+1,0 ◦ d = dH ◦ π̃r,0, for r ≤ p− 1,

π̃ ◦ π̃p,1 ◦ d = Ẽ ◦ π̃p,0,
π̃ ◦ π̃p,s+1 ◦ d = δV ◦ π̃ ◦ π̃p,s, for s ≥ 1,

the map Ψ: Ω∗G → Ẽ∗G defined, for ω ∈ Ωr
G, by

Ψ(ω) =

{
π̃r,0(ω) for r ≤ p,
π̃ ◦ π̃p,s(ω) if r = p+ s and s ≥ 1,

(6.3)

is a cochain map. The induced map in cohomology will be denoted by Ψ∗ : H∗(Ω∗G)→
H∗(Ẽ∗G). The map Ψ∗ is proved to be an isomorphism in cohomology by constructing
the inverse map Φ: H∗(Ẽ∗G) → H∗(Ω∗G). To define Φ we consider separately the two
pieces of the complex Ẽ∗G, beginning with the horizontal edge

0 // R // Ω̃0,0
G

dH // Ω̃1,0
G

dH // · · · dH // Ω̃p,0
G

eE // F̃1
G.

Let [ω] ∈ Hr(Ẽ∗G) for r ≤ p and define ω0 = ω ∈ Ω̃r,0
G . Using Theorem 5.10 and

the differential relations (4.11) it is straightforward to find inductively ωi ∈ Ω̃r−i,i
G such

that
dHω1 = −dVω0, dHωi = −dVωi−1 − dWωi−2, 2 ≤ i ≤ r. (6.4)

Let
β = ω0 + ω1 + ω2 + · · ·+ ωr ∈ Ωr

G. (6.5)

The claim is that β is d-closed. The expression for dβ telescopes using the relations
(6.4):

dβ =
r∑
i=0

(dH + dV + dW)ωi = dVωr + dWωr−1,

where we have used the fact that dWωr = 0. Using (4.11), one can verify that dH(dVωr+
dWωr−1) = 0. Since dVωr + dWωr−1 ∈ Ω̃0,r+1

G , by injectivity of dH : Ω̃0,r+1
G → Ω̃1,r+1

G it
follows that dβ = dVωr + dWωr−1 = 0.
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The cohomology class [β] ∈ Hr(Ω∗G) is independent of the choices taken for the ωi.
Indeed, any other ωi defined as in (6.4) must satisfy

ω0 = ω0 + dHα0,

ω1 = ω1 + dHα1 + dVα0,

ωi = ωi + dHαi + dVαi−1 + dWαi−2, 2 ≤ i ≤ r − 1,
ωr = ωr + dVαr−1 + dWαr−2,

where αi ∈ Ω̃r−i−1,i
G . Hence, defining β as in (6.5) we obtain

β = β + d(α0 + α1 + · · ·+ αr−1).

Thus the map Φ may be defined by Φ([ω]) = [β].
It now follows that Ψ∗ and Φ are mutually inverse. First observe that for [ω] ∈

Hr(Ω̃∗,0G ), we have Ψ∗ ◦ Φ([ω]) = Ψ∗([β]) = [ω]. Next, let α ∈ Ωr
G be a d-closed

form and let α0 = π̃r,0(α). Since dα = 0 it follows that dHα0 = 0, hence we may
define inductively, starting with α0 ∈ Ω̃r,0

G , a β ∈ Ωr
G as in (6.5). Then Φ ◦ Ψ∗([α]) =

Φ([α0]) = [β]. Since π̃r,0(α) = π̃r,0(β) = α0, the difference β−α satisfies the hypotheses
of Lemma 6.1 and is thus d-exact. Hence [β] = [α].

The case r = p+ s, s ≥ 1, corresponding to the second piece of the complex,

F̃1
G

δV // F̃2
G

δV // F̃3
G

δV // · · ·

is dealt with very similarly. The condition δVω0 = 0 for ω0 ∈ F̃sG implies that there
is some ω1 ∈ Ω̃p−1,s+1

G such that dHω1 = −dVω0. Setting β = ω0 + ω1 + · · · + ωp,
where ωi ∈ Ω̃p−i,s+i

G is defined inductively via the relation dHωi = −dWωi−2 − dVωi−1,
i = 2, . . . , p, we obtain the inverse Φ to Ψ∗ just as in the previous argument.

7 Lie Algebra Cohomology

Definition 7.1. Let G be a connected r-dimensional Lie group with Lie algebra g. The
Lie algebra cohomology H∗(g) is the de Rham cohomology of the complex of invariant
differential forms on G.

We remark that the de Rham complex of invariant differential forms on G and the
complex (Λr(g), d) of alternating multilinear functionals on g with

dα(X0, . . . , Xr) =
∑
i≤j

(−1)i+jα
(
[Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xr

)
,

appearing in many references, are isomorphic.
We now construct a local isomorphism between the G-invariant de Rham complex

on M and the Lie algebra cohomology for g. The construction of this isomorphism
roughly follows [5], with the added computational and conceptual advantage of moving
frames.

Theorem 7.2. If z0 ∈ M is a regular point of the group action G, then there is a
neighborhood U ⊂M of z0 such that H∗(Ω∗G(U)) ' H∗(g).
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Proof. By Theorem 3.2 there is a neighborhood V of z0 and a moving frame ρ : V → G
corresponding to a cross-section K ⊂ V. Restrict to a neighborhood U ⊂ V so that
there is a strong deformation retract H(z, t) of K∩U to z0 and such that the expression

ρ(z)−1 ·H(ρ(z) · z, t) (7.1)

is defined for all z ∈ U . This can be done for instance by introducing flat local coor-
dinates on M which identify a neighborhood U ⊂ V of z0 with G0 × K, where G0 is a
suitable neighborhood of the identity in G, [14]. The map (7.1) defines an equivariant
strong deformation retract of U onto the group orbit O of z0 in U . Thus the invariant
de Rham cohomology of the neighborhood U is isomorphic to that of its submanifold
O : H∗(Ω∗G(U)) ' H∗(Ω∗G(O)).

Now, let µ1, . . . , µr, be a basis of Maurer–Cartan forms for G and let ν1 = ρ∗(µ1),
. . . , νr = ρ∗(µr) be the pull-backs of the Maurer–Cartan forms via the moving frame.
The forms νi are invariant one-forms on M whose restrictions νi|O form an invariant
coframe on O and hence generate the invariant de Rham complex on O. Furthermore,
since pullback commutes with d, the structure equations for the forms νi are the same
as the Maurer–Cartan structure equations. Hence the moving frame pullback provides
an isomorphism of the complex of invariant differential forms on G and the invariant
de Rham complex on O, which is in turn isomorphic to the invariant de Rham complex
on U .

Under our regularity assumption that G acts effectively on subsets, the prolonged
transformation group will act locally freely on an open subset of Jn for n sufficiently
large, [14]. Then the following corollary is a direct consequence of Theorem 7.2.

Corollary 7.3. Let G be a Lie group acting on M . Suppose that z(∞) ∈ J∞ is a regular
jet of the prolonged group action G(∞). Then there is a neighborhood U∞ ⊂ V∞ ⊂ J∞

of z(∞) such that
H∗(Ω∗G(U∞)) ' H∗(g∗).

Combining Corollary 7.3 and Theorem 6.2, we obtain the main result of the paper.

Theorem 7.4. Let G be a Lie group acting on M . Suppose that z(∞) ∈ J∞ is a regular
point of the prolonged action G(∞). Then there is a neighborhood U∞ ⊂ V∞ ⊂ J∞ of
z(∞) such that

H∗(Ẽ∗(U∞)) ' H∗(g∗).

To proceed further we extend the definition of the non-invariant boundary operators
(2.7) to allow arbitrary p + s forms. Given a differential form Ω ∈ Ωp+s, with s ≥ 0,
the extended boundary operator is

δ∗V (Ω) = π ◦ πp,s ◦ dV (Ω) = π ◦ πp,s ◦ d(Ω). (7.2)

A property of the extended boundary operator δ∗V is that it annihilates all components
in Ω which are not of maximal horizontal degree. The introduction of the extended
boundary operator (7.2) first appeared in [20] and was used to define the extended Euler
derivative.

Lemma 7.5. Let Ω,Ψ ∈ Ωp+s. If πp,s(Ω) = πp,s(Ψ) then δ∗V (Ω) = δ∗V (Ψ).
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Lemma 7.6. Let Ω̃ ∈ Ω̃p,s
G and Ω = πp,s(Ω̃) ∈ Ωp,s, then

δ∗V (Ω) = πp,s+1 ◦ δV(Ω̃).

Proof. By Lemma 7.5

δ∗V (Ω) = δ∗V (Ω̃) = π ◦ πp,s+1 ◦ d(Ω̃) = π ◦ πp,s+1(dHΩ̃ + dVΩ̃ + dWΩ̃).

The first and third terms in the last equality vanish since dHΩ̃ = 0 as Ω̃ is of maximal
invariant horizontal degree and dWΩ̃ ∈ Ω̃p−1,s+2 which implies that πp,s+1(dWΩ̃) = 0.
Thus we are left with

δ∗V (Ω) = πp,s+1 ◦ π̃ ◦ dV(Ω̃) = πp,s+1 ◦ δV(Ω̃).

Theorem 7.4 combined with Lemma 7.6 gives a cohomological condition for the
solution to the invariant inverse problem of variational calculus.

Corollary 7.7. Let U∞ be as in Theorem 7.4 and suppose that Hp+1(g∗) = 0. Then
every G-invariant source form on U∞ which is the Euler–Lagrange form of some La-
grangian is the Euler–Lagrange form of a G-invariant Lagrangian.

8 Examples

In this section we consider the geometry of Euclidean and equi-affine curves in the plane
and Euclidean surfaces in R3 to illustrate the Theorems discussed in Sections 6 and 7.

Example 8.1. We first consider our running example of the Euclidean group SE(2).
The Maurer–Cartan structure equations for this group are

dµ1 = µ2 ∧ µ3, dµ2 = −µ1 ∧ µ3, dµ3 = 0,

where
µ1 = da+ bdφ, µ2 = db− adφ, µ3 = dφ. (8.1)

It follows that the non-trivial3 cohomology classes of H∗(se∗(2)) are

[µ3], [µ1 ∧ µ2], [µ1 ∧ µ2 ∧ µ3]. (8.2)

Taking the pull-backs of the Maurer–Cartan forms (8.1) by the moving frame (3.5)
leads to the invariant one-forms

ν1 = − dx+ uxdu

(1 + u2
x)1/2

, ν2 =
uxdx− du
(1 + u2

x)1/2
, ν3 = − dux

1 + u2
x

.

The pull-backs of the cohomology classes (8.2) give the invariant de Rham cohomology
classes

[κ$ + ϑ1], [$ ∧ ϑ], [$ ∧ ϑ ∧ ϑ1]. (8.3)

3We neglect the trivial cohomology class from our considerations.
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Applying the map (6.3) to the cohomology classes (8.3) we find that the non-trivial
cohomology classes of the invariant Euler–Lagrange complex are

[κ$], [$ ∧ ϑ], [$ ∧ ϑ ∧ ϑ1]. (8.4)

We now show that (8.4) is related to the cohomology classes obtained in [6], where
parametrized curves

z : R→ R2, z(t) = (x(t), u(t))

are considered. In this setting, the natural group action to consider is the infinite-
dimensional Lie pseudo-group

G = Diff(R)+ × SE(2), (ψ,R, b) · (t, z) = (ψ(t), Rz + b), (8.5)

where ψ is a local diffeomorphism of R with ψ′(t) > 0, R ∈ SO(2) and b ∈ R2. Under
the pseudo-group action (8.5), the invariant Euler–Lagrange complex has four non-
trivial cohomology classes, [6], and three of the four originate from the cohomology of
SE(2). These are given by

[λ] = [κω] = [
ẋü− ẍu̇
ẋ2 + u̇2

dt], [δ] = [(u̇dx− ẋdu) ∧ dt], (8.6)

[β] =
[
ω ∧

(
κdx ∧ du+

u̇2dx ∧ dẋ− ẋu̇(dx ∧ du̇+ du ∧ dẋ) + ẋ2du ∧ du̇
(ẋ2 + u̇2)3/2

)]
,

where ω =
√
ẋ2 + u̇2 dt is the arc length form. To recover (8.6) from (8.4) we first

observe that when (x, u) = (x(t), u(t))

θ = du− uxdx =
xtdu− utdx

xt
,

θ1 = dux − uxxdx =
xtdut − utdxt

x2
t

− uttxt − utxtt
x3
t

dx,

$ =
√
x2
t + u2

tdt+
dx− xtdt

xt
+

utθ√
x2
t + u2

t

.

(8.7)

Next, let Ω r,s be the bundle of (r, s)-forms generated by the horizontal form dt and the
basic contact forms

θxk = dxk − xk+1dt, θuk = duk − uk+1dt, k ≥ 0.

If we denote by πr,s : Ω→ Ω r,s the projection onto Ω r,s, then we have the equalities

[π1,0(κ$)] = [λ], [π1,1($ ∧ ϑ)] = [δ], [π1,2($ ∧ ϑ ∧ ϑ1)] = [β].

Example 8.2. A more substantial example is provided by the geometry of equi-affine
planar curves, [15]. The equi-affine group SA(2) = SL(2) n R2 acts on M = R2 as
area-preserving affine transformation

g · (x, u) = (X,U) = (αx+ βu+ a, γx+ δu+ b), αδ − βγ = 1.

The coordinate cross-section X = U = UX = 0, UXX = 1, UXXX = 0, leads to the
classical equi-affine moving frame, [13, 20],

a =
x(uxuxxx − 3u2

xx)− uuxxx
3u5/3

xx

, b =
xux − u
u

1/3
xx

,

α =
3u2

xx − uxuxxx
3u5/3

xx

, δ =
1

u
1/3
xx

, β =
uxxx

3u5/3
xx

, γ = − ux

u
1/3
xx

.

(8.8)
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The fundamental differential invariant is the equi-affine curvature

κ = ι(uxxxx) =
3uxxuxxxx − 5u2

xxx

3u8/3
xx

.

The corresponding invariant horizontal form is

$ = ι(dx) = u1/3
xx dx+

uxxx

3u5/3
xx

θ,

while the invariant contact forms are

ϑ =
θ

u
1/3
xx

, ϑ1 =
3uxxθx − uxxxθ

3u5/3
xx

,

ϑ2 =
uxxθxx − uxxxθx

u2
xx

, ϑ3 =
3u2

xxθxxx − 6uxxuxxxθxx + u2
xxxθx − κu

5/3
xx uxxxθ

3u10/3
xx

,

and so on. A basis of Maurer–Cartan forms for SA(2) is given by

µ1 = da+ (βb− δa)dα+ (γa− αb)dβ, µ2 = db+ (βb− δa)dγ + (γa− αb)dδ,
µ3 = δdα− γdβ, µ4 = αdβ − βdα, µ5 = δdγ − γdδ,

(8.9)
where δdα + αdδ − βdγ − γdβ = 0. The corresponding Maurer–Cartan structure
equations are

dµ1 = µ4 ∧ µ2 + µ3 ∧ µ1, dµ2 = µ5 ∧ µ1 + µ2 ∧ µ3,

dµ3 = µ4 ∧ µ5, dµ4 = 2µ3 ∧ µ4, dµ5 = 2µ5 ∧ µ3.
(8.10)

From (8.10) we conclude that the non-trivial Lie algebra cohomology classes are

[µ1 ∧ µ2], [µ3 ∧ µ4 ∧ µ5], [µ1 ∧ µ2 ∧ µ3 ∧ µ4 ∧ µ5]. (8.11)

Taking the pull-back of the Maurer–Cartan forms (8.9) by the moving frame (8.8) we
obtain the invariant one-forms

ρ∗(µ1) = −$, ρ∗(µ2) = −ϑ,

ρ∗(µ3) =
ϑ2

3
, ρ∗(µ4) =

κ$ + ϑ3

3
, ρ∗(µ5) = −($ + ϑ1).

Thus the pull-back of the cohomology classes (8.11) gives the three invariant de Rham
cohomology classes

[$∧ϑ], [ϑ1∧ϑ2∧ϑ3 +κ$∧ϑ1∧ϑ2 +$∧ϑ2∧ϑ3], [$∧ϑ∧ϑ1∧ϑ2∧ϑ3]. (8.12)

The cohomology classes of the invariant Euler–Lagrange complex are obtained by ap-
plying the map (6.3) to (8.12). Consequently, the non-trivial SA(2)-invariant local
Euler–Lagrange cohomology classes for equi-affine planar curves are

[$ ∧ ϑ], [κ$ ∧ ϑ1 ∧ ϑ2 +$ ∧ ϑ2 ∧ ϑ3], [$ ∧ ϑ ∧ ϑ1 ∧ ϑ2 ∧ ϑ3].
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Example 8.3. As a final example we consider the action of SE(3) = SO(3) n R3 on
surfaces in R3 (with coordinates (x, y, u)) given by the infinitesimal generators

v1 = x∂y − y∂x, v2 = y∂u − u∂y, v3 = u∂x − x∂u, v4 = ∂x, v5 = ∂y, v6 = ∂u.

Let µ1, . . . µ6 be a basis of Maurer–Cartan forms dual to (the Lie algebra basis corre-
sponding to) the infinitesimal generators. The corresponding structure equations are

dµ1 = µ2 ∧ µ3, dµ2 = −µ1 ∧ µ3, dµ3 = µ1 ∧ µ2, dµ4 = −µ1 ∧ µ5 + µ3 ∧ µ6,

dµ5 = µ1 ∧ µ4 − µ2 ∧ µ6, dµ6 = µ2 ∧ µ5 − µ3 ∧ µ4.

A straightforward computation using Maple shows that the non-trivial Lie algebra
cohomology classes are

[µ1 ∧ µ2 ∧ µ3], [µ4 ∧ µ5 ∧ µ6], [µ1 ∧ µ2 ∧ µ3 ∧ µ4 ∧ µ5 ∧ µ6]. (8.13)

Unlike the previous examples an explicit formula for the moving frame is not given
here, but instead the cross-section

X = 0, Y = 0, U = 0, UX = 0, UY = 0, UXY = 0,

and the recurrence relation (4.10) are used to express the moving frame pull-backs
ν1, . . . , ν6 of the Maurer–Cartan forms in terms of known invariants. The computations
hold for non-umbilic points, i.e. κ1 6= κ2, and yield

ν1 =
κ1
,2$

1 + κ2
,1$

2 + ϑ12

κ2 − κ1
, ν2 = −κ2$2 − ϑ2,

ν3 = κ1$1 + ϑ1, ν4 = −$1, ν5 = −$2, ν6 = −ϑ,

where

κ1 = ι(uxx), κ2 = ι(uyy), $1 = ι(dx), $2 = ι(dy),

ϑJ = ι(θJ), dHκ
i = κi,1$

1 + κi,2$
2.

Here κ1 and κ2 are the principal curvatures of the surface and κi,1, κi,2 denote their
invariant derivatives. These computations illustrate the ability to compute intrinsi-
cally, i.e. without coordinate expressions for the moving frame, normalized invariants,
or pulled-back Maurer–Cartan forms. See [28] for more details. It follows that the
pull-back of the Lie algebra cohomology classes (8.13) by the moving frame gives the
invariant de Rham cohomology classes[

1
κ2 − κ1

(
− κ1

,2κ
2$1 ∧$2 ∧ ϑ1 − κ2

,1κ
1$1 ∧$2 ∧ ϑ2 + κ1

,2$
1 ∧ ϑ1 ∧ ϑ2

+ κ2
,1$

2 ∧ ϑ1 ∧ ϑ2 + κ1κ2$1 ∧$2 ∧ ϑ12 − κ2$2 ∧ ϑ1 ∧ ϑ12

+ κ1$1 ∧ ϑ2 ∧ ϑ12 + ϑ1 ∧ ϑ2 ∧ ϑ12

)]
,

[$1 ∧$2 ∧ ϑ] and [$1 ∧$2 ∧ ϑ ∧ ϑ1 ∧ ϑ2 ∧ ϑ12].

Applying the map (6.3) gives the corresponding invariant Euler–Lagrange cohomology
classes [−κ1

,2κ
2$1 ∧$2 ∧ ϑ1 − κ2

,1κ
1$1 ∧$2 ∧ ϑ2 + κ1κ2$1 ∧$2 ∧ ϑ12

κ2 − κ1

]
,

[$1 ∧$2 ∧ ϑ] and [$1 ∧$2 ∧ ϑ ∧ ϑ1 ∧ ϑ2 ∧ ϑ12].
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9 Conclusion

Using the method of moving frames we have been able to extend the results of [5]
to non-projectable group actions. Note that we recover the results of Anderson and
Pohjanpelto if the group action is projectable. Indeed, for such group actions the
invariant bigrading Ω̃∗,∗ is equal to the noninvariant bigrading Ω∗,∗, the projection
maps (4.7) are equal to the identity map, the differential dW is identically zero, and
the bundle of vertical vector fields V is equal to the bundle of invariant vertical vector
fields VG.

As illustrated in the third example, the computation of the Euler–Lagrange coho-
mology classes may be done intrinsically, i.e. without coordinate expressions for the
moving frame and Maurer–Cartan forms. The only data needed is the choice of a cross-
section, the infinitesimal symmetry generators, the recurrence relation (4.10) and the
Lie algebra cohomology classes which can easily be obtained using a symbolic software.

Finally, applications of our results to the geometry of higher dimensional submani-
folds is of interest and tractable with benefit of intrinsic computation. Also, the similar-
ity of Olver and Pohjanpelto’s new method of moving frames for Lie pseudo-groups and
the moving frame theory for finite-dimensional Lie groups [29, 30] allows the techniques
of this paper to be extended to infinite-dimensional Lie pseudo-group actions.
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