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Abstract. In this paper, we present an effective algorithm for reassembling three-dimen-
sional apictorial jigsaw puzzles obtained by dividing a curved surface into a finite number of
interlocking pieces. As such, our algorithm does not make use of any picture or design that
may be painted on the surface; nor does it require a priori knowledge of the overall shape
of the original surface. A motivating example is the problem of virtually reconstructing a
broken ostrich egg shell.

In order to develop and test the algorithm, we also devise a method for constructing
synthetic three-dimensional puzzles by randomly distributing points on a compact surface
with respect to surface area measure, then determining the induced Voronoi tessellation, and
finally curving the Voronoi edges by using Bezier curves with selected control points.

Our edge-matching algorithm relies on the method of Euclidean signature curves. The
edges of the puzzle pieces are divided into bivertex arcs, whose signatures are directly com-
pared. The algorithm has been programmed in Matlab and is able to successfully reassem-
ble a broad range of artificial puzzles, including those subjected to a reasonable amount of
noise. Moreover, significant progress has been made on reassembly of the real-world ostrich
egg data.

Keywords: jigsaw puzzle, curvature, torsion, Euclidean signature, bivertex arc,
Voronoi tessellation, Bezier curve.

“Yes, all his horses and all his men,” Humpty Dumpty went on.
“They’d pick me up again in a minute, they would!”

— Lewis Carroll, Through the Looking–Glass and What Alice Found There

Date: January 14, 2016.
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1. Introduction

In this paper, we develop a novel algorithm for the assembly of three-dimensional jigsaw
puzzles obtained by dividing a compact curved surface S ⊂ R3 into a finite number of non-
overlapping, connected, relatively open subsets, called pieces. This may be viewed as the
generalized “Humpty Dumpty” problem, the original being the reassembly of a broken egg
shell. Our algorithm handles apictorial puzzles, meaning that it only involves the shape of
the puzzle pieces, and does not make use of any picture or design which may be painted on
its surface. It does not require any a priori knowledge of the overall shape of the original
surface since it directly matches the edges of the pieces considered as space curves and not
as curves embedded in a known surface, and hence can, in principle, reconstruct puzzles
obtained from arbitrary curved surfaces, including those with nontrivial topology, e.g. tori.
Alternative approaches to this problem can be found, for example, in [20, 21, 38]. We do
not investigate the more challenging problem of reassembling three-dimensional solid objects,
including broken statues and other archaeological artifacts, [33], and also bone fractures, [37].

The assembly of flat two-dimensional jigsaw puzzles has been studied by a number of
authors. Most solution algorithms, [10, 40, 41], have been restricted to archetypical puzzles,
in which the pieces are of a rectangular form, with indents and outdents on edges interior
to the puzzle, positioned on an (approximate) rectangular grid, and, typically, with a rect-
angular outer boundary. In contrast, the signature-based algorithm developed in [15] works
with arbitrarily shaped pieces and irregular puzzle boundaries — indeed the assembly usu-
ally starts in the middle of the puzzle. This algorithm was able to successfully reassemble
some challenging commercially available planar jigsaw puzzles, including the 69 piece Baffler
Nonagon, [42], and thus holds much promise for applications well beyond realm of recreational
jigsaw puzzles. The fact that the puzzle is apictorial implies that the similarity measure used
to match the pieces relies solely on the geometric shapes of their edges. The algorithm is
based on matching the Euclidean signature curves, [3], of the bivertex arcs, [14], contained
in the puzzle piece edges, which can be viewed as the curve’s “signature codons”. It relies
on the fact that the Euclidean signature is invariant under rotations and translations of the
original curve and, moreover, uniquely characterizes suitably non-degenerate curves up to
such rigid motions.

The edges of puzzle pieces taken from a curved surface S ⊂ R3 are space curves.
The problem of curve matching in three-dimensional space was perhaps first investigated by
Kishon and Wolfson, [19], who employed the classical result that a space curve is uniquely
determined, up to rigid motions, by its curvature and torsion invariants as functions of arc
length, cf. [12]. However, there are several practical difficulties that complicate using this
characterization of rigidly equivalent curves. To start with, the arc length is ambiguously
defined, since it depends on the choice of an initial point on the curve. Thus, one must
identify two curvature functions that differ by a translation, κ(s + c) ' κ(s), and similarly
for torsion. This becomes increasingly problematic if one needs to deal with occlusions or,
as in the case of jigsaw puzzle pieces, only match parts of the space curves.

Instead, we follow [3, 30], and use the Euclidean differential invariant signature curves
to match the puzzle piece boundaries. The signature of a space curve C ⊂ R3 is the space
curve Σ ⊂ R3 parametrized by the curvature κ, the derivative of curvature with respect to
arc length, κs, and the torsion τ . The key fact is that two suitably regular space curves C

and C̃ are equivalent under a Euclidean transformation, meaning that C̃ = g · C for some

rigid motion g of R3, if and only if they have identical signature curves: Σ̃ = Σ. Observe
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that the signature curve is entirely local and can be written in terms of any convenient
parametrization of the curve by using well-known formulas for these fundamental Euclidean
differential invariants, [12]. Furthermore, it is worth noting that the method of differential
invariant signatures extends to surfaces and even higher dimensional submanifolds under
general transformation groups, [29, 30], where there is no longer any fully invariant analogue
of a distinguished arc length parametrization. Thus, the differential invariant signature
approach has the theoretical capability of solving the more challenging problems of three-
dimensional solid object reconstruction, although various significant practical details remain
to be resolved.

This line of research was inspired by the scanned data of a broken ostrich egg shell
that was sent to the third author by Marshall Bern, [1], who then posed the challenge of
automatically reconstructing the egg. As we discuss in the final section, some encouraging
progress has been made in this direction. However, in this initial report, we will not address
the general problem of reconstructing broken surface objects obtained from scanned data.
Indeed, at present, in contrast to the planar case, [15], obtaining useful real-world three-
dimensional datasets remains a challenge, and is the subject of ongoing investigation.

Consequently, our automatic solution algorithm will be primarily tested on artificially
generated puzzles. We thus begin by developing a methodology for generating random three-
dimensional jigsaw puzzles, which will be based on geodesic Voronoi diagrams obtained by
distributing points in a fairly uniform manner on the surfaces. For simplicity, we concentrate
on generating puzzles on spherical and ellipsoidal surfaces, although, as noted above, our
reconstruction techniques are completely independent of the overall shape of the surface.

The Matlab code used to generate and reassemble synthetic jigsaw puzzles on spheres
and ellipsoids can be found on the third author’s web site:

http://www.math.umn.edu/~olver/matlab.html

2. Puzzle Generation

As noted in the introduction, the first stage of the project is to test our signature-based
algorithm on synthetically generated three-dimensional jigsaw puzzles that are constructed
by dividing a curved surface S ⊂ R3 into a finite number of non-overlapping pieces.

The surface S is assumed to be compact (closed and bounded, perhaps with boundary).
Each piece of the puzzle will be based at a randomly chosen point on S, roughly representing
the piece’s centroid. In order to keep the relative sizes of the individual pieces comparable, we
begin by selecting a prescribed number of points that are more or less uniformly distributed
with respect to surface area. It is worth noting that powerful algorithms for distributing
points on general curved surfaces based on graph Laplacians have been recently developed in
[24], although we do not need such sophisticated techniques for our relatively simple problem.

In fact, we will be content to mostly concentrate on the simplest case in which the sur-
face S ⊂ R3 is the unit sphere centered at the origin. The problem of uniformly distributing
points on a sphere has been investigated in depth by many authors, with applications ranging
from numerical quadrature, to molecular structure, to the positioning of satellites in geocen-
tric orbits, [23, 32]. Equidistribution of points can be based on minimizing an appropriate
total interpoint energy. For example, the Fekete problem is to find the point configuration
that minimizes the electrostatic energy between uniformly charged point masses lying on the
sphere, and is one of Smale’s celebrated 18 problems for the twenty-first century, [35].

http://www.math.umn.edu/~olver/matlab.html


4 A. GRIM, T. O’CONNOR, P.J. OLVER, C. SHAKIBAN, R. SLECHTA, AND R. THOMPSON

To generate the desired points, we will use the spiral point algorithm introduced by
Rakhmanov, Saff, and Zhou, [31], which was motivated by hexagonal tiling techniques. We
divide the sphere into n equally spaced latitudinal circles, including the north and south
poles. Each circle will contain precisely one spiral point. Starting with the south pole,
the k-th spiral point qk = (θk, ϕk), written in spherical coordinates — where we use the
mathematical convention that θk is the azimuthal angle (longitude) and ϕk the zenith angle
(latitude) — is obtained from the (k − 1)-st point by first going upwards along a great circle
(meridian) to the k-th circle and then traveling in a clockwise direction along the k-th circle
for a distance

d =
3.6√
n
.

This value was motivated by Habich and van der Waerden’s results, [13], on best packing,
although their numerical constant (8 π)1/2/31/4 ≈ 3.809 has been slightly decreased to 3.6
following numerical experimentation, [32]. In summary, the spiral points qk = (θk, ϕk) are
recursively defined by

hj = −1 +
2(j − 1)

n− 1
, ϕj = arccos (hj), 1 ≤ j ≤ n,

θ1 = θn = 0, θk = θk−1 +
d√

1− h2k
mod 2π, 2 ≤ k ≤ n− 1.

(1)

The result of this construction is a set of n ≥ 2 sample points q1, . . . , qn ∈ S that are
approximately uniformly distributed on the surface of the unit sphere.

To complete our spherical jigsaw puzzle, we need to construct non-overlapping pieces
surrounding each sample point. The first step is to construct the resulting spherical Voronoi
tessellation so that each qk is the center point of a Voronoi cell. Suppose qi and qj belong
to adjacent Voronoi cells. Their common Voronoi edge consists of points that lie equidistant
from the two center points, under the geodesic (great circle) distance:

0 < d(qi, qj) = arccos(qi · qj) ≤ π.

The corresponding Voronoi vertices lie at the intersection of the boundaries of three or more
Voronoi cells, [6, 28].

q1

q2

v1

v2

ε1

ε2

ε3
ε4

Figure 1. Voronoi Quadrilateral
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The second step is to replace the circular Voronoi edges by suitably curved edges
mimicking those found on a broken object or three-dimensional jigsaw puzzle. It must be
ensured that the resulting curved edges do not intersect. To this end, consider the spherical
quadrilaterals whose vertices are the center points of two adjacent Voronoi cells, say q1, q2,
along with the Voronoi vertices, v1, v2, of their common Voronoi edge; see Figure 1. The
edges of the spherical quadrilateral are denoted by ε1, which joins q1 to v1, and ε2, which
joins v1 to q2, and ε3, which joins q2 to v2, and ε4, which joins v2 to q1. The puzzle piece edge
will be obtained by replacing the Voronoi edge between v1 and v2 by the spherical projection

β(t) =
β̃(t)

‖ β̃(t) ‖
(2)

of the Bézier curve parametrized by

β̃(t) = (1− t)3p0 + 3(1− t)2t p1 + 3(1− t)t2p2 + t3p3, 0 ≤ t ≤ 1, (3)

as prescribed by the four control points p0, p1, p2, p3, which are sequentially selected from
the edges ε1, ε2, ε3, ε4 of the spherical quadrilateral. Since the Bézier curve (3) lies in the
convex hull of its control points, [9], its spherical projection (2) will lie completely inside the
spherical quadrilateral, and in this manner we are able to avoid any inadvertent intersection
of the curved edges.

We are able to implement different edge styles by suitably modifying the Bézier control
points. In all cases, we set p0 = v1, p3 = v2, so that the Bézier curve (3) connects the two
edge vertices. To create an indented or outdented edge like on a traditional jigsaw puzzle,
the other two control points p1, p2 are chosen randomly, with respect to arc length measure,
from either two edges lying in the same Voronoi cell, e.g. ε1 and ε4, or from two edges on
opposite sides of the quadrilateral, e.g. ε2 and ε4. See Figure 2 for examples of the resulting
two principal types of curved edges employed here.

p0
p1

p2
p3

p0
p1

p2
p3

Figure 2. Bézier Control Points for Both Types of Curved Edges

Once the surface has been divided into uniformly sized pieces, the puzzle data is ob-
tained by applying randomly generated rigid motions to the individual pieces. Thus, our goal
is to reassemble the given puzzle data by applying suitable rigid motions to the individual
pieces in order to match their edges and thereby reform the original surface. In Figure 3,
we display one example of a synthetically generated spherical puzzle containing 9 pieces.
The first plot shows the puzzle that our Matlab code generated, and the second shows the
individual pieces after being subjected to individual random rigid motions.
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Figure 3. A Synthetic Puzzle

Our method of generating spherical jigsaw puzzles can be adapted to create puzzles on
other genus zero closed surfaces by mapping them to a sphere. For example, an ellipsoidal
jigsaw puzzle can be created by performing the scaling transformation,

T (x, y, z) =

∣∣∣∣∣∣
λ 0 0
0 µ 0
0 0 ν

∣∣∣∣∣∣ ,
where λ, µ, ν > 0 are the semi-axes of the resulting ellipsoid. Since T is not area-preserving,
the transformed points may no longer be as uniformly distributed on the ellipsoid with respect
to surface area, and hence, depending upon the eccentricity, the resulting ellipsoidal puzzles
may have less uniformly sized pieces.

For more general convex surfaces, one could employ the Gauss map, [36], that maps
each point on the surface to the point on the unit sphere defined by its outward normal.
Alternatively, one might employ the graph Laplacian algorithms developed in [24] to directly
distribute the points on the surface, although this would then require developing a method
of generating Voronoi tessellations on arbitrary curved surfaces. See also [7, 8, 27] for basic
results on the method of graph Laplacians and their applications in image processing, data
analysis, networks, and elsewhere.

3. Edge Matching

3.1. 3D Signature Curves. The method of differential invariant signatures for comparing
submanifolds up to group transformations was introduced to image processing in [3]. It is

based on Élie Cartan’s solution to the equivalence problem, [4], which demonstrates that
two suitably regular submanifolds are locally equivalent under a prescribed Lie group action,
meaning that they can be locally mapped to each other by a group transformation, if and
only if they have identical functional interrelationships, known as syzygies, among all their
differential invariants. In [29], Cartan’s solution was reformulated in terms of differential
invariant signatures, or, as they are called in that reference, classifying manifolds. The
key fact is that the syzygies among the higher order differential invariants are all uniquely
prescribed by a finite number of syzygies among certain low order fundamental differential
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invariants, and the latter are used to parametrize the signature. This establishes the key
result that two suitably regular submanifolds are locally equivalent if and only if they have
identical differential invariant signatures. The equivariant method of moving frames, [30],
can be employed to algorithmically determine a suitable set of signature invariants for very
general Lie group actions on submanifolds.

In the case of plane curves C ⊂ R2 under the special Euclidean group SE(2), acting by
rigid motions, i.e. translations and rotations, a complete list of differential invariants is pro-
vided by the curvature κ and its successive derivatives with respect to arc length: κs, κss, . . . .
Geometrically, κ measures the curve’s deviation from linearity, while its derivative measures
the rate of spiraling. The corresponding Euclidean signature curve Σ is parametrized by the
first two of these differential invariants, so Σ = {(κ(t), κs(t))}, where t is any convenient
parametrization of C. Assuming κs 6= 0, the signature curve Σ locally determines the syzygy

κs = F (κ)

relating the two fundamental differential invariants. Successive differentiation of this syzygy
produces the corresponding syzygies among all the higher order differential invariants; for
example, by the chain rule,

κss =
d

ds
κs =

d

ds
F (κ) = F ′(κ)κs = F ′(κ)F (κ),

and similarly for the higher order curvature derivatives. This serves to justify our choice of
κ, κs as the fundamental differential invariants parametrizing the signature curve.

In our case, the puzzle piece boundary curves lie in three-dimensional space. Under
the special Euclidean group SE(3) of rigid motions, the basic differential invariants of a space
curve C ⊂ R3 are its curvature κ and torsion τ , the latter measuring the curve’s deviation
from planarity, along with their successive derivatives with respect to the arc length element:
κs, τs, κss, τss, . . . . It turns out that to parametrize a Euclidean signature, one only needs
3 of these invariants, namely Σ = {(κ(t), κs(t), τ(t))}, where, as before, t is any convenient
parametrization of C and one employs standard, well-known formulae for the curvature and
torsion invariants, [12, 29]. Observe that we do not need to include τs since, assuming
κs 6= 0, we can locally express κs = F (κ), and τ = H(κ), which, by the chain rule, uniquely
determines the syzygy

τs =
d

ds
H(κ) = H ′(κ)κs = H ′(κ)F (κ).

As in the case of plane curves, the higher order syzygies can all be obtained by repeated
differentiation, justifying the specification of fundamental differential invariants.

3.2. Numerical Approximations. Although the edges of our synthetic spherical jigsaw
puzzles are smoothly parametrized Bézier curves, since our ultimate goal is to assemble
puzzles obtained from scanned digital images, we will work directly with discretizations of
these edges. Thus, approximate methods of calculating the signature invariants κ, κs, and τ
are required in order to calculate the corresponding signature curve.

Let p1, . . . , pn ∈ C be a discretization obtained by sampling a space curve C ⊂ R3

relatively uniformly with respect to arc length. According to [3], the curvature at the sample
point pi is invariantly approximated by the reciprocal of the radius of the circle passing
through it and its two immediate neighbors, pi−1, pi+1, which, according to Heron’s formula,
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is

κ̃(pi) = 4
∆

abc
= 4

√
s(s− a)(s− b)(s− c)

abc
. (4)

Here

a = ‖ pi − pi−1 ‖, b = ‖ pi+1 − pi ‖, c = ‖ pi+1 − pi−1 ‖, (5)

are the side lengths of the triangle formed by the three points, while

s = 1
2
(a+ b+ c), ∆ =

√
s(s− a)(s− b)(s− c) , (6)

are, respectively, its semiperimeter and area.
The derivative of curvature κs at pi is calculated in a similar fashion by using the

additional points pi−2, pi+2 ∈ C. Assuming uniform spacing of the sample points pi, the
numerical approximation

κ̃s(pi) =
κ̃(pi+1)− κ̃(pi−1)

c
, (7)

where c is defined in (5), was proposed and used in [3]. However, as noted by Boutin, [2],
this formula produces inaccuracies when dealing with non-uniformly spaced sample points.
Boutin found three alternative, more generally accurate approximations, one of which is

κ̃s(pi) =
3
(
κ̃(pi+1)− κ̃(pi−1)

)
2 a+ 2 b+ d+ e

, (8)

where a, b are in (5), while

d = ‖ pi−1 − pi−2 ‖, e = ‖ pi+2 − pi+1 ‖. (9)

In our application, since we have sampled the edges approximately uniformly, the two for-
mulas (7), (8), did not lead to any observable difference in the efficacy of our algorithms.

Finally, we use the Euclidean invariant formula found by Boutin, [2], to approximate the
torsion τ at pi. The points pi−1, pi, pi+1, pi+2 ∈ C form a tetrahedron with base determined
by pi−1, pi, pi+1. The area of the base ∆ is determined by using Heron’s formula (6), while
its volume is given by the vector triple product formula:

V =
|(pi+2 − pi−1) · (pi+2 − pi)× (pi+2 − pi+1)|

6
, while H =

3 V

∆
(10)

is its height. The invariant numerical approximation to torsion at the point pi is

τ̃(pi) =
6H

κ̃(pi) ‖ pi+2 − pi−1 ‖ ‖ pi+2 − pi ‖ ‖ pi+2 − pi+1 ‖
, (11)

where κ̃(pi) denotes the approximate curvature (4). One might object that formula (11)
introduces an asymmetry with respect to the sample points centered at pi. This can eas-
ily be corrected by averaging with the corresponding formula based on the sample points
pi−2, pi−1, pi, pi+1 ∈ C. However, as above, this more complicated formula does not lead to
any increase in accuracy of our results. In light of these observations, we will employ the
simpler formulae (4), (7), (11) to numerically approximate the Euclidean signature curve of
our sampled space curve in a Euclidean invariant manner.
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3.3. Edge Matching. Of course, when attempting to match the boundaries of two puzzle
pieces, one should only compare suitable parts of their respective signatures, namely those
corresponding to the a priori unknown edge that they have in common. This motivates
dividing up their respective signatures into appropriate “signature codons”. The method
proposed in [14] is to partition the curve into bivertex arcs. By definition, a bivertex arc
B ⊂ C is a part of the curve lying between two successive vertices, defined as points where
κs = 0. In other words, κs 6= 0 on all of B except at its two endpoints. The only parts of
a plane curve not included in a bivertex arc are straight line segments and circular arcs, if
any. Such “generalized vertices” are ignored by the puzzle solving algorithm. In practical
terms, when dealing with noisy data, one determines when κs switches sign by introducing
a threshold δ0 > 0 that needs to be crossed in order to fix an endpoint of a bivertex arc,
[15]. One can then compare the individual bivertex arc signatures, which is supplemented
by a procedure to reconstruct the rigid motion required to match several equivalent arcs on
a candidate pair of puzzle pieces in order to ascertain whether or not they match.

We will similarly split a space curve representing a puzzle piece edge into bivertex arcs,
using the same definition. We will determine whether two edges are a match by calculating a
similarity score between their corresponding bivertex arcs. Observe that the excluded parts
of the curve, where κs ≡ 0, are space curves of constant curvature. These include straight
lines, circular arcs, and helices, which also have constant torsion. However, there exists a
much larger variety of space curves that have constant curvature and non-constant torsion
— see, for example, [25] — and our algorithm does not consider any such segments of the
puzzle piece edges. In all the puzzles we have considered to date, this does not appear to be
a significant weakness in our approach; nevertheless, further investigation into this aspect of
the algorithm is warranted.

The similarity measure used to compare two bivertex arc signatures Σ1 and Σ2 will
be based on the distance from the origin and angular position of each point thereon. For
convenience, we will convert each signature point from Cartesian coordinates (κ, κs, τ) to
spherical coordinates, which we denote by (ρ, θ, ϕ), so that

ρ =
√
κ2 + κ2s + τ 2, θ = arctan

(κs
κ

)
, ϕ = arccos

(
τ

ρ

)
. (12)

Using a method introduced in [11], the comparison between these two sets of points will be
based on the skewness measure of the cumulative magnitudes of their spherical coordinate
representations.

Definition 1. Let (r1, . . . , rm), with rj ≥ 0, be an ordered of m-tuple non-negative real
numbers. Their cumulative magnitude R = (R1, . . . , Rm) is defined recursively by

R1 = r1, Rk = rk +
k−1∑
i=1

Ri =
k∑
i=1

(k − i+ 1) ri. (13)

Given two discretized bivertex arc signatures, Σα containingm points and Σβ containing
n points, we will compute the respective cumulative distance magnitudes

Rα
ρ = (Rα

ρ,1, . . . , R
α
ρ,m), Rβ

ρ = (Rβ
ρ,1, . . . , R

β
ρ,n),

based on their spherical radii ραj and ρβj . To avoid potential anomalies, we will reorder the
distributions so that the point with the middle index is the initial point and each successive
point alternates between the left and right side of the initial point. The resulting cumulative
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distance magnitudes are then compiled into a vector by negating those coming from the first
bivertex arc:

Rα,β
ρ = (Rα,β

ρ,1 , . . . , R
α,β
ρ,m+n) = (−Rα

ρ,1, . . . ,−Rα
ρ,m, R

β
ρ,1, . . . , R

β
ρ,n), (14)

The similarity between the two bivertex arcs is then quantified by the skewness of (14),
cf. [16, p. 123], defined by

Γα,βρ =

1

m+ n

m+n∑
k=1

(Rα,β
ρ,k )3(

1

m+ n

m+n∑
k=1

(Rα,β
ρ,k )2

)3/2
. (15)

We can similarly determine the longitudinal skewness Γα,βθ and latitudinal skewness Γα,βϕ by
adapting equations (13), (14), (15), to the azimuthal and zenith angle coordinates, respec-
tively, taking the 2 π periodicity of the latter into account. The overall similarity score
between the two bivertex signatures is determined by

Γα,β = |Γα,βρ |+ |Γα,βϕ |+ |Γ
α,β
θ |. (16)

The similarity score’s ability to detect matching edges is one of the most crucial com-
ponents of our puzzle solving algorithm. The algorithm proposed in [15] is based on a com-
puted “gravitational attraction” between the two bivertex edges, while the most conventional
method for measuring similarity between two point sets is the Hausdorff distance, [26]. Our
similarity measure works well for the problems at hand. It also has an interesting applications
in the detection of similar and congruent curves. For example, if Γα,βρ = Γα,βϕ = Γα,βθ = 0,

then the two curves are congruent. On the other hand, two curves satisfying Γα,βϕ = Γα,βθ = 0

but Γα,βρ = c 6= 0 are similar under a uniform scaling because the angular positions of the
curves are equivalent.

4. Puzzle Assembly

Once the similarity scores between all bivertex arcs have been calculated, we must
distinguish between false positives and true matches. We will consider potential matches as
those whose similarity score (16) is less than a prescribed threshold, namely,

Γα,β < δ = 0.05.

We analyze the pairs of bivertex arcs in order, starting with the pair with the smallest score.
Thus, given signatures corresponding to a pair of bivertex arcs, denoted by Cα and Cβ, we
seek to determine the rigid motion g ∈ SE(3) that will lead to optimal overlap.

The translation component of the sought for rigid motion will be taken as the dis-
placement between the two centroids of the arcs. We can thus assume that both arcs have
both been translated so that their centroids are at the origin. We then must determine the
rotation matrix that optimally matches them. According to Schönemann, [34], given a pair
of n × k matrices A,B, the nearest orthogonal matrix R which “roughly maps” A to B is
given by R = U V T , where U, V are the multiplicands in the singular value decomposition

M = ATB = U ΣV T . (17)
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In our case, we set A to be the m×3 matrix whose columns are the points in the first bivertex
arc Cα, and B the n× 3 matrix whose columns are the points in Cβ. In order that M be a
square matrix, the two bivertex arcs must contain the same number of points: n = m. If this
is not the case, we smoothly spline interpolate the boundary points on the bivertex arc with
fewer points and then randomly sample from the resulting spline in order to supplement the
existing sample points. Using the resulting singular value decomposition formula (17) we are
able to construct a rotation R matrix that best aligns the two bivertex arcs.

For each pair, we will determine whether the two pieces actually match by assembling
them using a Procrustes algorithm based on the goodness of the fit provided by the surface
area of the gap and overlap between the two potentially matched piece edges, say Eα and Eβ.
Each edge is resampled using a cubic spline so that each point on Eα is approximately aligned
with a point on Eβ with respect to the latitude. We will calculate the approximate surface
area of the resulting spherical patch representing the combined gap and overlap between the
two matched edges by modifying a composite trapezoidal rule.

In anticipation of our eventual application to (approximately) ellipsoidal egg shells,
we will calculate the geodesic distance d(p, q) between two points p and q using Vincenty’s
formula, [39]:

d(p, q) = 2 arcsin

(√
(cosϕq sin ∆θ)2 + (cosϕp sinϕq − sinϕp cosϕq cos ∆θ)2

sinϕp sinϕq + cosϕp cosϕq cos ∆θ

)
. (18)

Here, as above, θ and ϕ are the spherical angles (12), while

∆θ = |θp − θq|.

For the n points on each sampled edge, the numerical quadrature formula for surface area is
constructed by modifying the trapezoidal rule for the surface of a sphere:

A =
1

2

[n/2]∑
i=1

d(pα,∗i−1, p
β,∗
i+1)

[
d(pα2i−1, p

β
2i−1) + d(pα2i+1, p

β
2i+1)

]
, (19)

where the points pα,∗i−1 and pβ,∗i+1 are aligned to have the same longitude in order that d(pα,∗i−1, p
β,∗
i+1)

is the height of each trapezoid. If the computed surface area is larger than a preassigned
threshold, specifically,

A > ε = 0.1,

then the match is deemed a false positive.
We also must verify that our potential match is between an outdented and an indented

edge. We can determine the orientation of an edge by “removing” the edge from the piece and
comparing the approximate surface area of the piece before and after the removal. Prior to
removing the edge, we must calculate the approximate surface area A1 by using our numerical
quadrature formula (19). Next, we remove the edge by replacing it with a great circular arc
between the initial and final point of the edge, then calculate the surface area A2. If A1 > A2,
then the edge is outdented, while A1 < A2 indicates an indented edge. If Eα and Eβ are
both outdented or indented, then the match is also identified as a false positive. We find that
this approach suffices for most of the synthetically generated puzzles we considered, even
in the presence of noise. However, in order to handle real-world scanned puzzle data, we
anticipate that a more general procedure based on the piece locking algorithm of [15] should
be implemented in future.
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Once a match has been identified, we then perform the translation and rotation map-
pings on the two pieces as a whole, which generates a “matched pair” of puzzle pieces. We
treat the result as a single puzzle piece, with the matching bivertex arcs removed. The pro-
cess is then iterated using the resulting smaller collection of pieces. The algorithm terminates
either with a successful reassembly of the puzzle, or when no further piece matches satisfying
our goodness of fit criterion.

Figure 4. Reassembled Synthetic Puzzle

When the matching algorithm is completely successful, a totally reassembled puzzle
will be obtained. In Figure 4, we display an example of a synthetically generated spherical
puzzle containing 18 pieces that has been solved using our algorithm. Our three-dimensional
puzzle solving algorithm has successfully solved synthetic jigsaw puzzles containing up to
sixty pieces.

Although reassembling synthetic puzzles is certainly of interest, and serves to demon-
strate proof of concept, our guiding aim is to be able to reassemble broken objects scanned
into a computer. In order to simulate actual data, we introduce noise by applying a random
motion to each sample point on the piece. Explicitly, for a given point p, we add noise to
produce the point p̃ = (1 + ν t) p, where ν is the noise threshold and 0 < t ≤ 1 is a uniformly
distributed random number. Our Matlab programs have successfully reassembled noisy
puzzles that contain up to twenty pieces with threshold ν ≤ 0.02. As expected, reassembling
noisy puzzles is significantly more difficult. One of the greatest challenges is to obtain a
precise segmentation so that matching edges have approximately the same initial and final
points. Indeed, since our similarity score is recursively defined, misaligned initial and final
points of two matching edges can produce a higher similarity score, and thus erroneously
flagged as a false match. We have not yet investigated how to recover from such mistaken
matches through some form of backtracking algorithm.

5. Assembly of a Broken Egg Shell

Having successfully tested our algorithm on artificially generated data, we turn our
attention to some scanned data of a broken ostrich egg that was supplied to us by Marshall
Bern, [1], in response to the jigsaw puzzle assembly paper of Hoff and the third author,
[15]. Bern’s data was scanned by Nina Amenta using a turntable, a stripe of light, and a
video camera, and consists of 15 distinct pieces subject to unknown rigid motions from their



AUTOMATIC REASSEMBLY OF THREE–DIMENSIONAL JIGSAW PUZZLES 13

original assembled configuration. Each data file is in .off format, and includes a list of
approximately 30, 000 data points obtained from sampling the egg shell surface.

Figure 5. The Ostrich Egg Pieces

In our investigations of the reassembly of the egg shell, we have operated under the
assumption that, at the time of scanning, some much smaller pieces, “chips,” were not in-
cluded. This makes finding legitimate piece matches more challenging, as these chips may fit
between one or more pieces, leaving gaps in the assembled egg shell. To accommodate these
missing pieces, additional spline-based smoothing was required.

Figure 6. The Boundary of an Egg Piece

The first step is to extract the boundaries of individual egg shell pieces. All of our
signature methods are dependent on having an ordered set of points to be used as a boundary.
In the data supplied, 12 of the individual piece files contained ordered boundary data, which
we used in what follows. As for the remaining 3 files, we applied an “expanding snake”
method, [5, 17, 18], adapted to the point cloud data representing the surface of the piece, to
extract the requisite ordered boundary; we obtained usable ordered boundaries in all but 1
of the remaining pieces, and this problematic piece was subsequently ignored.

The next step is to smooth each piece’s boundary in order to mitigate the effect of
jaggedness, missing tiny chips, and other artifacts. We employed a periodic smoothing spline
to smooth out these jagged boundaries, and, hopefully, obtain an approximation of the egg
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Figure 7. Partially Assembled Ostrich Egg — 3 and 11 pieces

shell piece boundaries as if no chip was missing. However, this method is only able to handle
relatively small missing chips, and does not easily extend to larger omissions.

Automatic reassembly of the broken ostrich egg proved to be challenging, in particular
because of the difficulty in automatically verifying the authenticity of matches on such noisy
data. In particular, reassembling the egg presented several problems not present in the
synthetic puzzles. Most notable was the appearance of false matches. A substantial number
of “matching” signature curves were almost certainly wrong, as they failed to maintain the
expected surface curvature of the egg shell. As a result, each potential match produced
by the signature curve algorithm needed to be verified with a visual check. In the end,
by applying this combination of automatic and visual checking, we were able to generate a
partial reassembly of 11 pieces of the egg shell data, as depicted in Figure 7.

6. Conclusion and Further Work

We have described the initial phases in the design of an algorithm for automatically
assembling apictorial three-dimensional jigsaw puzzles obtained by breaking a smooth surface
into pieces. In order to run preliminary tests on our methods, we developed a new algorithm
for constructing such puzzles from spheres and ellipsoids, with the methods being, in principle,
applicable to fairly general surfaces in R3. An important next phase of the project will be
to adapt our Voronoi-based methods to generate puzzles on more general curved surfaces,
including convex, non-convex, and even those with nontrivial topology such as tori. While
the generation of puzzles will require some additional work, we do not anticipate our puzzle
reassembly algorithm to experience any new difficulties in the reconstruction process since it
only relies on the shapes of the individual pieces and does not require any a priori knowledge
of the final reconstructed surface.

Our solution to the space curve matching problem relies on the use of differential
invariant signatures, an approach that, based on the modern method of equivariant moving
frames has seen significant recent developments in both theoretical and practical directions,
[30]. In our case, curvature, torsion, and the derivative of curvature with respect to torsion
are employed to parametrize the Euclidean signature curve that characterizes space curves
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uniquely up to rigid motion. Our comparison of puzzle piece edges relies on matching a pair
of bivertex arcs, which is based on comparison of their respective signature curves. This
method is quite robust when dealing with the synthetic jigsaw puzzles generated by our
algorithm, even in the presence of noise. One issue worth further investigation is whether
the bivertex arcs are the optimal signature codons that serve to semi-localize the differential
invariant signature comparison. Preliminary tests indicate that choosing arcs bounded by
zeros of curvature, κ = 0, lead to a more robust and accurate matching algorithm. Moreover,
in contrast to the large number of constant curvature space curves, for which κs ≡ 0 and
which our current algorithm cannot handle, the only problematic curves for which κ ≡ 0 are
straight line segments. (On the other hand, torsion is undefined at such inflection points.)

So far, our algorithms have been only moderately successively on the one set of real-
world data we have tested them on — the broken ostrich eggshell. The next phase of
the project will be to generate an extensive collection of scanned data of real-world three-
dimensional puzzles obtained from broken surface objects with a variety of shapes, e.g. egg
shells, ceramics, glassware, etc., and then to further refine the smoothing and signature
matching algorithms as necessary. Indeed, to ensure robustness when dealing with real-world
data, a more sophisticated approach will no doubt be required, and the most promising would
be an adaptation of the planar piece locking algorithm in [15], that relies on matching several
bivertex arcs. With this in hand, we will be in a position to directly compare our methods
with existing alternatives, e.g. [38].

Real-world applications, in particular to broken archaeological objects such as pottery
fragments, [21], as well as art restoration, [22], are directions eminently worth further study.
Moreover, adding pictorial information to our current purely shape-based approach will, we
anticipate, lead to significant advances on these challenging and important problems.

Acknowledgments: We would like to thank Marshall Bern for sending us the broken
ostrich egg data that inspired this work. The work of the first, third, and fifth authors was
supported in part by NSF grant DMS–1108894. The work of the sixth author was supported
in part by NSF grant DMS–0839966.
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