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Abstract

We incorporate the new theory of equivariant moving frames for Lie pseudo-groups
into Vessiot’s method of group foliation of differential equations. The automorphic
system is replaced by a set of reconstruction equations on the pseudo-group jets. The
result is a completely algorithmic and symbolic procedure for finding both invariant
and non-invariant solutions of differential equations admitting a symmetry group.

1 Introduction

The method of group foliation (also called group splitting, or group stratification) is a
procedure for obtaining solutions of differential equations invariant under a symmetry
group. The idea was proposed by Lie, [27], and subsequently developed by Vessiot,
[56]. Later work of Johnson, Ovsiannikov, and others, [9, 19, 47], showed renewed in-
terest. More recently, group foliation has been used to study equations of mathematical
physics, [30, 34], and reformulated using the language of exterior differential systems,
[3], demonstrating potential for further development and application.

Consider a differential equation ∆ = 0 with symmetry group G, possibly infinite
dimensional. The method of group foliation uses a foliation of the solution space of
∆ = 0 by the orbits of the group action to decompose ∆ = 0 into two alternative
systems of differential equations, called the resolving and automorphic systems. An
automorphic system, characterized by the property that all solutions are situated on a
single orbit of G, describes the leaves of the foliation. The resolving system links the
original differential equation to a specific automorphic system in the sense that each
resolving system solution specifies a leaf of the foliation. See Figure 1 for the geometry
of this construction. Application of group foliation may roughly be understood as a
process of removing symmetries; quoting Ovsiannikov, [47]:

The practical significance of group splitting consists in the fact that so-
lutions of the automorphic system are very simply found at the expense
of its automorphic property (by operation with a group transformation on
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any of its solutions), and the resolving system turns out to be simple when
compared with the initial equation ∆ = 0. The latter occurs because the
resolving system has fewer solutions than ∆ = 0 does because of removal of
those excesses which were introduced by the existence of the admitted group
G.
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Figure 1: The geometry of group foliation.

Our main tool will be the theory of equivariant moving frames, [13, 43, 44]. The
determination of the resolving system relies on the classification of differential invari-
ants and their syzygies, which may be performed algorithmically using the universal
recurrence relation (3.16). The resolving system may be interpreted as a projection of
the original differential equation into a space of invariants, accomplished through the
application of a right moving frame. The automorphic system then provides a method
for reconstructing solutions to the original differential equation from resolving system
solutions. Geometrically, this reconstruction process is the reversal of the right moving
frame projection, accomplished by application of a left moving frame.

Our approach was inspired by Mansfield’s use of equivariant moving frames to solve
ordinary differential equations, [28, Chapter 7]. This approach works for Lie group
actions and relies on the choice of a faithful matrix representation for the group. In
this paper we adapt these constructions to infinite-dimensional Lie pseudo-group ac-
tions. Central to this adaptation is the introduction of the pseudo-group jet differential
expressions which, after pull-back by a moving frame, generalize Cartan’s structure
equations of a moving frame for Lie group actions, [14], and play the role of Mans-
field’s “curvature matrix” equation in the reconstruction process. The reconstruction
step is also related to the reconstruction procedure appearing in symmetry reduction
of exterior differential systems, [2, 3, 48].

In its most general formulation, the group foliation method applies to infinite-
dimensional Lie pseudo-group actions, so we begin by reviewing in Section 2 the basics
of Lie pseudo-groups. The theory of equivariant moving frames is introduced in Sec-
tion 3. We begin our discussion of group foliation in Section 4.1. In Section 4.2 we
incorporate the moving frame apparatus and obtain a new perspective—in particular a
natural geometric approach to the reconstruction step—based on moving frames. The
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Lie pseudo-group action

X = f(x), Y = y, U =
u

f ′(x)
,

considered in [41, 43] is used as a running example for our constructions. This pseudo-
group is also used in [48] to illustrate the method of symmetry reduction of exterior
differential systems admitting an infinite-dimensional symmetry group; we reproduce
these results in Examples 4.6 and 4.25. In Section 5 the group foliation method is
applied to several equations of interest, including a nonlinear wave equation studied
by Calogero, [5], the equation of a transonic gas flow, and a nonlinear second order
ordinary differential equation. Finally, when a symmetry pseudo-group G admits a
chain of normal sub-pseudo-groups, we explain in Section 6 how the reconstruction
procedure splits into a sequence of smaller reconstruction problems.

2 Lie pseudo-groups

Since we work with infinite-dimensional Lie pseudo-group actions we restrict our con-
siderations to the analytic category. Given an analytic m-dimensional manifold M , let
D = D(M) denote the pseudo-group of all local diffeomorphisms ϕ : M →M . For each
n ≥ 0 we denote by D(n) the subbundle formed by their nth order jets jnϕ. Introduc-
ing the local coordinates Z = ϕ(z) on D(0) = M ×M , we denote by z = σ̃σσ(jnϕ) and
Z = τ̃ττ(jnϕ) the source and target coordinates of ϕ. The induced coordinates on D(n)

are jnϕ = (z, Z(n)), where Z(n) indicates the derivatives

ZbA =
∂kZb

∂za1 · · · ∂zak
, b = 1, . . . ,m, A = (a1, . . . , ak),

of order 0 ≤ k ≤ n. A local diffeomorphism ψ ∈ D acts on D(n) by either left or right
multiplication:

Lψ(jnϕ|z) = jn(ψ ◦ ϕ)|z or Rψ(jnϕ|z) = jn(ϕ ◦ ψ−1)|ψ(z). (2.1)

The definition of a pseudo-group G ⊂ D is a natural extension of the concept of a
local Lie group action. We refer to [17] for a precise definition.

Definition 2.1. A pseudo-group G ⊂ D is called a Lie pseudo-group of order n? ≥ 1 if
for all finite n ≥ n?

• the pseudo-group jets σ̃σσ : G(n) → M form an embedded subbundle of σ̃σσ : D(n) →
M ,

• the projection πn+1
n : G(n+1) → G(n) is a fibration,

• every local diffeomorphism ϕ ∈ D satisfying jn?ϕ ⊂ G(n?) belongs to G.

The above regularity conditions imply that in some coordinate chart, the subbundle
G(n?) is described by a system of n?th order differential equations

F (n?)(z, Z(n?)) = 0, (2.2)

called the determining system of G. For n ≥ n?, G(n) is described by the prolongation
of (2.2).
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Example 2.2. As our running example we consider the Lie pseudo-group action

X = f(x), Y = y, U =
u

f ′(x)
, f ∈ D(R), (2.3)

on M = R3 \ {u = 0}, defined by the system of differential equations

Xy = Xu = 0, Y = y, U =
u

Xx
. (2.4)

As is generally the case, it is preferable to work with the Lie algebra of infinitesimal
generators of a Lie pseudo-group. Let X (M) denote the space of locally defined vector
fields on M . In local coordinates we use the notation

v =
m∑
a=1

ζa(z)
∂

∂za
(2.5)

to denote a vector field. For 0 ≤ n ≤ ∞, let JnTM denote the nth order jet bundle of
the tangent bundle with local coordinates jnv = (z, ζ(n)). Once more, ζ(n) denotes the
collection of derivatives ζaA, a = 1, . . . ,m, 0 ≤ #A ≤ n.

Given a Lie pseudo-group G, let g ⊂ X (M) denote its Lie algebra consisting of local
infinitesimal generators whose flows belong to the pseudo-group. A vector field (2.5) is
in g if its n?-jet is a solution of the linear system of partial differential equations

L(n?)(z, ζ(n?)) = 0, (2.6)

called the infinitesimal determining system of g, obtained by linearizing the determin-
ing system (2.2) at the identity jet. When G is the symmetry group of a differential
equation, the infinitesimal determining system (2.6) is obtained by implementing Lie’s
algorithm for determining the infinitesimal symmetry generators, [36].

Example 2.3. The infinitesimal generators of the pseudo-group action (2.3) are

v = ξ
∂

∂x
+ η

∂

∂y
+ φ

∂

∂u
= a(x)

∂

∂x
− u ax(x)

∂

∂u
, (2.7)

where a(x) is an arbitrary analytic function. The coefficients of the vector field (2.7)
are solutions to the infinitesimal determining system

ξy = ξu = 0, η = 0, φ = −u ξx, (2.8)

obtained by linearizing the determining equations (2.4) at the identity jet 1(1). Rela-
tions among higher order vector field jets are obtained by considering the prolongation
of (2.8).

Dual to the Lie algebra g are the G-invariant Maurer–Cartan forms. Since these
play an important role in the sequel we now recall the details of their construction,
[41]. Beginning with the diffeomorphism pseudo-group D, we split the differential
d = dM + dG into its horizontal and group (or vertical/contact) components as it is
done in the standard variational bicomplex construction, [1], and observe that this
splitting is invariant under the pseudo-group multiplication (2.1). Since the target
coordinates Za are right-invariant, the horizontal one-forms

σz
a

= dMZ
a =

m∑
b=1

Zab dz
b, a = 1, . . . ,m,
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are also right-invariant. Let DZ1 , . . . ,DZm be the dual right-invariant total derivative
operators defined by

dMF =

m∑
a=1

(DZaF )σz
a
, for F : D(∞) → R.

Explicitly,

DZa =
m∑
b=1

wbaDzb , where (wba) = (Zba)
−1, (2.9)

and

Dzb =
∂

∂zb
+
∑

#A≥0

ZA,b
∂

∂ZA
, b = 1, . . . ,m, (2.10)

are the total derivative operators on D(∞). Then, the right-invariant Maurer–Cartan
forms are obtained by successively Lie differentiating the zero order invariant contact
forms

µa = dGZ
a = dZa −

m∑
b=1

Zab dz
b

with respect to (2.9):
µaA = DAZµa.

We denote by µ(n) the set of right invariant Maurer–Cartan forms of order ≤ n.
For the implementation of the moving frame method, the coordinate expressions of

the Maurer–Cartan forms are not required. It is enough to know that these invariant
group forms exist since, in practice, most computations involving the Maurer–Cartan
forms can be done symbolically.

Under the inclusion map i : G(∞) ↪→ D(∞) the pulled-back Maurer–Cartan forms
µaA = i∗(µaA) are no longer linearly independent. In the following, to simplify the
notation, we systematically avoid writing pull-backs.

Proposition 2.4. Let G be a Lie pseudo-group of order n?. Then for all n ≥ n?, the
restricted Maurer–Cartan forms µ(n)|G satisfy the nth order lifted linear relations

L(n)(Z, µ(n)) = 0, (2.11)

obtained from the infinitesimal determining system (2.6) and its prolongation by making
the substitutions za → Za and ζaA → µaA.

Example 2.5. Continuing Example 2.3, the right-invariant Maurer–Cartan forms of
the Lie pseudo-group (2.3) satisfy the linear relations

µxY = µxU = 0, µy = 0, µu = −UµxX , (2.12)

obtained from the infinitesimal determining equations (2.8) by making the substitutions

ξA → µxA, ηA → µyA, φA → µuA and x→ X, y → Y, u→ U.

Linear relations among the higher order Maurer–Cartan forms are obtained by Lie
differentiating (2.12) with respect to DX , DY , DU . It follows that a basis of right-
invariant Maurer–Cartan forms is given by µk = µx

Xk , k ≥ 0.
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By pseudo-group inversion, the preceding discussion also holds for the left multi-
plication (2.1). Denote the inverse of Z = ϕ(z) by z = ϕ−1(Z). Then the above
formulas may be adapted to the left action by interchanging the variables za and Za.
In particular, the left invariant Maurer–Cartan forms are obtained by successively Lie
differentiating

µa = dza −
m∑
b=1

zaZb dZ
b,

with respect to

Dza =
m∑
b=1

W b
a DZb , where (W b

a) = (zbZa)−1, (2.13)

so that
µaA = DAz µa.

For the implementation of the group foliation method it will be useful to know
the relation between left and right invariant Maurer–Cartan forms. For the order zero
Maurer–Cartan forms we find that

µa = dza −
m∑
b=1

zaZb dZ
b = −

m∑
b=1

zaZb(dZ
b −

m∑
c=1

Zbzc dz
c) = −

m∑
b=1

zaZb µ
b. (2.14)

The linear relations among the higher order Maurer–Cartan forms are obtained by Lie
differentiating (2.14) with respect to (2.13)

µaA = −
m∑
b=1

∑
B≤A

(
A

B

)
DBz (zaZb) · D

A−B
z (µb). (2.15)

For example, for the first order Maurer–Cartan forms we have the relations

µab = Dzb(µa) = −
m∑

b,c=1

W c
b (zaZbZc µ

b + zaZb µ
b
c).

For G ⊂ D, the relations between the left and right invariant Maurer–Cartan forms
are obtain by restricting (2.14), (2.15) to the determining system (2.2) and the lifted
determining equations (2.11).

Example 2.6. For our running example, formula (2.14) reduces to

µ = µX = − [xX µ
x + xY µ

y + xU µ
u] = −xX µ, (2.16)

µY = − [yX µ
x + yY µ

y + yU µ
u] = −µy = 0,

µU = − [uX µ
x + uY µ

y + uU µ
u] =

uxXX
xX

µx − 1

xX
µu =

uxXX
xX

µ− uµX ,

where we used (2.12) and the determining equations

xY = xU = 0, y = Y, u =
U

xX
.
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Lie differentiating (2.16) with respect to

Dx =
1

xX
DX +

uxXX
xX

DU , Dy = DY , Du = xXDU

yields the relations among the higher order Maurer–Cartan forms. For example,

µx =Dx(µ) = −xXX
xX

µ− µX ,

µxx =Dx(µx) =

(
x2
XX

x3
X

− xXXX
x2
X

)
µ− xXX

x2
X

µX −
1

xX
µXX .

3 Moving frames

We are interested in the action of a Lie pseudo-group G on p-dimensional submanifolds
S ⊂ M , with 1 ≤ p < m = dim M . To this end, let Jn = Jn(M,p) denote the nth

order extended jet bundle of equivalence classes of p-dimensional submanifolds under
the equivalence relation of nth order contact, [35]. Locally, we identify M ' X×U with
the Cartesian product of the submanifolds X and U with local coordinates z = (x, u).
The coordinates x = (x1, . . . , xp) and u = (u1, . . . , uq) are considered as independent
and dependent variables respectively. This induces the local coordinates z(n) = (x, u(n))
on Jn, where u(n) denotes the collection of derivatives uαJ , with α = 1, . . . , q and 0 ≤
#J ≤ n.

We introduce the nth order lifted bundle

E(n) = Jn ×M G(n) → Jn

whose local coordinates are given by (z(n), g(n)), where z(n) are the nth order subman-
ifold jet coordinates and g(n) are the fiber coordinates along G(n)|z. On the infinite
order lifted bundle E(∞), define the total derivative operators

Dxi = Dxi +

q∑
α=1

[
uαi Duα +

∑
J

uαJ,i
∂

∂uαJ

]
, i = 1, . . . , p,

where the expressions for the differential operators Dxi , Duα are given in (2.10).
A Lie pseudo-group G acts on Jn by the usual prolonged action

(X,U (n)) = g(n) · (x, u(n)) = g(n) · jnS = jn(g · S). (3.1)

The coordinate expressions of the prolonged action are obtained by applying the lifted
total derivative operators

DXi =

p∑
j=1

Bj
iDxj , where (Bj

i ) = (DxiX
j)−1,

to the dependent target coordinates Uα:

UαXJ = DJ
XU

α, α = 1, . . . , q, #J ≥ 0.

The lifted bundle E(n) has groupoid structure with source map σσσ(n)(z(n), g(n)) = z(n)

given by the projection onto the first factor and target map τττ (n)(z(n), g(n)) = g(n) · z(n)

given by the prolonged action (3.1). On E(∞) we use σσσ and τττ to denote the source and
target maps.
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Example 3.1. The Lie pseudo-group (2.3) is now assumed to act on surfaces in R3

locally given as graphs {x, y, u(x, y)}. In this setting, the prolonged action is obtained
by applying the lifted total derivative operators

DX =
1

fx
Dx, DY = Dy,

to U . For example, the second order prolonged action is

UY =
uy
fx
, UX =

uxfx − ufxx
f3
x

, UY Y =
uyy
fx

,

UXY =
uxy − UY fxx

f2
x

, UXX =
uxxfx − ufxxx

f4
x

− 3
UXfxx
f2
x

.

From this point forward, we assume that the Lie pseudo-group acts regularly on Jn

for all n. This means that the orbits of the pseudo-group action form a regular foliation
and its leaves intersect small open sets in pathwise connected subsets.

Definition 3.2. Let

G(n)

z(n)
=
{
g(n) ∈ G(n)|z : g(n) · z(n) = z(n)

}
be the isotropy subgroup of z(n). The pseudo-group G acts freely at z(n) if G(n)

z(n)
= {1(n)

z }.
The pseudo-group G is said to act freely at order n if it acts freely on an open subset
Vn ⊂ Jn, called the set of regular n-jets.

Definition 3.3. Let G be a Lie pseudo-group acting regularly and freely on Vn ⊂ Jn

and let Kn ⊂ Vn be a local cross-section to the pseudo-group orbits. Given z(n) ∈ Vn,
the nth-order right moving frame

%(n)(z(n)) = (z(n), ρ(n)(z(n)))

is the section of the lifted bundle E(n) where the fiber component ρ(n)(z(n)) is the unique
nth order pseudo-group jet in G(n)|z such that τττ (n)[%(n)(z(n))] = ρ(n)(z(n)) · z(n) ∈ Kn.

Assuming, to simplify the discussion, that Kn is the coordinate cross-section

xi1 = c1, . . . , xil = cl, u
αl+1

Jl+1
= cl+1, . . . , u

αdn
Jdn

= cdn , (3.2)

where dn = dim G(n)|z is the fiber dimension of the subbundle G(n), the corresponding
right moving frame is obtained by solving the normalization equations

Xi1(z(n), g(n)) = c1, . . . , Xil(z(n), g(n)) = cl,

U
αl+1

XJl+1
(z(n), g(n)) = cl+1, . . . , U

αdn
XJdn

(z(n), g(n)) = cdn ,

for the pseudo-group jets g(n) = ρ(n)(z(n)) so that

%(n)(z(n)) = (z(n), ρ(n)(z(n))). (3.3)

To each right moving frame (3.3) corresponds a unique left moving frame %(n) obtained
by pseudo-group inversion:

%(n)(z(n)) = (ρ(n)(z(n)) · z(n), (ρ(n)(z(n)))−1).
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In the following, we let ρ(n)(z(n)) = (ρ(n)(z(n)))−1 denote the inverse of the pseudo-
group jet ρ(n)(z(n)) so that

%(n)(z(n)) = (ρ(n)(z(n)) · z(n), ρ(n)(z(n))) where z(n) = τττ (n)(%(n)). (3.4)

Given a (right) moving frame, there is a systematic procedure for invariantizing
differential functions and differential forms. First recall the standard coframe on J∞

given by the horizontal one-forms

dx1, . . . , dxp, (3.5a)

and the basic contact one-forms

θαJ = duαJ −
p∑
j=1

uαJ,j dx
j , α = 1, . . . , q, #J ≥ 0. (3.5b)

Supplementing (3.5) with the Maurer–Cartan forms µaA|G yields a coframe for the lifted
bundle E(∞).

Definition 3.4. Let ω be a differential form on J∞. Its lift is the G-invariant differential
form

λλλ(ω) = πJ[τττ∗(ω)], (3.6)

where πJ is the projection onto jet forms obtained by setting the Maurer–Cartan forms
equal to zero.

We denote by
Ωi = λλλ(dxi), Θα

J = λλλ(θαJ ), (3.7)

the lift of the standard jet coframe. When ω is a submanifold jet coordinate, its lift is
just the usual prolonged action:

Xi = λλλ(xi), UαXJ = λλλ(uαJ ).

The lift map (3.6) may also be extended to the vector field jet ζ(n) by defining

λλλ(ζaA) = µaA

to be the corresponding right-invariant Maurer–Cartan form.

Definition 3.5. Let % = %(∞) : J∞ → E(∞) be a right moving frame, then the invari-
antizaton map ι : Ω∗(J∞)→ Ω∗(J∞) is defined by

ι = %∗ ◦ λλλ. (3.8)

We denote by

$i = %∗(Ωi) = ι(dxi), i = 1, . . . , p,

ϑαJ = %∗(Θα
J ) = ι(θαJ ), α = 1, . . . , q, #J ≥ 0,

(3.9)

the invariantization of the horizontal coframe and basic contact one-forms. Since the
lifted contact forms (3.7) and their invariant counterparts in (3.9) are not used in the
group foliation method we introduce the equivalence notation ≡ to denote equality of
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two differential one-forms up to a lifted or invariant contact form. Finally, we denote
the invariantization of the submanifold jet coordinates by

H i = ι(xi), IαJ = ι(uαJ ), (3.10)

and refer to them as normalized invariants. By construction, the invariantization of
the jet coordinates (3.2) defining the cross-section K∞ are constant, and for this reason
are called phantom invariants.

Proposition 3.6. The normalized invariants (3.10) form a complete set of functionally
independent differential invariants. In particular, using the invariantization map (3.8)
any invariant J(x, u(n)) can be expressed as

J(x, u(n)) = ι[J(x, u(n))] = J(H, I(n)).

Example 3.7. We now construct a moving frame for the Lie pseudo-group action (2.3).
A standard cross-section to the pseudo-group orbits is

x = 0, u = 1, uxk = 0, k ≥ 1. (3.11)

Solving the normalization equations U = 1, X = UXk = 0, k ≥ 1, for the pseudo-group
parameters yields the right moving frame

f = 0, fxk = uxk−1 , k ≥ 1. (3.12)

Up to second order, the invariantization of the submanifold jet coordinates produces
the normalized invariants

Hy = ι(y) = y, I01 = ι(uy) =
uy
u
,

I11 = ι(uxy) =
uuxy − uxuy

u3
, I02 = ι(uyy) =

uyy
u
.

(3.13)

The invariantization of the horizontal coframe gives the invariant one-forms

$x = %∗(dJX) = u dx, $y = %∗(dJY ) = dy.

The corresponding left moving frame is obtained by inverting the right moving frame
(3.12):

f̄ = x, f̄X =
1

fx
=

1

u
, f̄XX = −fxx

f3
x

=
ux
u3
, · · · . (3.14)

Theorem 3.8. Let ω be a differential form on J∞, then

d[λλλ(ω)] = λλλ[dω + v(∞)(ω)]. (3.15)

An immediate consequence of (3.15) is that

d[ι(ω)] = ι[dω + v(∞)(ω)]. (3.16)

The identity (3.16) is called the universal recurrence relation. We are particularly
interested in the case when ω is a differential function, and more particularly, when ω
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is one of the submanifold jet coordinates. Substituting xi and uαJ in (3.16) we obtain
the invariant recurrence relations

dH i = $i +M i, dIαJ ≡ IαJ,i$i +Nα
J , (3.17)

for the normalized invariants. The correction terms M i, Nα
J come from the Lie algebraic

term ι(v(∞)(ω)) in (3.16). One of most important features of (3.17) or (3.16) is that
these equations do not require the coordinate expression of the invariant object to be
computed, [43].

Example 3.9. In this example we compute the invariant recurrence relations (3.17)
for the normalized invariants (3.13). To compute the lifted recurrence relation (3.15)
we need the prolongation of the infinitesimal generator (2.7):

v(∞) =a(x)
∂

∂x
− u ax

∂

∂u
− (u axx + 2ux ax)

∂

∂ux
− uy ax

∂

∂uy
− uyy ax

∂

∂uyy

− (uy axx + 2uxy ax)
∂

∂uxy
− (u axxx + 3ux axx + 3uxx ax)

∂

∂uxx
− · · · .

Substituting x, y, u, ux, uy, . . . for ω in (3.15) we obtain, modulo contact forms,

dX = Ωx + µ, dY = Ωy,

dU ≡ UX Ωx + UY Ωy − U µX ,
dUX ≡ UXX Ωx + UXY Ωy − U µXX − 2UX µX ,

dUY ≡ UXY Ωx + UY Y Ωy − UY µX ,
dUXX ≡ UXXX Ωx + UXXY Ωy − U µXXX − 3UX µXX − 3UXX µX ,

dUXY ≡ UXXY Ωx + UXY Y Ωy − UY µXX − 2UXY µX ,

dUY Y ≡ UXY Y Ωx + UY Y Y Ωy − UY Y µX , . . . .

(3.18)

Pulling-back (3.18) by the right moving frame ρ, the left-hand side of (3.18) is identically
zero for the phantom invariants Hx = 0, I = 1, Ik0 = 0, k ≥ 1. Solving these equations
for the pulled-back Maurer–Cartan forms µk = %∗µk, the result is

µ = −$x, µk ≡ Ik−1,1$
y, k ≥ 1. (3.19)

Substituting the expressions (3.19) into the remaining recurrence relations (3.18) yields
the invariant recurrence relations

dHy = $y, dI01 ≡ I11$
x + I02$

y − I2
01$

y,

dI11 ≡ I21$
x + I12$

y − 3I01I11$
y, dI02 ≡ I12$

x + I03$
y − I01I02$

y,
(3.20)

and so on. Let Di be the invariant total differential operators dual to the invariant
horizontal one-forms $i defined by

dF ≡
p∑
i=1

Di(F )$i for any differential function F (x, u(n)).

Since the invariant horizontal one-forms $i are linearly independent we deduce from
(3.20) the recurrence relations

DxI01 = I11, DyI01 = I02 − I2
01,

DxI11 = I21, DyI11 = I12 − 3I01I11,

DxI02 = I12, DyI02 = I03 − I01I02,

(3.21)
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among the low order normalized invariants. Note that the invariant I12 appears twice
on the right-hand side of (3.21). Eliminating this invariant we obtain the relation

DxI02 = DyI11 + 3I01I11. (3.22)

Definition 3.10. A set of invariants I is said to generate the algebra of differential
invariants with respect to the invariant derivative operators D1, . . . ,Dp if all differential
invariants can be expressed as some function of the invariants I ∈ I and their invariant
derivatives DJI.

The Fundamental Basis Theorem—first proved for finite-dimensional group actions
by Lie, [26, p. 760], and later extended to infinite-dimensional Lie pseudo-groups by
Tresse, [54]—guarantees that the set I may be taken to be finite. That is, the algebra
of differential invariants is generated by a finite number of invariants. Modern proofs of
the Fundamental Basis Theorem appear in the textbooks [36, 47]; other proofs based
on Spencer cohomology, [23], Weyl algebras, [32], homological methods, [21] or moving
frames, [15, 39, 44], also exist.

Using Gröbner basis techniques, the proof of the Basis Theorem presented in [44]
is constructive and also identifies a generating set. The proof relies on the assump-
tion that moving frames constructed are of minimal order, and hence we assume from
now on every moving frame to be of minimal order. Intuitively, a moving frame is of
minimal order if during the normalization procedure the pseudo-group parameters are
normalized as soon as possible; we refer the reader to [15, 39] for a precise definition.

Understanding functional dependence relations among the invariants will be central
to the implementation of the group foliation method.

Definition 3.11. A syzygy among the generating differential invariants I = {I1, . . . , Ik}
is a nontrivial functional relationship

S(. . . ,DLI1, . . . ,DKIk, . . .) = 0

among the invariants Iν and their various invariant derivatives DJIν .

Example 3.12. Continuing Example 3.9, setting ω = dx and ω = dy in the recurrence
relation (3.16) we find that

d$x = I01$
y ∧$x, d$y = 0.

By duality we deduce the commutation relation

[Dx,Dy] = I01Dx. (3.23)

Syzygies arising from commutation relations such as the above are called commutator
syzygies. For example, for any differential invariant I one finds by application of (3.23)
the syzygy

DxDyI = DyDxI + I01DxI. (3.24)

Definition 3.13. A collection S = {S1, . . . , Sk} of syzygies is said to form a generating
system if every syzygy can be written as a linear combination of members of S and
finitely many of their derivatives, modulo the commutator syzygies.

12



Theorem 3.14. Let G be a Lie pseudo-group acting locally freely on an open subset of
the submanifold jet bundle Jn for some n ≥ 1. Then the algebra of syzygies is generated
by a finite number of fundamental sygygies.

A comprehensive discussion of syzygies and a proof of Theorem 3.14 appears in [44].
The proof is again constructive and based on Gröbner basis methods. We note that
in applications it is generally possible to avoid the introduction of the Gröbner basis
machinery. The generating sets I and S for the algebra of differential invariants and
the algebra of syzygies can be found by direct observation.

Example 3.15. Continuing Example 3.9, we conclude from the recurrence relations
(3.21) that the second order normalized invariants I11 and I02 are expressible in terms
of the normalized invariants I01 and Hy and their invariant derivatives with respect to
Dx and Dy. The same holds for higher order normalized invariants, and we conclude
that the algebra of differential invariants of the pseudo-group (2.3) is generated by the
normalized invariants I01 and Hy and the invariant derivative operators Dx = (1/u)Dx

and Dy = Dy.
Also, there is no fundamental syzygy among the generating invariants {Hy, I01}.

Every syzygy must be trivial modulo the commutator syzygies. For example, substi-
tuting I = I01 in (3.24) and using the recurrence relations (3.21), we recover the syzygy
(3.22).

In the above discussion, the invariant derivative operators D1, . . . ,Dp can be re-
placed by any other set of p linearly independent invariant total derivative operators.
In doing so, the structure of the algebra of differential invariants may change. As
the next example shows, the generating set of invariants and fundamental syzygies are
dependent on the basis of invariant total derivative operators.

Example 3.16. We now revisit Example 3.15 using a different set of invariant deriva-
tive operators. To simplify the notation, let

H = Hy, J = I01, K = I11, L = I02. (3.25)

From (3.20), we have that
dH ∧ dJ ≡ K$y ∧$x. (3.26)

Working on the open subset of jet space where K 6= 0, one can replace the invariant
total derivative operators Dx and Dy by the invariant Tresse derivatives DH and DJ ,
[22]. By the chain rule,

Dx = DxH ·DH +DxJ ·DJ = KDJ ,

Dy = DyH ·DH +DyJ ·DJ = DH + (L− J2)DJ .
(3.27)

In terms of these Tresse derivatives, the algebra of differential invariants cannot be
generated by the invariants {Hy, I01} = {H,J} since

DH(H) = DJ(J) = 1 and DH(J) = DJ(H) = 0.

In this case, a generating set of invariants is given by the four normalized invariants
(3.25). There is now one fundamental syzygy obtained by expressing (3.22) in terms of
the operators (3.27):

DxL = DyK + 3JK ⇐⇒ KDJL = DHK + (L− J2)DJK + 3JK. (3.28)
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4 Group foliation

In the first part of this section we review the classical method of group foliation, mostly
following Ovsiannikov’s treatment, [47]. Moving frames are used when possible to sim-
plify the constructions. In particular, the derivation of the automorphic and resolving
systems is done symbolically without relying on coordinate expressions for the differ-
ential invariants. In the second part of this section, the moving frame method is used
to obtain a symbolic procedure for reconstructing solutions of the original differential
equation from solutions of the resolving system. This reconstruction procedure differs
from the classical approach using automorphic systems, which requires explicit formulae
for differential invariants.

4.1 Vessiot’s group foliation method

Given a differential equation ∆ = 0, group foliation splits the problem of solving ∆ = 0
into one of solving two associated systems of differential equations called the resolving
and automorphic systems. More precisely, it is an associated family of equations; each
solution to the resolving system determines a particular G-automorphic system, which
in turns yields solutions to the original equation ∆ = 0.

Definition 4.1. A system of differential equations is called G-automorphic if all of its
solutions can be obtained from a single solution via transformations belonging to G.

We now describe the method rigorously. Suppose that

∆(x, u(n)) = 0

is an nth order differential equation admitting a Lie pseudo-group G of symmetries. By
definition of invariance, G maps solutions of ∆ = 0 to other solutions. Thus, there is an
induced action of G on the solution set, partitioning this space into orbits. If the jets
of solutions lie within the set of regular jets Vk ⊂ Jk, these orbits determine invariant
submanifolds in Jk, k ≥ 0, traced out by the action of G on the prolonged graph of a
given solution. The description of these invariant submanifolds using the differential
invariants of G leads to the main idea of the group foliation method.

Let Kk be a cross-section to the prolonged action of G on Jk and let u0 : X → U be

an arbitrary function whose prolonged graph (x, u
(k)
0 (x)) lies in a neighborhood of Kk.

Later on, u0(x) will be a solution of the differential equation ∆ = 0, but the immediate
discussion does not rely on this assumption. Consider the orbit under G of the kth

prolongation of the graph (x, u
(k)
0 (x)):

A(u
(k)
0 ) = {g(k) · (x, u(k)

0 (x)) : g(k) ∈ G(k)
∣∣
(x,u

(k)
0 )
} ⊂ Jk.

Let rk be the dimension of the intersection of A(u
(k)
0 ) with the cross-section Kk. We

assume that the dimension of this intersection is constant. Increasing the order of
prolongation, we have the non-decreasing sequence

0 ≤ r0 ≤ r1 ≤ · · · ≤ p.

Definition 4.2. The smallest order s such that rs = rs+i for all i ≥ 1 is called the
order and r = rs is called the invariant rank of the function u0.
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Figure 2: The orbit of a graph and intersection with a cross-section.

As guaranteed by the Fundamental Basis Theorem, we may choose k ≥ s so that
there is a functionally independent generating set I of differential invariants of order
≤ k. These invariants provide coordinates for the cross-section Kk and allows us to write

the intersection A(u
(k)
0 ) ∩ Kk as a parametrized submanifold of Kk. For this purpose,

distinguish a set of functionally independent differential invariants {J1, . . . , Jr} ⊂ I,
to be used as parametric variables. We may then use the remaining invariants as

dependent variables for the parametrization, writing A(u
(k)
0 )∩Kk locally as a graph in

Kk:
Ar : K1 = F 1(J1, . . . , Jr), . . . , Kν = F ν(J1, . . . , Jr), (4.1)

where {J1, . . . , Jr,K1, . . . ,Kν} is the full generating set of invariants. The system
(4.1) is automorphic and will be called an automorphic system Ar of rank r, dropping
reference to u0. In [47], it is shown that every automorphic system on J∞ has the form
(4.1).

Remark 4.3. In practice we may distinguish the invariants J1, . . . , Jr by verifying the
independence condition

dJ1 ∧ · · · ∧ dJr 6≡ 0.

on Ar. This may be done symbolically, without the need for explicit formulae for the
invariants.

Example 4.4. In this example we obtain the automorphic systems for the pseudo-
group (2.3). The differential invariants and their recurrence relations were obtained in
Examples 3.7 and 3.9. Since the independent variable H = Hy = y is an invariant, the
invariant rank of an automorphic system is bounded by 1 ≤ r ≤ 2. Distinguishing the
invariants H and J as parameters, the independence condition (3.26) from Example
3.16 implies that when K 6= 0, the invariants H, J are independent and automorphic
systems of rank 2 have the form

A2 :

{
K = F 1(H,J)

L = F 2(H,J)
⇒


uuxy − uxuy

u3
= F 1

(
y,
uy

u

)
uyy

u
= F 2

(
y,
uy

u

) . (4.2)

When K = 0 we may choose H as a parameter to obtain the rank 1 automorphic
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systems

A1 :


J = F 1(H)

K = 0

L = F 2(H)

⇒



uy

u
= F 1(y)

uuxy − uxuy
u3

= 0

uyy

u
= F 2(y)

. (4.3)

The choice of F 1, . . . , F ν in (4.1) may not be arbitrary. Because (4.1) is expressed
in terms of differential invariants, applications of syzygies among the invariants will
lead to integrability conditions. Consideration of these syzygies leads to a system of
differential equations for the functions F 1, . . . , F ν in the automorphic system Ar that
we call the syzygy system.

We first discuss syzygy systems for full rank automorphic systems, i.e. r = p. Let
S be the set of fundamental syzygies among the generating invariants I = {J1, . . . , Jr,
K1, . . . ,Kν}. Making the chain rule substitutions

Di =
r∑

k=1

(DiJk)DJk , i = 1, . . . , p, (4.4)

we may write the invariant differential operators Di appearing in each syzygy in terms
of the derivatives DJj . Without loss of generality, we assume that DiJ j , i = 1, . . . , p,
j = 1, . . . , r, are again functions of the generating invariants I by increasing the order
of prolongation and adding more invariants to I if necessary (we do not require I to
be minimal). Application of the fundamental syzygies to the system (4.1) results in a
system of differential equations for F 1, . . . , F ν . This system is called the syzygy system.

Remark 4.5. As can be seen from Example 3.16, for any particular symmetry group,
the substitution (4.4) may be made symbolically, without explicit formulae for the
invariants, using the recurrence relations (3.17).

Example 4.6. The syzygy system associated to the rank 2 automorphic system (4.2)
is simply obtained by substituting the functions K = F 1(H,J) and L = F 2(H,J) into
the fundamental syzygy (3.28), resulting in the first order partial differential equation

F 1 ∂F
2

∂J
=
∂F 1

∂H
+ (F 2 − J2)

∂F 1

∂J
+ 3J F 1. (4.5)

We now address the case when the automorphic systems considered have less than
full rank, i.e. r < p. In this instance, the substitution (4.4) may introduce new de-
pendencies among the differentiated invariants in addition to the fundamental syzygies
and their consequences. We will call these dependencies restriction syzygies since they
arise from restricting the differential operators to submanifolds (locally) parametrized
by J1, . . . , Jr.

Example 4.7. For the rank 1 automorphic system (4.3), the syzygy (3.28) is trivial.
To see this, express the invariant total derivative operators Dx, Dy in terms of the single
operator DH :

Dx = DxH ·DH = 0, Dy = DyH ·DH = DH . (4.6)

On the other hand, by substitution of (4.6) into the recurrence relations (3.21) we find

DHJ = L− J2, I21 = 0, I12 = 0, I03 = DHL− JL, (4.7)
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and so on. Thus, there is a new restriction syzygy

DHJ = L− J2

among the generating invariants, arising from the restriction of the invariants and
invariant differential operators to submanifolds of the form (4.3). It can be seen by
inspection that this restriction syzygy is generating. Thus we arrive at the rank 1
syzygy system for the functions F 1(H), F 2(H):

∂F 1

∂H
= F 2 − (F 1)2.

Remark 4.8. We will henceforth refrain from referencing the functions F i in our
examples when it is understood that each invariant Ki is a function Ki(J1, . . . , Jr).

Analogous to Theorem 3.14 in the full rank case r = p (where the restriction syzygies
are identical to the usual syzygies), the restriction syzygies for r < p are also finitely
generated.

Proposition 4.9. Suppose that the Lie pseudo-group G admits a moving frame. For
any choice of distinguished invariants J1, . . . , Jr, the set of restriction syzygies resulting
from substitution of the relations (4.4) into the recurrence relations is finitely generated.
A finite generating set of restriction syzygies is called fundamental restriction syzygies.

Proof. The full rank case r = p follows from Theorem 3.14. When r < p, certain
constraints among the differential invariants are imposed, as can be seen in Example
4.4. Writing the differential invariants explicitly in terms of submanifold jet coordinates
(x, u(n)), these constraints give invariant differential equations that u = u(x) must
satisfy. The proposition then follows from the fact that the differential module of
differential syzygies restricted to the solution space of an invariant differential equation
is finitely generated, [22, Theorem 24].

Remark 4.10. Our proof of Proposition 4.9 provides only the existence of a finite
generating set of restriction syzygies. A constructive proof would be preferable and
useful for more intensive examples than those treated in this paper.

We are now prepared to define the syzygy system for all ranks r ≤ p.

Definition 4.11. The syzygy system Sr for a rank r automorphic system Ar is the finite
system of differential equations for F 1, . . . , F ν as functions of the invariant parameters
J1, . . . , Jr obtained by applying to Ar the fundamental restriction syzygies.

Remark 4.12. It is important to note that the syzygy system does not impose extra
conditions on the solutions of the system Ar; Sr is a collection of integrability conditions
on the functions F j .

Let us now return to the context in which our automorphic systems (4.1) arise as
orbits of solutions u0(x) to a G-invariant differential equation ∆ = 0, and discuss how
to apply these systems to the problem of finding solutions to ∆ = 0.

Starting with a solution u0(x) to a G-invariant equation ∆ = 0, solutions to the G-

automorphic system A(u
(k)
0 ) will again satisfy ∆ = 0 by invariance. Unfortunately, this

observation does not offer obvious practical value for finding solutions to ∆ = 0; indeed,
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if a “seed” solution u0 is known, one can simply apply the pseudo-group transformations
to u0 and avoid automorphic systems altogether. The preceding construction of syzygy
systems suggests an alternative approach: append to the syzygy system the condition
∆ = 0. By adding this condition, we ensure that the automorphic systems determined
by solving the syzygy system are those generated by solutions to ∆ = 0. Note that, by
the invariance of ∆ = 0, this amounts to adding new relations among the generating
invariants; these relations will be called constraint syzygies. The constraint syzygies
together with the restriction syzygies give a set of differential equations, called the re-
solving system, whose solutions determine automorphic systems generated by solutions
of ∆ = 0.

Definition 4.13. The rank r resolving system Rr(∆) of a differential equation ∆ = 0
foliated by G is the system of differential equations obtained by appending to the syzygy
system Sr the constraint syzygy ι(∆) = 0 and its differential consequences.

Example 4.14. We now obtain the rank 2 resolving system for the nonlinear wave
equation

uuxy − uxuy = u3, (4.8)

foliated by the Lie pseudo-group (2.3). First observe that this Lie pseudo-group is a
symmetry group of (4.8). Invariantization of (4.8) gives the constraint syzygy

K = 1. (4.9)

Appending the constraint syzygy to the syzygy system (4.5) yields the resolving system

K = 1, DJL = 3J. (4.10)

Note that there is no rank 1 resolving system because the constraint syzygy (4.9) is not
compatible with the dependence condition K = 0 from (3.26).

Remark 4.15. The addition of the constraint syzygy may, as usual, be performed
symbolically by direct invariantization of the equation ∆ = 0 and use of the recurrence
relation to write all invariants appearing in ι(∆) in terms of the generating invariants.
We assume that the solution space of ∆ = 0 lies within the set of regular jets so that
the equation may be written as a level set of differential invariants; see [35, Proposition
2.56].

All the ingredients for the group foliation algorithm are now in place.

Algorithm 4.16 (Group foliation). Let ∆(x, u(n)) = 0 be an n-th order differential
equation invariant under a Lie pseudo-group G and suppose that G admits a moving
frame on the solution space of ∆ = 0.

• Choose an invariant rank r for which rank r solutions will be sought. Prolong to
order k ≥ s, where s is the order of stabilization of a generic rank r solution, so that
the normalized invariants of order at most k form a generating set.

• Choose distinguished invariants J1, . . . , Jr among the normalized invariants so that
DiJ j have order no greater than k. These invariants will be used as independent
variables and the remaining normalized invariants K1, . . . ,Kν as dependent variables
in the automorphic system

Ar : K1 = F 1(J1, . . . , Jr), . . . , Kν = F ν(J1, . . . , Jr).
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• Compute the order r resolving system Rr(∆) by applying the restriction syzygies and
the constraint syzygy ι(∆) = 0 to Ar.
• Find a solution F 1(J1, . . . , Jr), . . . , F ν(J1, . . . , Jr) to the resolving system.

• Form an automorphic system Ar using the resolving system solution and write the
invariants in this automorphic system explicitly in terms of (x, u(k)). Solutions of this
automorphic system will satisfy the original equation ∆ = 0.

Example 4.17. We continue Example 4.14. A general solution to the resolving system
(4.10) is easily found:

K(H,J) = 1, L(H,J) =
3

2
J2 +G(H), (4.11)

where G(H) is an arbitrary smooth function. Substituting (4.11) and the explicit
formulae (3.13) for the invariants into the automorphic system (4.2) we obtain the
system of differential equations

uuxy − uxuy
u3

= 1,
uyy
u

=
3

2

(
uy
u

)2

+G(y). (4.12)

It is apparent that the method in this instance has been circular; the original equation
itself appears in the final automorphic system and the second equation of (4.12) follows
from the first by cross-differentiation. This unfortunate outcome will be remedied by
the subject of the next section.

Example 4.18. To illustrate the algorithm for non-maximal invariant rank we consider
the differential equation

uuxy − uxuy = 0. (4.13)

This equation also admits the symmetry pseudo-group (2.3). Using the same notation
as Examples 4.4 and 4.7, (4.13) implies the constraint syzygy K = 0. Since dH ∧ dJ ≡
K$y ∧$x = 0, the invariants H and J are functionally dependent and the resolving
equations in this case are identical to the rank 1 syzygy system already computed in
Example 4.7. A solution to the resolving system is

J(H) = G(H), L(H) = G′(H) +G(H)2, (4.14)

where G is an arbitrary smooth function. Substituting (4.14) and the explicit formulae
(3.13) for the invariants into the automorphic system (4.3) we obtain the system of
differential equations

uy
u

= G(y),
uuxy − uxuy

u3
= 0,

uyy
u

= G′(y) +G(y)2. (4.15)

We do not pursue a solution of (4.15) at present. This will be done by alternative
means in Example 4.27 to follow.

In Algorithm 4.16, all steps except for the last may be executed using the symbolic
calculus of moving frames. It is only the last step that requires explicit knowledge
of the differential invariants and, in the instance of Example 4.17, leads to a dead
end in the computation. In keeping with the intent of moving frames, we propose
an alternative method for reconstruction of solutions from the resolving system that
is completely symbolic, and effective in certain examples — such as Example 4.17 —
where the standard reconstruction method fails.
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4.2 Reconstruction procedure

The method of moving frames is naturally incorporated into our exposition of the group
foliation method. Moving frames are not required per se to perform the algorithm, but
they facilitate the symbolic construction of the automorphic and resolving systems using
only the infinitesimal data of the pseudo-group action and the choice of a cross-section
to the pseudo-group orbits. But, when the automorphic system is used to construct
a solution to ∆ = 0 from a solution of the resolving system, as in (4.12), it becomes
necessary to know the explicit formulae for the generating invariants. Also, as Example
4.17 shows, this final step of the group foliation method may result in a problem no
easier to solve than the original differential equation.

To address these shortcomings, we replace the explicit automorphic system by a
system of reconstruction equations. In essence, the reconstruction system makes use of
the pseudo-group transformations to map the resolving system solution away from the
cross-section, to solutions of ∆ = 0. More precisely: a right moving frame ρ will project
the jet of an unknown solution along pseudo-group orbits onto the cross-section. This
projection is identical to the intersection of the orbit of the solution with the cross-
section, and hence characterized as a solution of the resolving system Rr studied in
the previous section. A left moving frame % inverts this process, mapping a resolving
system solution away from the cross-section and back to solutions of ∆ = 0. See
Figure 3 for the geometry of this process. We begin by introducing the pseudo-group
jet differentials of G, which will allow the determination of reconstruction equations in
a purely symbolic manner.
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cross-section

solution to ∆ = 0

solution to resolving system

Y

ρ

jρ

Figure 3: The geometry of reconstruction.

4.2.1 Pseudo-group jet differentials

In this section we introduce the pseudo-group jet differential expressions arising simply
from taking the exterior derivative of the pseudo-group jets. Pull-back of these pseudo-
group jet differentials by the right moving frame results in an expression for the exterior
derivatives of the left moving frame components in terms of “known quantities”: in-
variant horizontal differential forms and the right moving frame pull-backs of the right
Maurer–Cartan forms, computed using the universal recurrence relation (3.16). Expan-
sion of these exterior derivatives in the invariant horizontal coframe yields differential
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equations for the the left moving frame; after restriction to a resolving system solution,
these differential equations become the reconstruction equations.

The pseudo-group jet differential expressions rely on the relation between left and
right Maurer–Cartan forms. Recall from Section 2 the right and left zero order Maurer–
Cartan forms, respectively, for the full diffeomorphism pseudo-group:

µa = dZa −
m∑
b=1

Zazbdz
b, µa = dza −

m∑
b=1

zaZb dZ
b.

Higher order right and left Maurer–Cartan forms µaA = DAZµa and µaA = DAz µa are
obtained via Lie differentiation with respect to, respectively,

DZa =
m∑
b=1

zbZa Dzb and Dza =
m∑
b=1

Zbza DZb .

The Maurer–Cartan forms of a Lie pseudo-group G ⊂ D are found by restricting the
diffeomorphism pseudo-group Maurer–Cartan forms to the determining equations (2.2)
and lifted determining equations (2.11) for G, with the interchange z ↔ Z, µ ↔ µ for
the left Maurer–Cartan forms.

Using the relation (2.14) between left and right zero order Maurer–Cartan forms we
find the following relations among the diffeomorphism pseudo-group jets:

dza =
m∑
b=1

(zaZb dZ
b − zaZb µ

b). (4.16a)

Similar relations among the higher order diffeomorphism pseudo-group jets zaA are ob-
tained by Lie differentiation of (4.16a) with respect to DZa . For example, we find for
the first order pseudo-group jets:

dzaZc =
m∑
b=1

(zaZbZc dZ
b − zaZbZc µ

b − zaZb µ
b
Zc). (4.16b)

Definition 4.19. Equations (4.16) and higher order consequences are called pseudo-
group jet differentials for the diffeomorphism pseudo-group. For a Lie pseudo-group
G ⊂ D, the pseudo-group jet differentials are obtained by application of the determining
system (2.2), with the interchange of z and Z, and lifted determining system (2.11) to
(4.16).

Remark 4.20. It will usually be more convenient to work with pseudo-group param-
eters instead of pseudo-group jets. The distinction is purely computational; we will
illustrate both approaches in our running example.

Example 4.21. We now compute the pseudo-group jet differentials for the Lie pseudo-
group action (2.3). Applying to (4.16) the determining equations

xY = 0, xU = 0, y = Y, u =
U

xX
,

and the lifted determining equations (2.12) for the right Maurer–Cartan forms we obtain

dx = xX (dX − µx)

dy = dY

du =
1

xX
(dX − µx)− UxXX

xX
(dU + Uµx).
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Lie differentiation with respect to DX gives the higher order relations

dxX = xXX (dX − µx)− xX µxX

duX =
−xXX
x2
X

(dX − µx)− 1

xX
µxX −

U(xXXXxX − x2
XX)

x2
X

(dU + Uµx)− U2xXX
xX

µx,

and so on. Writing these jet differentials in terms of the pseudo-group parameters
f̄ = x, f̄X = xX , f̄XX = xXX , . . . instead offers some simplification:

df̄ = f̄X (dX − µx),

df̄X = f̄XX dX − f̄XX µx − f̄X µxX ,
df̄XX = f̄XXX dX − f̄XXX µx − 2f̄XX µ

x
X − f̄X µxXX ,

(4.17)

and so on. The pseudo-group jet differentials involving the jets u, uX , uXX , . . . may
be disregarded since they are expressible in terms of the jet parameters determined by
(4.17).

4.2.2 Reconstruction equations

Locally, the right moving frame %(z(∞)) and left moving frame %(z(∞)) are completely
determined by their pseudo-group jet functions ρ(z(∞)) and ρ(z(∞)), respectively. Since
the considerations of this section are purely local, we will refer to ρ and ρ as the right
and left moving frames by an abuse of terminology.

Because the right and left moving frames ρ and ρ are related by pseudo-group inver-
sion, the right moving frame pull-back of the “inverse” pseudo-group jets zaA produces
the left moving frame pull-back of the “regular” pseudo-group jets ZaA:

ρ∗(z, Z(∞)) = ρ∗(Z, z(∞)).

Thus applying the right moving frame pull-back ρ∗ to the pseudo-group jet differentials
will yield an expression for the differential dρ =

(
d(ρ∗z), d(ρ∗za

Zb
), . . .

)
of the left moving

frame:

dρ ≡
p∑
j=1

Pj(ρ,H, I
(∞))$j , (4.18)

where H, I(∞) are the collections of normalized invariants H i = ι(xi), IαJ = ι(uαJ ),
respectively, and z = (x, u) as usual. The invariants H i, IαJ , make their appearance in
(4.18) via the normalized Maurer–Cartan forms ρ∗µaA and the normalized differentials
ρ∗dXi, ρ∗dUα. Note that these quantities may all be computed symbolically via the
universal recurrence relation (3.16). Giving a general expression for the functions Pj
is possible but not necessary for our discussion. To apply the identity (4.18) to the
problem of group foliation, we restrict to a particular automorphic system Ar given by
a choice of resolving system solution. First consider the case of full rank r = p.

Let ∆ = 0 be a G-invariant differential equation, and suppose that a solution to a
full rank resolving system Rr is given, determining the automorphic system Ar. Let
J = {J1, . . . , Jp} be the distinguished independent invariants for the resolving system.
Because of independence, invariant horizontal projections of the forms

dJ1, . . . , dJp
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constitute an invariant horizontal coframe, which may be used in place of $1, . . . , $p in
(4.18). Restricted to Ar, (4.18) then yields an explicit system of differential equations
for the left moving frame as a function of the distinguished invariants J via projection
onto this horizontal coframe:

dρ =

p∑
j=1

Qj(ρ, J) dJ j . (4.19)

All invariants H, I(∞) are expressed as functions of the distinguished invariants via the
recurrence relations. The result is a system of first order differential equations that
must be satisfied by ρ:

DJj ρ = Qj(ρ, J). (4.20)

We will refer to (4.19) or (4.20) as reconstruction equations.

Theorem 4.22. The reconstruction equations (4.19) are automorphic relative to G.

Proof. Let ρ1 and ρ2 be two solutions of the reconstruction equations (4.19). Then
S1 = ρ1 ·(H, I) and S2 = ρ2 ·(H, I) are p-dimensional submanifolds with same projection
onto K∞. Since the normalized invariants (H, I(∞)) = ι(x, u(∞)) form a complete
set of invariants and parametrize K∞, the submanifolds S1 and S2 have the same
signatures, [40, 55]; that is, (H, I(∞))|S1 = (H, I(∞))|S2 . This implies that there exists
a transformation g ∈ G such that g ·S1 = S2. By construction of S1 and S2, this means
that g(∞) · ρ1 = ρ2.

Remark 4.23. As seen in (3.4), a left moving frame is uniquely determined by its
target point. Since the solution to the reconstruction equations (4.20) are expressed
in terms of the source coordinates (i.e. coordinates on the cross-section K(∞)), the
solution is not unique. By the automorphic property of the reconstruction solution, if
ρ(J) is a particular solution, then the general solutions have the form g(∞) ·ρ(J) where
g(∞) ∈ G(∞).

Theorem 4.24. The parametrized graph

ρ(J) · (H(J), I(J)) = (x(J), u(J))

is the graph of a solution to the differential equation ∆ = 0.

Proof. Let (H(J), I(∞)(J)) be a solution of the resolving system. By definition, this
solution must come from the invariantization of some solution (x, u(∞)(x)) to the dif-
ferential equation ∆ = 0. Let ρ(x) be the right moving frame sending (x, u(∞)(x))
onto (H(J), I(∞)(J)). Suppose that ρ is a solution to the reconstruction equations.
Since ρ̄ and ρ−1 are both solutions of the reconstruction equations, by the automorphic
property there exists g ∈ G such that

ρ = g(∞) · ρ−1.

Since ρ−1 maps (H(J), I(∞)(J)) onto the prolonged graph (x, u(∞)(x)), and g(∞) pre-
serves the property of being a prolonged graph, ρ(J) · (H(J), I(∞)(J)) can be identified
with (x, ũ(∞)(x)) for some function ũ(x), which must be a solution of ∆ = 0.
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By Theorem 4.24, to construct a solution of ∆ = 0, we apply ρ to the graph of the
resolving system solution:

ρ(J1, . . . , Jp) ·
(
H(J1, . . . , Jp), I(J1, . . . , Jp)

)
=
(
x1, . . . , xp, u1, . . . , uq

)
, (4.21)

where the normalized invariants H =
(
ι(x1), . . . , ι(xp)

)
, I =

(
ι(u1), . . . , ι(uq)

)
are eval-

uated on the resolving system solution.
To simplify notation in the following examples, we will use the same notation for

the pseudo-group parameters and their right moving frame pull-backs.

Example 4.25. Continuing Example 4.17, we apply the reconstruction approach to
obtain solutions to (4.8).We begin by deriving the reconstruction equations (4.19).
Taking the right moving frame pull-back of the zero order pseudo-group jet differential
from (4.17) yields

df̄ = f̄X $
x, (4.22)

since, as found in Example 3.9,

ρ∗(dX) = 0 and ρ∗(µx) = −$x.

By duality with (3.27) we find

$x ≡ (J2 − L) dH + dJ, $y ≡ dH,

using the constraint syzygy K = 1 and writing L = L(H,J) for our choice of resolving
system solution from (4.11). Expressing (4.22) in this new coframe we obtain

df̄ = (J2 − L)f̄X dH + f̄X dJ,

which gives the reconstruction equations for f̄(H,J), f̄X(H,J):

DH f̄ = (J2 − L)f̄X DJ f̄ = f̄X .

These equations determine f̄ , f̄X , which are the only parameters needed for reconstruc-
tion. Using (4.11) the reconstruction equations may be written more explicitly as

DH f̄ = −
(
J2

2
+G(H)

)
DJ f̄ , DJ f̄ = f̄X , (4.23)

which may be solved by the method of characteristics. Acting on the graph of the
resolving system solution in the cross-section (3.11) by the left moving frame deter-
mined by the reconstruction yields a solution to the nonlinear wave equation (4.8)
given parametrically, in terms of the invariants H and J :

x = f̄(H,J), y = H, u =
1

f̄X(H,J)
.

Remark 4.26. The reconstruction result in Example 4.25 was derived in [48] using
the machinery of symmetry reduction of exterior differential systems.
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We now consider the reconstruction process for non-maximal invariant rank, r < p.
In this case, invariant horizontal projections of the forms dJ1, . . . , dJr cannot be used
as an invariant coframe in place of the invariant forms $i. To remedy this situation,
we supplement the invariant forms dJ1, . . . , dJr with p − r forms $j1 , . . . , $jp−r from
the standard invariant horizontal coframe in order to form a full invariant horizontal
coframe. Thus the reconstruction equations have the modified form

dρ ≡
r∑
j=1

Qj(ρ, J
1, . . . , Jr) dJ j +

p−r∑
i=1

Pji(ρ, J
1, . . . , Jr)$ji .

We may then use p − r of these equations to express the supplemental differential
forms $ji in terms of the differentials of p− r moving frame components ρai = ρ∗(zai),
i = 1, . . . , p−r. Solutions to these non-maximal rank reconstruction equations will then
be parametrized by the invariant variables J1, . . . , Jr in addition to the components
ρa1 , . . . , ρap−r . The addition of these p − r “free parameters” in the reconstruction
transformations is expected; we are attempting to reconstruct the graph of a solution
to ∆ = 0, a p-dimensional manifold, from the graph of a resolving system solution, a
r-dimensional manifold.

Example 4.27. We return to Example 4.18 to illustrate reconstruction for non-maximal
rank. Recall that in this example we have the single distinguished invariant H, and the
resolving system solution

J(H) = G(H)

L(H) = G′(H) +G(H)2.

We supplement the form dH with $x so that {dH,$x} is an invariant horizontal
coframe. Applying the right moving frame pull-back to the first two pseudo-group jet
differentials from (4.17) yields

df̄ ≡ f̄X $x, df̄X ≡ f̄XX $x − f̄X J dH. (4.24)

The first equation of (4.24) allows us to express the invariant horizontal form $x in
terms of the moving frame components:

$x ≡ df̄/f̄X ,

reducing the second equation of (4.24) to

df̄X ≡
f̄XX
f̄X

df̄ − f̄X J dH. (4.25)

The component f̄ of the moving frame may be taken as an independent variable so that

f̄X = f̄X(f̄ , H), f̄XX = f̄XX(f̄ , H),

and hence (4.25) yields differential equations for f̄X :

Df̄ f̄X =
f̄XX
f̄X

, DH f̄X = −f̄X J.
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The first equation gives f̄XX in terms of f̄X ; solving the second we find

f̄X(f̄ , H) = A(f̄) e−
∫
G(H) dH =

A(f̄)

B(H)
,

where A(f̄) 6= 0, B(H) > 0 are arbitrary functions. Hence we find solutions to (4.13),
parametrized by f̄ , H:

(x, y, u) =

(
f̄ , H,

1

f̄X

)
=

(
f̄ , H,

B(H)

A(f̄)

)
.

In agreement with our explicit computation of the left moving frame in (3.14), we have
f̄ = x, and conclude that u(x, y) = B(y)/A(x) solves (4.13).

Remark 4.28. Note that due to the automorphic property of the reconstruction equa-
tions, solutions are not unique. Acting by a transformation of G will produce a new
reconstruction solution, and hence a new solution to ∆ = 0. This freedom of choice in
the reconstruction solution can be seen in all of our examples.

Example 4.29. With explicit knowledge of the left moving frame, we can see directly
the equivalence of the automorphic system and reconstruction equations. In this exam-
ple we compare directly the automorphic system (4.12) and reconstruction equations
(4.23) for our running example. Taking the exterior derivative of the invariants

H = y, J =
uy
u
,

we obtain

dH ≡ dy, dJ ≡
(
uuxy − uxuy

u2

)
dx+

(
uuyy − u2

y

u2

)
dy,

so that by duality

DH = Dy −
(

uuyy − u2
y

uuxy − uxuy

)
Dx, DJ =

u2

uuxy − uxuy
Dx.

Substituting the values of the left moving frame, f̄ = x and f̄X = 1/u, and writing out
the reconstruction equations (4.23) explicitly:

DH f̄ =

(
J2

2
−G(H)

)
DJ f̄ , DJ f̄ = f̄X

we recover the automorphic system (4.2).

5 Further examples

In this section we apply the group foliation method to three other examples. Example
5.1 gives another illustration of the method for an infinite-dimensional symmetry group.
Examples 5.3 and 5.4 show how the group foliation method subsumes classical symmetry
reduction techniques for finding invariant and partially invariant solutions to differential
equations. The symmetry groups appearing in all examples may be obtained via Lie’s
standard algorithm, [35].
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Example 5.1. In this example, we solve the nonlinear Calogero wave equation, [5],

uxt + uuxx = F (ux) (5.1)

using the group foliation method. The differential equation (5.1) admits the infinite-
dimensional symmetry group

X = x+ a(t), T = t, U = u+ a′(t), (5.2)

where a(t) is an arbitrary differentiable function of t. The Lie pseudo-group action
(5.2) is generated by the vector fields

v = a(t)
∂

∂x
+ a′(t)

∂

∂u
,

whose prolongation is

v(∞) = a(t)
∂

∂x
+at

∂

∂u
+(att−ux at)

∂

∂ut
−uxx at

∂

∂uxt
+(attt−ux att−2uxt at)

∂

∂utt
+ · · · .

The recurrence relations (3.15) for the lifted invariants are

dX = Ωx + µ, dT = Ωt,

dU ≡ UX Ωx + UT Ωt + µT ,

dUX ≡ UXX Ωx + UXT Ωt,

dUT ≡ UXT Ωx + UTT Ωt + µTT − UX µT ,
dUXX ≡ UXXX Ωx + UXXT Ωt,

dUXT ≡ UXXT Ωx + UXTT Ωt − UXXµT ,
dUTT ≡ UXTT Ωx + UTTT Ωt + µTTT − UX µTT − 2UXT µT , . . . .

(5.3)

A cross-section to the pseudo-group orbits is given by

X = UTk = 0, k ≥ 0,

which leads to the normalized Maurer–Cartan forms

µ = −$x, µT = −I10$
x, µTT = −(I11 + I2

10)$x, . . . . (5.4)

Substituting (5.4) into (5.3) we obtain, up to order 2, the recurrence relations

DxI10 = I20, DtI10 = I11,

DxI20 = I30, DtI20 = I21,

DxI11 = I21 + I10I20, DtI11 = I12.

(5.5)

Eliminating I21 from (5.5) we find the syzygy

S : DxI11 = DtI20 + I10I20. (5.6)

A generating set for the algebra of differential invariants is given by

t, s = I10, K = I11, L = I20.
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For t and s to be independent invariant variables we require that L 6= 0 as

ds ∧ dt ≡ L$x ∧$y.

Then, the rank 2 automorphic system is

A2 : K = K(s, t), L = L(s, t).

By the chain rule

Dx = (Dxt)Dt + (Dxs)Ds = LDs,

Dt = (Dtt)Dt + (Dts)Ds = Dt +KDs,

and in the variables s, t, the syzygy (5.6) is equivalent to

L(Ks − s) = Lt +KLs. (5.7a)

The invariantization of the differential equation (5.1) gives the constraint syzygy

K = F (s). (5.7b)

Equations (5.7) comprise the resolving system. Substituting (5.7b) into (5.7a) we obtain
the first order partial differential equation

Lt + FLs = L(Fs − s) (5.8)

for the invariant L. Assuming F (s) 6= 0, the solution to (5.8) is

L(s, t) = F (s)h

(
t−

∫
ds

F (s)

)
exp

[
−
∫

s

F (s)
ds

]
, (5.9)

where h is an arbitrary differentiable function. To obtain the solution to the original
differential equation (5.1) we solve the reconstruction equation

db = $x + bT dt =
1

L
ds+

(
bT −

K

L

)
dt,

which implies

Dsb =
1

L
and bT = Dtb+

K

L
.

Hence,

b(s, t) =

∫
ds

L
+ a(t) and bT = −

∫
Lt
L2
ds+

F (s)

L
+ a′(t),

with L given in (5.9). Then, the solutions to (5.1) of invariant rank 2 are

(x, t, u) = ρ · (0, t, 0) =

(∫
ds

L
+ a(t), t,−

∫
Lt
L2
ds+

F (s)

L
+ a′(t)

)
, (5.10)

where L(s, t) is given by (5.9).
We now assume that L = 0, and search for solutions of invariant rank 1. Firstly,

the automorphic system is now given by

A1 : s = s(t), K = K(t), L = L(t) = 0,
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and by the chain rule,
Dx = 0, Dt = Dt.

Then, the recurrence relations (5.5) yield the syzygy

Dts = K,

while the constraint syzygy (5.7b) still holds. Thus, the function s(t) is a solution of
the ordinary differential equation

Dts = F (s). (5.11)

From the pseudo-group jet differentials

db = −µ+ bT dt = $x + bT dt,

dbX = −µT + bTT dt = s$x + bTT dt,
(5.12)

we conclude that
$x = db− bT dt,

and so the pseudo-group jets bT , bTT , . . . are assumed to be functions of the pseudo-
group variable b and the invariant t. From the second equation in (5.12) we deduce
that

Db(bT ) = s, bTT = Dt(bT ) + s bT .

Hence
bT (b, t) = b · s(t) + f(t),

where s(t) is a solution of (5.11) and f(t) is an arbitrary differentiable function. Finally,
the solutions of invariant rank 1 are

(x, t, u) = ρ · (0, t, 0) = (b, t, b · s(t) + f(t)).

Remark 5.2. The solution (5.10) also appears in [25]. It can be seen by comparison
with this author’s computations that the moving frame approach yields the solution in a
completely systematic manner and does not require explicit formulae for the invariants
s, K and L.

We illustrate in the next two examples the group foliation method for finite dimen-
sional Lie groups. In Example 5.3 we show how the group foliation method subsumes
existing algorithms for obtaining invariant, [35], and partially invariant solutions [47].
In the context of finite dimensional Lie groups, the dimension of the automorphic sys-
tem is bounded between p and p+r, where r is the dimension of the Lie group. Let p+δ
be the dimension of the automorphic system, 0 ≤ δ ≤ r. The number δ is called the
defect of the solution generating the automorphic system. Invariant solutions have de-
fect δ = 0, while partially invariant solutions satisfy 0 < δ < r. By limiting our search
to resolving systems of rank p + δ − r, we discover invariant and partially invariant
solutions of rank δ.

Finally, Example 5.4 illustrates the use of the group foliation method to reduce the
order of an ordinary differential equation. Foliating a second order ordinary differential
equation with respect to a two dimensional Lie group, we obtain a resolving system of
order zero, i.e. an algebraic equation.
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Example 5.3. Consider a system of equations for a transonic gas flow, [47],

uy − vx = 0, u ux + vy = 0. (5.13)

To obtain an invariant solution of (5.13) we foliate the equations with respect to the
group of dilations

X = λx, Y = λ y, U = u, V = v, (5.14)

and search for invariant rank 1 solutions of the resolving system. Choosing the cross-
section

K = {y = 1},

a complete set of invariants is given by

H = ι(x), Ii,j = ι(uxiyj ), Ji,j = ι(vxiyj ).

The recurrence relations (3.17) yield

dH = $i −H$y, (5.15)

and
Ii+1,j = DxIi,j , Ii,j+1 = DyIi,j − (i+ j)Ii,j ,

Ji+1,j = DxJi,j , Ji,j+1 = DyJi,j − (i+ j)Ji,j .

Thus, a generating set of the algebra of differential invariants is given by

H, I, J.

Modulo the commutator syzygies induced by the commutator relation

[Dy,Dx] = Dx,

there is no fundamental syzygy.
Searching for order 1 invariant solution, the automorphic system is

A1 : I = I(H), J = J(H).

By the chain rule

Dx = (DxH)DH = DH , Dy = (DyH)DH = −HDH .

Thus, the invariantization of the differential equations (5.13) yields

HDHI +DHJ = 0, I DHI −HDHJ = 0.

Omitting the constant solution, the integration of the resolving system gives

I(H) = −H2, J(H) =
2

3
H3 + C,

where C is an arbitrary constant. Implementing the reconstruction step, we obtain the
reconstruction equation

$y =
dλ

λ
. (5.16)
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Viewing λ as an independent variable, the invariant solution is given by

(x, y, u, v) = λ · (H, 1, I, J) = (H λ, λ,−H2,
2

3
H3 + C).

Since λ = y, H = x/λ = x/y and the solution invariant under the dilation group (5.14)
is

u(x, y) = −
(
x

y

)2

, v(x, y) =
2

3

(
x

y

)3

+ C.

We now obtain a partially invariant solution of (5.3) by foliating (5.13) with respect
to

X = λx, Y = λ y, U = u, V = v + ε. (5.17)

This time, a cross-section is given by

K = {y = 1, v = 0},

and
H = ι(x), I = ι(u), J = ι(vx), K = ι(vy),

form a generating set of invariants. These invariants admit one fundamental syzygy

DyJ = DxK + J. (5.18)

Restricting ourself to the rank 1 automorphic system

I = I(H), J = J(H), K = K(H),

the corresponding resolving system is

J +HDHI = 0, K + I DHI = 0, DH [(H2 + I)DHI] = 0, (5.19)

where the first two equations come from the invariantization of (5.13) and the third
equation is a consequence of syzygy (5.18). Hence, provided I(H) is a solution of

(H2 + I)DHI = C,

where C is a constant, the invariants J and K are completely determined by (5.19).
Implementing the reconstruction step, the first of two reconstruction equations are
given by (5.16). From (5.15), which still holds, we conclude that

$x = dH +H
dλ

λ
.

Hence, integrating the second reconstruction equation

dε = J $x +K$y = −HDHI dH − C
dλ

λ

we obtain

ε = −C lnλ−
∫
HDHI dH.
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This produces the partially invariant solution

(x, y, u, v) = (λ, ε) · (H, 1, I, 0) = (H λ, λ, I(H),−C lnλ−
∫
HDHI dH).

Since H = x/y and λ = y,

u(x, y) = I(x/y), v(x, y) = −C ln y −
∫

(x/y) I ′(x/y) d(x/y).

Example 5.4. Consider the nonlinear second order ordinary differential equation

x2uxx = (xux − u)2, x > 0. (5.20)

The equation (5.20) is invariant under the two dimensional solvable group of transfor-
mations

X = λx, U = u+ ε x, with λ > 0 and ε ∈ R. (5.21)

In the pseudo-group framework, the determining equations of the Lie group action
(5.21) are

xXx = X, Xu = 0, xUx = U − u, Uu = 1,

and the infinitesimal determining equations corresponding to an infinitesimal generator
v = ξ(x, u) ∂x + φ(x, u) ∂u are

x ξx = ξ, ξu = 0, x φx = φ, φu = 0. (5.22)

Hence, the general prolonged infinitesimal generator is

v = ξx

(
x
∂

∂x
−
∞∑
k=1

k uxk
∂

∂uxk

)
+ φx

(
x
∂

∂u
+

∂

∂ux

)
,

and the order zero lifted recurrence relations are

dX = Ωx +X µxX , dU ≡ UX Ωx +X µuX . (5.23)

Choosing the cross-section K0 = {x = 1, u = 0}, the recurrence relations (5.23) yield
the normalized Maurer–Cartan forms

µxX = −$x, µuX ≡ −I1$
x.

Now, let

A1 : z = I1 = ι(ux) = xux − u, v(z) = I2 = ι(uxx) = x2uxx

be the rank 1 automorphic system, which requires that

v 6= 0 (5.24)

as dz ≡ v $x. Since there are no syzygies, the invariantization of the differential
equation (5.20) yields the resolving system

v(z) = z2.
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Hence, the constraint (5.24) is satisfied provided z 6= 0. When this is so, ωx = dz/v
and the reconstruction equations are

Dz(x) =
x

z2
, Dz(u) =

u

z2
+

1

z
. (5.25)

Solving (5.25) we obtain

x(z) = Ae−1/z, u(z) = e−1/z

[ ∫
e1/z

z
dz +B

]
, (5.26)

where A and B are two constants. By construction, the parametric curve (5.26) is a
solution of (5.20), to recover the solution in the form u(x) it suffices to express the
parameter z as a function of x using the first equation in (5.26):

u(x) = −x
[ ∫

dx

x2(lnx+A)
+B

]
.

Remark 5.5. When G is a (local) Lie group action as in Example 5.4, we can rely on
the abstract definition of Lie groups to obtain a simple expression for the reconstruction
equations. By Ado’s Theorem, [18], every Lie group is locally isomorphic to some linear
group G ' G ⊂ GL(k) for some k ∈ N, and a right moving frame is a G-equivariant
map ρ : Jn → G satisfying

ρ(g · z(n)) = ρ(z(n)) · g−1.

As for Lie pseudo-groups, the corresponding left moving frame is obtained by group
inversion ρ = ρ−1, and the reconstruction equations (4.18) are equivalent to

dρ = dρ−1 = −ρ · (dρ · ρ−1) = −ρµ, (5.27)

where µ is the moving frame pulled-back Lie algebra valued right-invariant Maurer–
Cartan form of G (restricted to a solution of the resolving system). Examples of in-
tegrating ordinary differential equations using this point of view can be found in [28,
Chapter 6].

6 Normal sub-pseudo-groups

For pseudo-groups admitting normal sub-pseudo-groups it is possible to split the recon-
struction procedure into a series of sub-reconstruction steps involving smaller pseudo-
groups. This is the moving frame version of Vessiot’s observation, [56], that the inte-
gration of an automorphic system can be replaced by the integration of a sequence of
differential equations automorphic with respect to primitive simple Lie pseudo-groups.

Definition 6.1. A sub-pseudo-group H ⊆ G is normal if for all h ∈ H and g ∈ G

g ◦h ◦g−1 ∈ H (6.1)

whenever the composition is defined.

Let h and g denote the Lie algebras of H and G respectively. Infinitesimally, if H is
a normal sub-pseudo-group of G then h is an ideal of g:

[h, g] ⊆ h.
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Example 6.2. To illustrate Definition 6.1 we introduce the Lie pseudo-groups

H : X = x, Y = y + g(x), U = u+ g′(x),

and

G : X = f(x), Y = f ′(x) y + g(x), U = u+
f ′′(x) y + g′(x)

f ′(x)
, (6.2)

where f(x) ∈ D(R) is a local diffeomorphism and g(x) is an arbitrary smooth function.
The pseudo-group H is a sub-pseudo-group of G obtained by setting f = 1 to be the
identity map in (6.2). To verify (6.1), let

g · (x, y, u) =

(
f(x), f ′(x) y + g(x), u+

f ′′(x) y + g′(x)

f ′(x)

)
∈ G

and

g−1 · (X,Y, U) =

(
F (X), F ′(X)Y +G(X), U +

F ′′(X)Y +G′(X)

F ′(X)

)
,

where F (X) = f−1(X) and G(X) = −g(F (X))/f ′(F (X)). If

h · (x, y, u) =
(
x, y + h(x), u+ h′(x)

)
∈ H,

a direct computation shows thats

g ◦h ◦g−1 · (X,Y, U) = (X,Y +H(X), U +H ′(X)) ∈ H,

with H(X) = f ′(F (X)) · h(F (X)). Infinitesimally, the Lie algebras of G and H are
spanned by

g = span

{
va = a(x)

∂

∂x
+ y a′(x)

∂

∂y
+ y a′′(x)

∂

∂u
, wb = b(x)

∂

∂y
+ b′(x)

∂

∂u

}
,

h = span

{
wb = b(x)

∂

∂y
+ b′(x)

∂

∂u

}
,

(6.3)

where a(x) and b(x) are arbitrary smooth functions. Computing the basic commutators

[va, vb] = va b′−b a′ , [wa, wb] = 0, [va, wb] = wa b′−b a′ ,

we see that h is an abelian ideal of g.

Given a normal Lie sub-pseudo-group H of G, the definition of the quotient Lie
pseudo-group of G by H is based on the notion of invariant admissible fibration in-
troduced by Rodrigues in [49]. We now recast the main definitions of [49] at the
pseudo-group level. Given a fibered manifold π : M → N and a Lie pseudo-group G
acting on M , a local diffeomorphism g ∈ G is said to be projectable by π if there exists
a local diffeomorphism ϕ ∈ D(N) such that π ◦ g = ϕ ◦ π. We denote by π̃(g) = ϕ
the map that sends the projectable diffeomorphism g to its projection ϕ. The fibration
π : M → N is said to be G-invariant if every pseudo-group transformation g ∈ G is
projectable.

Recall from Definition 2.1 that the map πn+k
n : G(n+k) → G(n) denotes the standard

pseudo-group jet projection.
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Definition 6.3. A G-invariant fibration π : M → N is called G-admissible if there
are integers n0 and k0 such that (ker π̃)(n) ∩ G(n) and πn+k

n ((ker π̃)(n+k) ∩ G(n+k)) are
sub-bundles of the pseudo-group jet bundle G(n) for n ≥ n0 and k ≥ k0.

Definition 6.4. Let G and H be two Lie pseudo-groups acting on M and N , respec-
tively. A homomorphism of G onto H is a fibration π : M → N which is G-admissible
and such that π̃(G) = H. If the kernel ker π̃ is trivial, then π̃ is said to be an isomor-
phism of G onto H.

Definition 6.5. Let H be a normal sub-Lie pseudo-group of G. A Lie pseudo-group Q
is a quotient of G by H if there exists Lie pseudo-groups G̃ and H̃ ⊂ G̃, an isomorphism
π̃ : G̃ → G such that π̃(H̃) = H and a homomorphism β̃ : G̃ → Q whose kernel is H̃.

Pictorially, we have

G̃ ⊃ H̃

G ⊃ H Q
∼π̃ β̃

The last three definitions naturally fit within the moving frame framework. Given a
Lie pseudo-group G acting on M and a normal Lie sub-pseudo-group H ⊂ G, consider
their isomorphic prolongations G(∞) and H(∞) obtained by considering their prolonged
action on the set of regular jets V∞ ⊂ J∞ of G(∞). Let KH be a cross-section to the
H(∞)-orbits and let %H be the corresponding right moving frame. Then, the projection
τττ ◦ %H : V∞ → KH onto the cross-section KH is a G(∞)-invariant admissible fibration of
V∞. The quotient of G by H can then be identified with the projected action of G(∞)

onto KH which we will write as G(∞)/H(∞):

G(∞) ⊃ H(∞)

G ⊃ H G(∞)/H(∞)

∼π̃∞0 τ̃ττ ◦ %H

Since KH can be identified with the space ofH-invariants, the quotient pseudo-group
G(∞)/H(∞) has a well-defined action on the space of H-invariants. Finally, we note that
the quotient pseudo-group G(∞)/H(∞) is isomorphic, [51], to the sub-pseudo-group of
transformations of G that keep the cross-section KH invariant:

G/H = {g ∈ G | g(∞) · KH ∈ KH} ⊂ G.

Example 6.6. Continuing Example 6.2, we now implement the moving frame method
for the normal sub-pseudo-group H. Up to order 2, the lifted invariants are

X = x, Y = y + g(x), U = u+ gx, UX = ux + gxx − gx uy, UY = uy,

UXX = uxx + gxxx − gxx uy − 2gx uxy + g2
x uyy, UXY = uxy − gx uyy, UY Y = uyy.
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Choosing the cross-section

K∞H = {y = uxk = 0, k ≥ 0} (6.4)

we find, up to order 3, the invariants

X = x, I01 = uy, I11 = uxy + uuyy, I02 = uyy, (6.5)

I21 = uxxy + (ux + uuy)uyy + 2uuxyy + u2uyyy, I12 = uxyy + uuyyy, I03 = uyyy.

We now introduce the quotient pseudo-group G(∞)/H(∞) acting on the H-invariants
(6.5):

X = f(x), J01 =
I01

fx
+
fxx
f2
x

, J11 =
I11

f2
x

+
fxxx − fxx I01

f3
x

− 2
f2
xx

f4
x

,

J02 =
I02

f2
x

, J12 =
fx I12 − 2fxx I02

f4
x

, J03 =
I03

f3
x

, . . . .

(6.6)

In the above action formulas, Ji,j denotes the image of the invariant Ii,j . This pseudo-
group is the prolongation to the H-invariants of the sub-pseudo-group

G/H : X = f(x), Y = f ′(x) y, U = u+
f ′′(x) y

f ′(x)
(6.7)

of G that fixes the cross-section (6.4). The pseudo-group (6.7) originally appeared in
[31], where Medolaghi systematically studies isomorphic representations of the diffeo-
morphism pseudo-group D(R). This pseudo-group was also used by Vessiot, [56], in his
work on automorphic systems.

Given a differential equation ∆ = 0 with symmetry pseudo-group G, if we assume
thatH ⊂ G is a normal sub-pseudo-group, then it is possible to apply the group foliation
procedure iteratively. First, we foliate the solution space of the differential equation
with respect to the normal sub-pseudo-group H and project solutions onto the cross-
section KH defining a moving frame for H. Let AHr and RHr be the corresponding
automorphic and resolving systems.

Proposition 6.7. The resolving system RHr is invariant under the quotient pseudo-
group1 G/H.

Proof. Since syzygies among differential invariants are invariant under the diffeormor-
phism pseudo-group D(M), it follows that RHr in invariant under the quotient pseudo-
group G/H as the differential equation ∆ = 0 is G-invariant.

The invariance of resolving system RHr under G/H permits us to foliate the solution
space of RHr with respect to the quotient pseudo-group G/H. The result is the same as
foliating the differential equation ∆ = 0 by the full symmetry pseudo-group G.

Assuming a solution to the resolving system RGr̃ is known, Figure 4 shows that
the reconstruction operation splits in two steps. First, we can solve the reconstruction
equations for the quotient pseudo-group G/H to obtain a solution to the resolving

1To be more accurate, we should write G(∞)/H(∞) instead of G/H, but since the two pseudo-groups are
isomorphic, we, from now on, use the latter to simplify the notation.
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ρG

{∆ = 0} ρH
//

$$

RHr ρG/H
// RGr̃

Figure 4: Iterative group foliation.

system RHr . Given a solution, solving the reconstruction equations for the normal
pseudo-group H yields a solution to the original differential equation. At the level
of moving frames, this reflects the fact that the left G-equivariant moving frame is
equivalent to the composition

ρG = ρH · ρG/H.
In general, the reconstruction procedure can split in many steps. Given a Lie pseudo-

group G, let G1 ( G be a proper maximal normal sub-Lie pseudo-group of G. Similarly,
let G2 ( G1 be a proper maximal normal sub-Lie pseudo-group of G1. Repeating the
procedure, assume it is possible to obtain a finite a chain of sub-Lie pseudo-groups

{1} = G`+1 ( G` ( G`−1 ( · · · ( G1 ( G0 = G,

such that for each k = 0, . . . , `, the quotient Gk = Gk/Gk+1 is a simple pseudo-group.
Then, the group foliation method reduces to solving the resolving system RGr followed
by a series of reconstruction steps for the simple sub-Lie pseudo-groups G`, . . ., G0.
According to Cartan, [6], each sub-reconstruction step will only require the integration
of either ordinary differential equations or linear partial differential equations involving
no more than one arbitrary function.

Example 6.8. To illustrate the iterative reconstruction procedure, we foliate the dif-
ferential equation

uxyy + uuyyy + 2uy uyy = 0 (6.8)

with respect to the symmetry pseudo-group (6.2). The moving frame construction for
this Lie pseudo-group can be found in [42, 43]. Choosing the cross-section

K∞G = {x = y = uxk = uyxk = 0, uyy = 1 : k ≥ 0}, (6.9)

and letting Iij = ι(uxiyj ) and µk = ι(ak), νk = ι(bk), where a(x), b(x) are the arbitrary
functions occurring in the infinitesimal generators (6.3), the normalized Maurer–Cartan
forms of order ≤ 2 are

µ ≡ −$x, µX ≡
1

2
(I12$

x + I03$
y), µXX ≡ ν ≡ −$y, νX ≡ νXX ≡ 0.

(6.10)
The recurrence relations for the third order normalized invariants are

DxI12 = I22 −
3

2
I2

12, DyI12 = I13 −
3

2
I12I03 + 2,

DxI03 = I13 −
3

2
I12I03, DyI03 = I04 −

3

2
I2

03,

(6.11)

while the fundamental syzygy, modulo the commutator relation

[Dx,Dy] =
I03

2
Dx −

I12

2
Dy, (6.12)
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is given by
DxI03 −DyI12 = −2. (6.13)

Implementing the group foliation algorithm, we let the third order normalized invariants

s = ι(uxyy), t = ι(uyyy),

play the role of the independent invariants, and let the fourth order normalized invari-
ants

I22(s, t) = ι(ux2y2), I13(s, t) = ι(uxy3), I04(s, t) = ι(uy4) (6.14)

be the dependent invariants so that (6.14) forms the automorphic system. Then, the
invariantization of (6.8) yields

s = 0. (6.15)

Hence, the automorphic system (6.14) will produce invariant rank 1 solutions. Taking
into account (6.15) the fundamental syzygy (6.13) yields

Dxt = −2. (6.16)

By the chain rule

Dx = (Dxs)Ds + (Dxt)Dt = −2Dt, Dy = (Dys)Ds + (Dyt)Dt = I Dt,

where I(t) = Dyt = I04 − 3t2/2 by the recurrence relations (6.11). Differentiating
the fundamental syzygy (6.16) with respect to Dy and using the commutation relation
(6.12) we deduce the differential equation

2DtI = t or DtI04 =
7

2
t. (6.17)

On the other hand, the recurrence relations (6.11) imply that

I22 = 0 and I13 = −2. (6.18)

In summary, the equations (6.15), (6.17), and (6.18) form the resolving system. Inte-
grating (6.17) we obtain

I(t) =
a2 + t2

4
or I04(t) =

a2 + 7t2

4
,

where a is a constant of integration.
We are now ready to implement the reconstruction procedure. Based on Examples

6.2 and 6.6, we first implement the reconstruction procedure for the quotient pseudo-
group (6.6). Using the Maurer–Cartan normalizations (6.10), the reconstruction equa-
tions (4.18) for the quotient action are, up to order 2,

df̄ = f̄X $
x, df̄X = f̄XX $

x − t

2
f̄X $

y, df̄XX = f̄XXX $
x + (f̄X − t f̄XX)$y.

(6.19)
From the first equation, we have that

$x = df̄/f̄X . (6.20)

38



On the other hand, from the equality

dt = (Dxt)$x + (Dyt)$y = −2$x + I $y,

we have that

$y =
1

I

(
dt+ 2

df̄

f̄X

)
. (6.21)

The second and third equations of (6.19) then reduce to

Dtf̄X = − t f̄X
2I

, Df̄ f̄X =
f̄XX
f̄X
− t

I
, (6.22a)

Dtf̄XX =
f̄X − t f̄XX

I
, Df̄ f̄XX =

f̄XXX
f̄X

+
2(f̄X − tf̄XX)

If̄X
. (6.22b)

From (6.22a) we deduce that

f̄X(t, f̄) =
F (f̄)

a2 + t2
, f̄XX(t, f̄) =

F (f̄)(F ′(f̄)− 4t)

(a2 + t2)2
, (6.23)

where F (f̄) 6= 0 is an arbitrary nonzero smooth function. At the next order, substituting
(6.23) into the first equation of (6.22b) we see that the equation is identically satisfied
while the second equation of (6.22b) defines f̄XXX . Continuing the computation at
higher order we obtain the expressions for f̄Xk , k ≥ 4, giving the left moving frame
ρG/H.

The next step in the iterative reconstruction procedure is to construct the left mov-
ing frame ρH. To obtain the reconstruction equations for the pseudo-group jets ḡ, ḡX ,
. . ., we first compute (4.16) for the full symmetry pseudo-group (6.2) and then restrict
the equations to the cross-section (6.4). This yields

dḡ = ḡX $
x + f̄X $

y, dḡX = ḡXX$
x +

(
f̄XX −

t ḡX
2

)
$y, . . . .

Using (6.20), (6.21), and (6.23), we obtain

Dtḡ =
4F (f̄)

(t2 + a2)2
,

ḡX
f̄X

= Df̄ ḡ −
2

I
.

Integrating the first equation, we find that

ḡ = 4F (f̄)

(
t

2a2(t2 + a2)
+

1

2a3
arctan

t

a

)
+G(f̄),

ḡX
f̄X

= 4F ′(f̄)

(
t

2a2(t2 + a2)
+

1

2a3
arctan

t

a

)
+G′(f̄)− 8

t2 + a2
,

where G(f̄) is an arbitrary smooth function. Thus, a parametrized solution to the
partial differential equation (6.8) is given by

(x, y, u) = ρG = ρH · ρG/H · (0, 0, 0) =

(
f̄ , ḡ,

ḡX
f̄X

)
.
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Conclusion

Using the machinery of equivariant moving frames, we have attempted to provide a
unified and computationally clear approach to group foliation. The newness and broad
applicability of moving frame theory brings fresh insight to old algorithms and as such,
many unexplored directions present themselves. We list here several possibilities for
further research.

(a) One of the most obvious applications of group foliation is to the solution of dif-
ferential equations. There are many physically interesting equations that may be
particularly amenable to our version of group foliation because of the complex-
ity of their symmetry pseudo-groups. Four particularly interesting examples are:
the Davey–Stewartson equations, [7], the Infeld–Rowlands equation, [12], the po-
tential Kadomstev–Petviashvili equation, [11], and the Calabi–Yau equation for
Kähler–Einstein metrics, [57].

(b) The results and algorithms presented in the present paper relied on the construc-
tion of a moving frame. By appropriately adapting the exposition, it is possible
to encompass the situation where only a partial moving frame, [46, 55], exists on
the solution space of a differential equation. For example, when foliating (4.8)
with respect to its full symmetry group

X = f(x), Y = g(y), U =
u

f ′(x) g′(y)
, (6.24)

no differential invariants exist on the solution space of the differential equation and
only a partial moving frame can be constructed. In this case, this is a reflection
of the automorphic property of (4.8) with respect to the pseudo-group action
(6.24). A more detailed investigation of the group foliation method in the context
of partial moving frames could be of interest.

(c) The systematic construction of Bäcklund transformations using symmetry reduc-
tion of exterior differential systems introduced by Anderson and Fels applies only
to Lie groups. The group foliation/inductive moving frames approach outlined
in Section 6 does not have this limitation. It would be worthwhile to pursue
the possibility of constructing new Bäcklund transformations by realizing systems
of interest as resolving systems for infinite-dimensional Lie pseudo-groups; these
ideas are also most likely closely related to the reduction methods for infinite di-
mensional Lie pseudo-groups introduced by Pohjanpelto, [48]. The investigation
of non-maximal rank resolving systems could also produce interesting examples.
Finally, the group foliation algorithm in conjunction with inductive moving frames
may provide a means for constructing coverings of differential equations, [16, 20].

(d) Through the use of joint moving frames and joint invariants, [37, 38], the moving
frames approach to group foliation may be adapted to finite difference equations.
This adaptation is the subject of a work in progress, [53]. Investigating the pos-
sibility of discrete group foliation as a numerical method for solving differential
equations could be fruitful.

It may also be worthwhile to pursue the construction of Bäcklund transformations
for finite difference or differential-difference equations and compare these results
with similar notions from discrete differential geometry and integrable systems,
[4, 10].
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(e) In the case of group foliation by finite-dimensional Lie group actions, non-maximal
rank resolving systems correspond to what are called partially invariant solutions,
[47]. The question of when a partially invariant solution is irreducible, i.e. not
obtainable as an invariant or partially invariant solution for a subgroup, has been
studied by Ondich, [45]. This allows for an extension of the classification of group
invariant solutions, [35], to partially invariant solutions. It may be interesting to
investigate the extension of such a classification and the notion of irreducibility
in the context of group foliation.

(f) Invariant submanifold flows find applications in a diversity of fields such as control
theory, [33], elasticity theory, [24], and computer vision, [8, 50], and it is possible
that the idea of invariant flow reconstruction presented in [52] may provide insight
in some of these areas. Theoretical application of invariant flow reconstruction
is also worth exploring. For example, Mansfield and van der Kamp, [29], have
studied the question of when the integrability (in the sense of possessing infinitely
many symmetries) of a differential invariant signature flow “lifts” to integrability
of the flow itself. We suspect that their results could be reinterpreted within our
framework.
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