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Abstract

Using the theory of equivariant moving frames, a group foliation method for invari-
ant finite difference equations is developed. This method is analogous to the group
foliation of differential equations and uses the symmetry group of the equation to de-
compose the solution process into two steps, called resolving and reconstruction. Our
constructions are performed algorithmically and symbolically by making use of discrete
recurrence relations among joint invariants. Applications to invariant finite difference
equations that approximate differential equations are given.

1 Introduction

First introduced by Sophus Lie, [21], and further developed by Ernest Vessiot, [40], the
method of group foliation, also called group splitting, or group stratification, is a general
procedure for obtaining solutions of differential equations admitting a symmetry group.
Modern treatments of this method appear in the book of Ovsiannikov, [33], and the work
of Martina, Nutku, Sheftel and Winternitz, [25, 27]. Recently, a formulation based on
exterior differential systems was developed by Anderson, Fels and Pohjanpelto, [1,9,34].
Another formulation based on the theory of equivariant moving frames was proposed
in [23] for finite-dimensional symmetry groups and extended to infinite-dimensional
symmetry groups in [38]. In the present work, we adapt the constructions introduced
in [23,38] to finite difference equations.

Given a strongly G-invariant finite difference equation (see Definition 2.5), the group
foliation method uses the foliation of the solution space of the equation by its symmetry
group to split the search for solutions into two steps: a resolving step and a reconstruc-
tion step. In the resolving step, the solution space of the equation is projected onto the
leaves of the foliation, where, under typical regularity assumptions, the leaves of the
foliation are parameterized by joint invariants (also called finite difference invariants).
In applications, the projection is obtained by solving a system of equations consisting of
the original equation written in terms of joint invariants together with the integrability
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conditions originating from the syzygies among the invariants. In Vessiot’s terminology,
these equations form the resolving system. As Ovsiannikov observed in [33], the resolv-
ing system may be easier to solve than the original equation since the symmetry group
has reduced the size of the solution space. Given a solution to the resolving system,
the reconstruction step then consists of solving a system of first order finite difference
equations for the left moving frame of G, called the reconstruction equations. Solutions
to the original finite difference equation are then obtained by acting on the solution of
the resolving system by solutions of the reconstruction equations.

Using the theory of discrete equivariant moving frames, the resolving and recon-
struction steps described above can be performed algorithmically and symbolically.
After reviewing the concepts of finite difference equations and symmetry in Section 2,
the basic moving frame constructions are introduced in Section 3. Since our emphasis
is geared towards developing the group foliation method, we refer to [24] for some of
the more subtle theoretical justifications of the discrete moving frame method. We note
that our notation and terminology differs slightly from that used in [24].

In the differential setting, one of the fundamental results of the equivariant moving
frame method is the derivation of recurrence relations relating the normalized differ-
ential invariants and their exterior derivatives. In Section 4, a discrete version of the
recurrence relations is introduced, relating normalized joint invariants and their shifts.
In analogy with the continuous theory, the discrete recurrence relations reveal the struc-
ture of the algebra of joint invariants, and these recurrence relations can be computed
symbolically without knowing the expressions for the joint invariants, requiring only
the expressions for the group action and the choice of a cross-section defining a moving
frame. As a result, the group foliation algorithm introduced in Section 6 is completely
symbolic in the sense that it does not require coordinate expressions for the moving
frame or the joint invariants.

For invariant finite difference equations that approximate differential equations, the
implementation of the group foliation method provides a new type of invariant numerical
scheme. This naturally leads to new questions concerning the accuracy and stability
of such schemes. As a preliminary investigation, we first consider in Section 7 the
Schwarzian differential equation
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= F (x),

which is invariant under the group of special linear fractional transformations

X = x, Y =
ay + b

cy + d
, ad− bc = 1,

and prove a discrete analogue of the Schwarz Theorem for an invariant discretiza-
tion of this equation. Continuing this example, we perform in Section 8 a numerical
simulation based on an exact solution of the Schwarz equation that admits vertical
asymptotes. In accordance with other numerical simulations using symmetry-preserving
schemes, [2,3,7], the group foliation scheme has no difficulty integrating beyond the ver-
tical asymptotes. However, via the group foliation scheme, this unexpected behavior
can be clearly explained, at least for the problem at hand. In light of our numeri-
cal simulation, we expect that further applications of the group foliation method to
symmetry-preserving schemes might shed some light on the numerical properties of
those schemes.
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2 Preliminaries

Let M be an m-dimensional manifold with local coordinates z = (z1, . . . , zm). Given a
p-dimensional submanifold S ⊂M with 1 ≤ p < m, let z = z(s) be a local parametriza-
tion of S with independent variable s = (s1, . . . , sp). For each integer 0 ≤ n ≤ ∞, let
J(n) = J(n)(M,p) denote the nth order submanifold jet bundle defined as the set of
equivalence classes under the equivalence relation of nth order contact, [28]. Local
coordinates on J(n) are given by

(s, z(n)) = (s, . . . zasB . . . ) a = 1, . . . ,m, 0 ≤ #B ≤ n,

where z(n) indicates the collection of submanifold jet coordinates za
sB

representing the

derivatives ∂kza/(∂z1)b
1 · · · (∂zp)bp , where B = (b1, . . . , bp) is an ordered multi-index of

order #B = k with nonnegative components bν ≥ 0.
In the discrete setting, the continuous variable s = (s1, . . . , sp) ∈ Rp is replaced by

an integer multi-index
N = (n1, . . . , np) ∈ Zp ⊂ Rp.

For each N ∈ Zp, let
zN = z(N)

denote a point on the submanifold S ⊂M . A discrete counterpart to the submanifold
jet space J(n) is given by the nth order forward discrete jet space J[n] with coordinates

(N, z
[n]
N ) = (N, . . . zN+K . . . ) N ∈ Zp, 0 ≤ #K ≤ n, (2.1)

where z
[n]
N indicates the collection of points zN+K with K ∈ Zp≥0 a nonnegative integer

multi-index of order at most n.

Remark 2.1. There are a multitude of ways to approximate the nth order submanifold
jet space J(n). One can use forward, backward, or centered difference approximations,
and in numerical applications one might consider more points for greater accuracy. To
simplify the theoretical exposition, we will restrict our attention to forward discrete
jets. Adapting the discussion to backward discrete jets or to a mix of forward and
backward jets is accomplished by allowing the multi-index K ∈ Zp to contain integer

values and by considering discrete jets (N, z
[n]
N ) = (N, . . . zN+K . . . ) with at least dn

points zN+K ∈M appropriately1 chosen, where

dn =

(
p+ n

n

)
is the number of points zN+K in the discrete jet (2.1). Finally, we note that in numerical

analysis the collection of points z
[n]
N is also called a lattice.

Let πn : J[n] → Zp be the projection map onto the discrete index

πn(N, z
[n]
N ) = N.

We introduce the notation
J[n]|N = π−1n (N)

to denote the fiber over the point N ∈ Zp. Note that J[n]|N is locally isomorphic to an
open subset of Rm·dn , where m = dimM .

1In the terminology of [24], the points z
[n]
N need to form an n-corner lattice.
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Definition 2.2. A finite difference equation of order n is an equation of the form

E(N, z
[n]
N ) = E(N, . . . zN+K . . . ) = 0, (2.2)

which depends explicitly on zN and at least one point zN+K with #K = n.

Given a Lie group G acting smoothly on M , the induced action of g ∈ G on the

discrete jet z
[n]
N is given by the product action

Z
[n]
N = g · z[n]N = (. . . g · zN+K . . .),

wherever the action is defined. The induced action on the multi-index N is taken to be
trivial:

g ·N = N.

The induced action of the Lie group G on a discrete functions F : J[n] → R is given by

g · F (N, z
[n]
N ) = F (N, g · z[n]N ).

Definition 2.3. A function I : J[n] → R is said to be an nth order joint invariant of
the group G if

g · I(N, z
[n]
N ) = I(N, g · z[n]N ) = I(N, z

[n]
N )

for all g ∈ G where the product action is defined.

Definition 2.4. A Lie group G is a symmetry group of the finite difference equation

E(N, z
(n)
N ) = 0 if, wherever the product action is defined,

E(N, g · z[n]N ) = 0 whenever E(N, z
[n]
N ) = 0.

We then say that the equation E(N, z
[n]
N ) = 0 is G-invariant.

Symmetry groups of finite difference equations are found by computing the (in-
finitesimal) determining equations of the symmetry Lie algebra in a fashion similar to
the continuous case. We refer to [14,18,19] for more details and examples.

Definition 2.5. A finite difference equation E(N, z
(n)
N ) = 0 is said to be strongly G-

invariant if E(N, z
[n]
N ) is a joint invariant.

Remark 2.6. The condition of being a strongly invariant equation is more restrictive
than being an invariant equation. Invariance need only hold on the solution space of

the equation, while strong invariance requires invariance on every locus of E(N, z
[n]
N ).

Equations that are invariant but not strongly invariant can sometimes be made strongly

invariant. If E(N, z
[n]
N ) = 0 is invariant but not strongly invariant, then it must satisfy

the equality E(N, g·z[n]N ) = µ(g,N, z
[n]
N )E(N, g·z[n]N ) with µ 6= 0. The function E(N, z

[n]
N )

is called a relative invariant of weight µ, [29]. If there exists in turn a relative invariant

R(N, z
[n]
N ) 6= 0 of weight 1/µ, then R(N, z

[n]
N )E(N, z

[n]
N ) = 0 is a strongly invariant

equation with the same solution space as the original equation.

Finite difference equations frequently occur as approximations of differential equa-
tions. As the next example shows, when a differential equation admits a symmetry
group it is possible construct approximations that preserve these symmetries.
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Example 2.7. Let k, a 6= −1, and b 6= 1 be three constants, and consider the ordinary
differential equation

y′ = (k + xa)yb. (2.3)

This equation admits a 1-dimensional symmetry group whose action on (x, y) is given
by

X = x+ ε,
Y 1−b

b− 1
=
y1−b

b− 1
+
xa+1

a+ 1
− (x+ ε)a+1

a+ 1
, ε ∈ R.

Following standard algorithms presented in [2, 8, 15, 20, 30, 35–37], an invariant dis-
cretization of (2.3) is given by(

xa+1
n+1

a+ 1
+
y1−bn+1

b− 1

)
−
(
xa+1
n

a+ 1
+
y1−bn

b− 1

)
+ k(xn+1 − xn) = 0, xn+1 − xn = h, (2.4)

where n ∈ Z is a one-dimensional subscript and h > 0 is a positive constant. The first
equation in (2.4) provides an approximation of the differential equation (2.3) while the
second equation specifies the mesh. The numerical scheme (2.4) is invariant under the
product action

Xn = xn + ε,
Y 1−b
n

b− 1
=
y1−bn

b− 1
+
xa+1
n

a+ 1
− (xn + ε)a+1

a+ 1
, ε ∈ R, (2.5)

where n ∈ Z.

3 Moving frames

Given an r-dimensional Lie group G acting on M , we consider its product action on the
discrete jet space J[n] and use the method of equivariant moving frames to construct
joint invariants.

Definition 3.1. An nth order right joint moving frame is aG-equivariant map2 ρ : J[n] →
G such that for g ∈ G

ρ(N, g · z[n]N ) = ρ(N, z
[n]
N ) g−1 (3.1)

whenever the product action is defined.

Given a right moving frame ρ : J[n] → G, a corresponding left moving frame ρ : J[n] →
G is obtained by group inversion

ρ(N, z
[n]
N ) = ρ(N, z

[n]
N )−1.

To guarantee the existence of a moving frame, mild assumptions on the product
group action are imposed.

Definition 3.2. A Lie group G is said to act freely at a point z
[n]
N if the isotropy

subgroup

G
z
[n]
N

= {g ∈ G | g · z[n]N = z
[n]
N }

consists only of the identity element. The product action is locally free at z
[n]
N if the

isotropy subgroup is discrete. The Lie group G is said to act (locally) freely on J[n] if

for all N ∈ Zp and any point z
[n]
N ∈ J[n]|N , G acts (locally) freely at z

[n]
N .

2It would be customary to use the notation ρ[n] to denote the nth order right joint moving frame. To
simplify the notation we omit the superscript and let ρ = ρ[n].

5



Definition 3.3. The product action is said to be regular at N ∈ Zp if the group orbits
in the fiber J[n]|N form a regular foliation.

Theorem 3.4. A moving frame exists in a neighborhood V [n]|N ⊂ J[n]|N of a discrete

jet z
[n]
N ∈ J[n]|N if and only if G acts locally freely and regularly on V [n]|N .

If the product action is not free on J[n], then one should increase the order of the
discrete jet space. Under a mild condition on the group action, it was shown in [5] that
the product action will eventually become (locally) free on a sufficiently high order
discrete jet space.

Definition 3.5. A Lie group G acting on M is said to act effectively on subsets if, for
any open subset U ⊂M , the global isotropy subgroup of U

G?U = {g ∈ G | g · z = z for all z ∈ U}

consists only of the identity element. The Lie group G is said to act locally effectively
on subsets if, for any open subset U ⊂M , G?U is a discrete subgroup of G.

Theorem 3.6. If G acts (locally) effectively on subsets of M , then for a fixed multi-
index N ∈ Zp, there exists k ≥ 0 such that for all n ≥ k, the product action of G is
locally free on an open dense subset V [n]|N ⊂ J[n]|N .

In the following we assume that the order k in Theorem 3.6 is the same for all
N ∈ Zp. Then, the product action is locally free on the discrete jet space J[n] provided
n ≥ k.

In the discrete setting, a subset K ⊂ J[n] is called a cross-section to the group
orbits, if for each N ∈ Zp, the restriction K|N ⊂ J[n]|N is a cross-section in the usual
sense. That is, K|N is a submanifold of complementary dimension to the group orbits,
intersecting the orbits transversally, [10]. In applications, a right moving frame is
constructed using the following theorem.

Theorem 3.7. If G acts freely and regularly on J[n] and K ⊂ J[n] is a cross-section to

the group orbits, then the map ρ : J[n] → G whose value at (N, z
[n]
N ) ∈ J[n] is the unique

group element g = ρ(N, z
[n]
N ) sending z

[n]
N onto the cross-section, i.e. ρ(N, z

[n]
N ) · z[n]N ∈

K|N , is a right moving frame.

It is convenient, but not necessary, to assume that

K = {za1N1
= c1, . . . , zarNr

= cr}

is a coordinate cross-section obtained by setting r = dim G coordinates of the discrete

jet z
[n]
N equal to suitable constants. The right moving frame ρ(N, z

[n]
N ) is then obtained

by solving the normalization equations

Za1N1
= g · za1N1

= c1, . . . ZarNr
= g · zarNr

= cr, (3.2)

for the group parameters g = (g1, . . . , gr) in terms of (N, z
[n]
N ). Note that the moving

frame may depend explicitly on the multi-index N if the normalization equations (3.2)
involve the multi-index N , which may happen if the group action depends on N . To
simplify the notation, we write

ρN = ρ(N, z
[n]
N )

to denote the value of the moving frame ρ : J[n] → G at (N, z
[n]
N ).
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Definition 3.8. Let ρ : J[n] → G be a right moving frame. The invariantization of a
discrete function F : J[n] → R is the joint invariant

ιN (F )(N, z
[n]
N ) = F (N, ρN · z[n]N ). (3.3)

The proof that (3.3) is a joint invariant follows from the G-equivariance property
(3.1) of the right moving frame:

g · ιN (F )(N, z
[n]
N ) = F (N, ρ(N, g · z[n]N ) · g · z[n]N )

= F (N, ρ(N, z
[n]
N ) · g−1 · g · z[n]N )

= ιN (F )(N, z
[n]
N ).

Of particular interest to us will be the invariantization of the coordinate function of a
point. The invariantization of the coordinates of zL with respect to the moving frame
ρN ,

ιN (zL) = ρN · zL,

are called normalized joint invariants. By construction, the invariantization with re-
spect to ρN of the coordinates defining the normalization equations (3.2) yields constant
invariants:

ιN (za1N1
) = c1 . . . ιN (zarNr

) = cr. (3.4)

These constant invariants are called phantom invariants.
An important fact that will be useful in the group foliation method is that the

invariantization of a joint invariant I(N, z
[n]
N ) equals the invariant itself:

ιN (I) = I. (3.5)

This is known as the replacement principle, [23], since in (3.5) the discrete jet z
[n]
N is

replaced by the normalized invariants ιN (z
[n]
N ) producing the equality

I(N, z
[n]
N ) = I(N, ιN (z

[n]
N )).

Example 3.9. As a simple illustration of the moving frame construction, we consider
the product action (2.5). Since the action is free and regular on J[0] = {(n, xn, yn)},
a joint moving frame can be constructed by choosing the cross-section K = {xn = 0}.
Solving the normalization equation 0 = Xn = xn + ε for the group parameter ε we
obtain the right moving frame

ρn : εn = −xn. (3.6)

We add the subscript n to the group parameter to emphasize its dependence on the
discrete index. With a moving frame in hand, we can invariantize the coordinate
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functions (xk, yk), k ∈ Z. For example,

0 = ιn(xn) = Xn

∣∣∣∣
εn=−xn

= xn − xn,

Hn = ιn(xn+1) = Xn+1

∣∣∣∣
εn=−xn

= xn+1 − xn,

In = ιn(xn+2) = Xn+2

∣∣∣∣
εn=−xn

= xn+2 − xn,

Jn = ιn

(
y1−bn

b− 1

)
=
Y 1−b
n

b− 1

∣∣∣∣
εn=−xn

=
y1−bn

b− 1
+
xa+1
n

a+ 1
,

Kn = ιn

(
y1−bn+1

b− 1

)
=
Y 1−b
n+1

b− 1

∣∣∣∣
εn=−xn

=
y1−bn+1

b− 1
+
xa+1
n+1

a+ 1
− (xn+1 − xn)a+1

a+ 1
,

Ln = ιn

(
y1−bn+2

b− 1

)
=
Y 1−b
n+2

b− 1

∣∣∣∣
εn=−xn

=
y1−bn+2

b− 1
+
xa+1
n+2

a+ 1
− (xn+2 − xn)a+1

a+ 1
.

(3.7)

When m 6= n, note that the invariantizations of the coordinate functions with
respect to moving frames ρm and ρn will differ. For example, ιn(xn) = 0, but ιm(xn) =
xn − xm 6= 0. Similarly,

ιm

(
y1−bn

b− 1

)
− ιn

(
y1−bn

b− 1

)
= −(xn − xm)a+1

a+ 1
6= 0.

Providing a relationship between these different invariantizations is the purpose of the
discrete recurrence relations introduced in the next section.

4 Recurrence relations

In the discrete setting, the natural operators on discrete functions are provided by the
forward and backward shift operators. Introducing the notation

1i = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rp

for the ith standard basis element with a 1 in the ith component and 0 elsewhere, the
forward and backward shift operators S±i : Zp → Zp on the multi-index N = (n1, . . . , np)
are given by setting

S±i (N) = N ± 1i = (n1, . . . , ni ± 1, . . . , np), i = 1, . . . , p.

The action of the shift operators S±i extends to discrete functions by letting

S±i [F (N, z
[n]
N )] = F (N ± 1i, z

[n]
N+1i

).

Given a multi-index K = (k1, . . . , kp) ∈ Zp, we introduce the notation

SK = Sk
1

1 ◦ · · · ◦ Sk
p

p

for the composition of shift operators, with the convention that S0
i = 1 is the identity

map and

Sk
i

i = S+
i ◦ · · · ◦ S+

i︸ ︷︷ ︸
|ki| times

if ki > 0 and Sk
i

i = S−i ◦ · · · ◦ S−i︸ ︷︷ ︸
|ki| times

if ki < 0.
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The invariantization of a discrete function F : J[n] → R with respect to the moving
frame ρN or its shift SK(ρN ) = ρN+K will, in general, produce different joint invariants:

ιN (F ) 6= ιN+K(F ).

The purpose of the recurrence relations is to provide the relationship between these
normalized invariants. This relationship is analogous to that of the normalized differ-
ential invariants and their invariant derivatives provided by the recurrence relations in
the continuous theory, [10].

Definition 4.1. Let ρ : J[n] → G be a right moving frame. The ith Maurer–Cartan
invariant is the group element

mi
N = ρN ρ

−1
N+1i

∈ G, i = 1, . . . , p. (4.1)

The invariance of mi
N follows from the right-equivariance of ρN and ρN+1i :

mi
N (N, g · z[n+1]

N ) = ρ(N, g · z[n]N ) ρ−1(N + 1i, g · z[n]N+1i
)

= ρ(N, z
[n]
N ) g−1 g ρ−1(N + 1i, z

[n]
N+1i

)

= mi
N (N, z

[n+1]
N ).

Proposition 4.2. Let F : J[n] → R be a discrete function. The joint invariants ιN (F )
and ιN+1i(F ) satisfy the relation

ιN (F ) = mi
N · ιN+1i(F ), i = 1, . . . , p, (4.2a)

known as the recurrence relation between these normalized invariants. Similarly, the
recurrence relation for the joint invariants ιN (F ) and ιN−1i(F ) is

ιN (F ) = (mi
N−1i)

−1 · ιN−1i(F ), i = 1, . . . , p. (4.2b)

Remark 4.3. To compute the right-hand side of (4.2a), which is given by

mi
N · ιN+1i(F ) = F (N,mi

N · ιN+1i(z
[n]
N )),

the invariant ιN+1i(z
[n]
N ) should be identified with its corresponding point on the cross-

section K. After this identification, we let the group element mi
N act on the point

ιN+1i(z
[n]
N ). The computation of (4.2b) is performed in a similar fashion.

Proof. Equation (4.2a) follows from a direct computation:

ιN (F ) = F (N, ρN · z[n]N )

= F (N, (ρN ρ
−1
N+1i

) · ρN+1i · z
[n]
N )

= mi
N · ιN+1i(F ).

Equation (4.2b) follows from a similar computation. Alternatively, from (4.2a), with
the function F replaced by its shift S+

i (F ), one has

ιN+1i(S
+
i (F )) = (mi

N )−1 · ιN (S+
i (F )).

Applying the negative shift operator S−i to the formula yields (4.2b).
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In the following we will be primarily interested in the case when the discrete function
is the coordinate function of a point. Substituting F = zL+1i into the recurrence relation
(4.2a) we obtain

ιN (zL+1i) = mi
N · ιN+1i(zL+1i) = mi

N · S+
i [ιN (zL)], i = 1, . . . , p. (4.3a)

The latter provides an expression for the invariantization of the ith forward shift of zL
in terms of the ith Maurer–Cartan invariant and the ith forward shift of the normalized
invariant ιN (zL). Similarly, substituting F = zL−1i in (4.2b) yields

ιN (zL−1i) = mi
N−1i · ιN−1i(zL−1i) = mi

N−1i · S
−
i [ιN (zL)], i = 1, . . . , p. (4.3b)

Example 4.4. We now compute the recurrence relations (4.3) for the product action
(2.5) of Example 2.7. Recall that the expressions for the moving frame and some of its
normalized joint invariants were obtained in Example 3.9.

From Definition 4.1 and the moving frame expression (3.6), the Maurer–Cartan
invariant is

mn = ρn ρ
−1
n+1 = εn − εn+1 = xn+1 − xn = ιn(xn+1) = Hn. (4.4)

Applying the recurrence relation (4.3a) to the normalized invariant In = ιn(xn+2)
computed in (3.7), we obtain

In = ιn(xn+2) = mn · ιn+1(xn+2) = mn ·Hn+1 = Hn ·Hn+1 = Hn +Hn+1, (4.5)

where
Hn+1 = ιn+1(xn+2) = xn+2 − xn+1 = S+(Hn)

is the joint invariant obtained by shifting Hn forward once. To compute the product
Hn ·Hn+1 in (4.5) we used the transformation rule for xn in (2.5) (replacing xn by Hn+1

and ε by Hn) since Hn+1 = ιn+1(xn+2) is obtained by invariantizing the independent
variable xn+2. Similarly,

Kn = ιn

(
y1−bn+1

b− 1

)
= mn · ιn+1

(
y1−bn+1

b− 1

)
= mn · Jn+1 = Hn · Jn+1 = Jn+1 −

Ha+1
n

a+ 1
,

Ln = ιn

(
y1−bn+2

b− 1

)
= mn+1 ·mn · ιn+2

(
y1−bn+2

b− 1

)
= (mn+1mn) · Jn+2 = (Hn+1 ·Hn) · Jn+2

= (Hn +Hn+1) · Jn+2 = Jn+2 −
(Hn +Hn+1)

a+1

a+ 1
.

In general, for k ≥ 1, we have

ιn(xn+k) =

k∑
`=1

Hn+`−1, ιn ·
(
y1−bn+k

b− 1

)
= Jn+k −

1

a+ 1

( k∑
`=1

Hn+`−1

)a+1

, (4.6a)

and for k ≤ −1

ιn(xn+k) = −
−k∑
`=1

Hn−`, ιn(yn+k) = Jn+k −
1

a+ 1

( −k∑
`=1

Hn−`

)a+1

. (4.6b)

From the recurrence relations (4.6), we observe that all the normalized joint invari-
ants ιn(xn+k), ιn(yn+k), k ∈ Z, can be expressed in terms of the invariants Hn, Jn,
and their shifts. As we explain in the next section, the invariants Hn, Jn are said to
generate the algebra of joint invariants.
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As in the continuous theory of equivariant moving frames, [10], the coordinate ex-
pressions for the moving frame ρN are not required to compute the Maurer–Cartan
invariants mi

N symbolically. The only data needed is the choice of a cross-section and
the expression for the group action. To obtain mi

N , shift the phantom invariants (3.4)
by S+

i to obtain

ρN+1i · z
a1
N1+1i

= c1, . . . ρN+1i · z
ar
Nr+1i

= cr.

Inserting the identity element ρ−1N ρN on the left-hand side of each equality yields

(mi
N )−1 · ιN (za1N1+1i

) = c1, . . . (mi
N )−1 · ιN (zarNr+1i

) = cr. (4.7)

By assumption, since the normalization equations (3.2) can be solved for the group
parameters to obtain the right moving frame ρN , the equations (4.7) can be solved for
(mi

N )−1. Inverting the group element we obtain symbolic expressions for mi
N in terms

of the normalized invariants ιN (za1N1+1i
), . . . , ιN (zarNr+1i

), and possibly N .

Example 4.5. Recalling Example 4.4, the Maurer–Cartan invariant (4.4) can be de-
duced symbolically as follows. Taking the forward shift of the phantom invariant
ρn · xn = 0, we have

0 = ρn+1 · xn+1 = (ρn+1 ρ
−1
n ) · ρn · xn+1 = m−1n ·Hn = Hn −mn.

Solving for the Maurer–Cartan invariant mn, we obtain

mn = Hn.

As it was done in Example 4.4, the recurrence relations (4.2) or (4.3) can be iterated.
For the ordered multi-index K = (k1, . . . , kp) ∈ Zp of order #K = n = |k1|+ · · ·+ |kp|,
consider an unordered (symmetric) multi-index

K̃ = (k̃1, . . . , k̃n) ∈ Zn with 1 ≤ |k̃`| ≤ p,
such that |k1| components are equal to sign(k1) · 1, |k2| components are equal to
sign(k2) · 2, . . ., and |kp| components are equal to sign(kp) · p. For example, given
the 2-dimensional multi-index K = (−2, 3), we can consider the unordered multi-index

K̃ = (−1, 2, 2, 2,−1).

Given a multi-index K and a chosen unordered multi-index K̃, the iteration of the re-
currence relations (4.3) according to the unordered multi-index K̃ yields the recurrence
formula

ιN (zN+K) = m̃k̃1

N m̃k̃2

N,k̃1
· · · m̃k̃n

N,k̃1,...,k̃n−1 · ιN+K(zN+K), (4.8)

where

m̃k̃`

N,k̃1,...,k̃`−1 =


mk̃`

N+
∑`−1

i=1 sign(k̃i)·1|k̃i|
if k̃` > 0,(

m
|k̃`|
N+(

∑`−1
i=1 sign(k̃i)·1|k̃i|)−1|k̃`|

)−1
if k̃` < 0.

Since group multiplication is not necessarily commutative, replacing the right-hand
side of (4.8) by a permutation σ(K̃) will, in general, produce a different expression.
But, since the left-hand side would the same in both cases, we obtain the equality

m̃k̃1

N m̃k̃2

N,k̃1
· · · m̃k̃n

N,k̃1,...,k̃n−1 · ιN+K(zN+K)

= m̃
σ(k̃1)
N m̃

σ(k̃2)

N,σ(k̃1)
· · · m̃σ(k̃n)

N,σ(k̃1),...,σ(k̃n−1)
· ιN+K(zN+K).

This last equation is called a syzygy (see Definition 5.8).
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5 Algebra of joint invariants

Essential to the implementation of the group foliation method is the existence of a set
of joint invariants that generates the algebra of invariants.

Definition 5.1. A set of joint invariants Igen = {N, . . . IiN . . .} is said to generate the
algebra of joint invariants if any joint invariant I can be expressed as a function of the
invariants in Igen and their shifts:

I = F (N, . . . IiN+K . . .).

In the differential setting, the Basis Theorem (also known as the Lie–Tresse Theo-
rem) guarantees the existence of a finite-dimensional generating set for the algebra of
differential invariants; any differential invariant can be expressed in terms of these gen-
erating invariants and their invariant derivatives. This theorem was originally proved
by Lie for finite-dimensional Lie group actions, [22, p. 760], and extended to infinite-
dimensional Lie pseudo-groups by Tresse, [39]. Modern proofs may be found in the
classical textbooks [29, 33]. Other proofs based on Spencer cohomology, [17], Weyl
algebras, [26], homological methods, [16] or moving frames, [12,32], also exist.

An analogous Basis Theorem holds for joint invariants, where the invariant deriva-
tive operators are replaced by the shift operators S±i .

Definition 5.2. A set of invariants I is said to be complete if any invariant function
can be expressed as a function of the invariants contained in I and their shifts.

Lemma 5.3. Let ρ : J[n] → G be a right moving frame. For any k ≥ 0, a complete set
of joint invariants of order ≤ n+k is given by the multi-index N and the normalized

invariants ιN (z
[n+k]
N ).

Proof. Any joint invariant I of order ≤ n+ k can be expressed in terms of (N, z
[n+k]
N ).

By the replacement principle,

I(N, z
[n+k]
N ) = I(N, ιN (z

[n+k]
N )).

Theorem 5.4. Suppose G acts freely and regularly on J[n]. Then there exists a
finite-dimensional set of invariants Igen = {N, I1N , . . . , IsN}, where I`N : J[n+1] → R,
` = 1, . . . , s, are joint invariants of order ≤ n+1, that generates the algebra of invari-
ants.

Proof. By assumption, a moving frame exists on J[n], and by Lemma 5.3 the invarianti-
zation of the order n+1 discrete jet

ιN (z
[n+1]
N ) = ρN (N, z

[n]
N ) · z[n+1]

N (5.1)

provides a complete set joint invariants of order ≤ n+1. Removing the phantom invari-
ants from (5.1), we show that the remaining normalized invariants Igen = {N, I1N , . . . , IsN}
provide a generating set for the algebra of joint invariants. Let

In+1
gen = {ιN (zN+K) |#K = n+ 1} ⊂ Igen

12



denote the subset of normalized invariants obtained by invariantizing the coordinate
functions parametrizing the fibers of the projection map πn+1

n : J[n+1] → J[n]. Since the
restriction of a moving frame ρ : J[n] → G to the cross-section K yields the identity
group element, for any invariant ιN (zN+K) ∈ In+1

gen we have that

S+
i [ιN (zN+K)]|K = [ρN+1i · zN+K+1i ]|K

= e · zN+K+1i |K
= zN+K+1i , i = 1, . . . , p.

These equalities imply that the set

p⋃
i=1

S+
i (In+1

gen )

contains m
(
p+n+1
n+2

)
functionally independent invariants, none of which are in Igen. As

a result, the sets

Igen

p⋃
i=1

S+
i (In+1

gen ) and {N, ιN (z
[n+2]
N )}

have the same number of functionally independent invariants. Since the second set
provides a complete set of joint invariants of order ≤ n+2, the first set also provides a
complete set of invariants of order ≤ n+2. Repeating the argument, the set

Igen
⋃̀

#K=1

SK(In+1
gen ) where K ∈ Zp+,

provides a complete set of joint invariants of order ≤ n+ `+ 1. We therefore conclude
that any joint invariant can be expressed in terms of Igen and its shifts.

Remark 5.5. In the proof of Theorem 5.4, the generating set Igen is not necessar-
ily minimal. It is possible that relations among the generating invariants and their
shifts exist, making some of the generating invariants superfluous. Unfortunately, as
in the differential setting, we do not have a general algorithm for extracting a minimal
generating set. In practice, a minimal generating set may be found by inspection.

Example 5.6. In Example 4.4 we found that the normalized joint invariants ιn(xn+k),
ιn(y1−bn+k/(b− 1)) could be expressed in terms of the invariants Hn, Jn, and their shifts.
Therefore, these two invariants, together with the discrete index n, form a generating
set for the algebra of joint invariants. This generating set is minimal.

In [11], it was shown that in the differential case the algebra of differential invariants
is generated by the Maurer–Cartan invariants and the order zero normalized invariants.
An analogous result holds for joint invariants, [24].

Theorem 5.7. Let ρN be a moving frame. The algebra of joint invariants is gener-
ated by the multi-index N , the Maurer–Cartan invariants m1

N , . . ., mp
N , and the joint

invariants ιN (zN ).
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Proof. The proof is a straightforward application of the recurrence relation (4.8). By the
replacement principle, [23], any joint invariant may be expressed in terms of the multi-
index N and the normalized invariants ιN (zN+K). By the recurrence formula (4.8), the
latter can be re-expressed in terms of the joint invariants ιN (zN ), the Maurer–Cartan
invariants m1

N , . . ., mp
N , and their shifts.

We end this section by introducing the notion of syzygy.

Definition 5.8. A syzygy among the generating invariants Igen = {N, I1N , . . . , IsN} is
an identity

S(N, I1N , . . . , I
s
N , . . . , I

1
N+K , . . . , I

s
N+K) ≡ 0

relating the invariants Igen and their shifts.

We note that shifting a syzygy S produces a new syzygy. This new syzygy can be
considered redundant since it is a direct consequence of S. This leads us to introduce
the notion of a generating set of syzygies.

Definition 5.9. A generating set of syzygies is a collection of syzygies from which
all other syzygies can be derived. That is, any syzygy is a function of the generating
syzygies and their shifts.

In the differential case, it was shown in [12, 32] that the set of generating syzygies
is finite-dimensional. To the best of our knowledge, a similar result in the discrete
setting has yet to be proven in full generality. From [24], we can deduce that when
the normalized invariants ιN (zN ) in Theorem 5.7 are constant and N ∈ Zp, then a
generating set of syzygies among the Maurer–Cartan invariants is provided by the
relations

mj
N mi

N+1j = mi
N mj

N+1i
, 1 ≤ i < j ≤ p.

Examples of syzygies will appear in Example 6.7.

6 Group foliation

We now have everything in place to describe the group foliation method for finite
difference equations using the method of moving frames. The algorithm and techniques
used are similar to the continuous theory developed in [23,38]. Our starting point is a
strongly G-invariant finite difference equation

E(N, z
[n]
N ) = 0. (6.1)

The method of group foliation uses the foliation of the solution space of (6.1) by the
orbits of the group action to decompose E = 0 into two alternative systems of finite
difference equations, called the resolving and reconstruction equations. Geometrically,
the resolving system is a collection of finite difference equations that the solutions to
E = 0 must satisfy when projected onto the space of joint invariants. Given a right
moving frame ρN , the resolving system in obtained by first invariantizing the equation
E = 0 and expressing the resulting equation in terms of a generating set of joint invari-
ants. The resolving system is then completed by appending a generating set of syzygies
among the generating invariants. The latter are essential as they provide integrability
conditions among the generating invariants. As Ovsiannikov writes in [33], since the
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resolving system removes the “excess” solutions arising from the symmetry group, the
latter should be easier to solve than the original equation (6.1). On the other hand, the
reconstruction equations are a collection of first order G-automorphic finite difference
equations describing the evolution of the left moving frame ρN along a solution of the
resolving system. Once these equations are solved, solutions to the original finite dif-
ference equation (6.1) are obtained by acting on solutions of the resolving system with
solutions of the reconstruction equations.

The group foliation method has a simple geometric interpretation, illustrated in
Figure 1. Intuitively, the invariantization of E = 0 (together with the integrability
conditions among the invariants) is equivalent to projecting its solutions onto solutions
of the resolving system via the action of the right moving frame ρN . Inversely, the
left moving frame ρN , which solves the reconstruction equations, maps solutions of the
resolving system back to solutions of E = 0.

�
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�
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�
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�
��

��
�
��

�
��

�
��
�

cross-section

t t t t t t t solution to E = 0

t t t t
t t t solution to resolving system

Y

ρN

jρN

Figure 1: The geometry of group foliation.

We now formally introduce the resolving and reconstruction equations. First, let ρN
be a right moving frame. Since the equation E(N, z

[n]
N ) = 0 is assumed to be strongly G-

invariant, the function E(N, z
[n]
N ) is a joint invariant that may be re-expressed in terms

of the normalized joint invariants (and the phantom invariants) using the replacement
principle, [23],

E(N, z
[n]
N ) = ιN [E(N, z

[n]
N )] = E(N, ιN (N, z

[n]
N )).

Let Igen = {N, I1N , . . . , IsN} be a finite generating set of the algebra of joint invariants,
ensured by the Basis Theorem 5.4 or Theorem 5.7. The equation E = 0 can then be
re-rewritten in terms of Igen and their shifts:

0 = E(N, z
[n]
N ) = E(N, ιN (z

[n]
N )) = Ẽ(N, . . . I1N+K , . . . , I

s
N+K . . .). (6.2a)

The finite difference equation (6.2a) is called the reduced or invariantized equation.
Next, we consider a generating set of syzygies among the generating invariants Igen:

S(N, . . . , I1N+K , . . . , I
s
N+K , . . .) = 0. (6.2b)

The equations (6.2b) are adjoined to (6.2a) as they provide integrability conditions
among the generating invariants. Following Vessiot’s terminology, the enlarged system
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of equations (6.2) is called the resolving system of E = 0 with respect to the symmetry
group G. Geometrically, solutions to the resolving system are projections onto the
space of joint invariants of solutions to the original finite difference equation. This may
also be referred to as the (invariant) signature of the solution, [6, 31].

Remark 6.1. The coordinate expressions for the moving frame and the generating
invariants Igen are not required to write down the resolving system (6.2). Once a cross-
section to the product group action is chosen, the resolving system can be derived
symbolically using the replacement principle (3.5) and the recurrence relations (4.3).

Let
IiN = f i(N), i = 1, . . . , s, (6.3)

be a solution of the resolving system (6.2). The next step in the group foliation algo-
rithm is to use the solution (6.3) to recover a solution zN to the original finite difference
equation (6.1). To this end, assume zN is a solution of (6.1). Then by definition of the
left and right moving frames

zN = ρ−1N · ρN · zN = ρN · ιN (zN ). (6.4)

Expressing the order 0 normalized invariant ιN (zN ) in terms of the generating invariants
Igen and substituting the solution (6.3) into the resulting formula, we obtain an explicit
expression for ιN (zN ) = H(N) in terms of the multi-index N . According to (6.4), a
solution to the original equation (6.1) is then obtained by acting on ιN (zN ) = H(N) by
the left moving frame ρN . To determine ρN , we introduce the reconstruction equations

ρN+1i = ρ−1N+1i

= ρ−1N ρN ρ
−1
N+1i

= ρN mi
N , i = 1, . . . , p,

(6.5)

which prescribe the evolution of the left moving frame ρN along the solution (6.3).
Prior to solving (6.5), the Maurer–Cartan invariants mi

N need to be expressed in terms
of the generating invariants Igen and their shifts, after which the substitutions (6.3) are
made.

Remark 6.2. If G is a solvable group with faithful matrix representation in the set of
upper triangular matrices, then the Maurer–Cartan invariants (4.1) will also be upper
triangular and the reconstruction equations (6.5) can be solved iteratively, starting from
the last row and moving up.

We conclude this section by showing that the reconstruction equations (6.5) are
G-automorphic.

Definition 6.3. A system of finite difference equations is called G-automorphic if all
its solutions can be obtained from a single solution via transformations belonging to G.

Proposition 6.4. The reconstruction equations (6.5) are G-automorphic.

Proof. Let ρ1N and ρ2N be two left moving frames satisfying (6.5). Consider the G-valued
function

gN = ρ1N (ρ2N )−1. (6.6)
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Applying the forward shift S+
i to gN , and using the reconstruction equations (6.5), we

find that

gN+1i = ρ1N+1i(ρ
2
N+1i)

−1

= ρ1N mi
N (mi

N )−1(ρ2N )−1

= ρ1N (ρ2N )−1

= gN ,

for i = 1, . . . , p. Thus, the function gN is equal a fixed group element: gN = g ∈ G.
From (6.6), we conclude that

ρ1N = g ρ2N ,

which shows that (6.5) is G-automorphic.

6.1 Examples

We now illustrate the group foliation method with three examples. The first two ex-
amples deal with first and second order ordinary finite difference equations while the
third involves a partial difference equation.

Example 6.5. Finishing Examples 2.7, 3.9, and 4.4, we now apply the group foliation
method to the invariant finite difference equations (2.4). As mentioned in Example
5.6, the invariants {n,Hn, Jn} form a generating set of the algebra of joint invariants.
Expressing the finite difference equations (2.4) in terms of these generating invariants
and their shifts we obtain the reduced equations

Jn+1 − Jn + kHn = 0, Hn = h. (6.7)

Since there is no syzygy among the invariants Hn, Jn, and their shifts, the resolving
system is therefore given by (6.7). These equations are easily solved. The second
equation implies that the invariant

Hn = h (6.8a)

is constant. The first equation is a linear first order difference equation whose solution
is

Jn = J0 − (k h)n, (6.8b)

where J0 is a constant.
Given the solution (6.8) to the resolving system (6.7), we now implement the recon-

struction step of the group foliation algorithm. Let ρn denote the left moving frame.
Recall from Example 4.4 that the Maurer–Cartan invariant is mn = Hn = h. Thus, the
reconstruction equation ρn+1 = ρnmn reduces to

ρn+1 = ρn +Hn = ρn + h, (6.9)

since the one-parameter symmetry group is G = (R,+). The solution to the recon-
struction equation (6.9) is

ρn = hn+ ρ0, (6.10)
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where ρ0 is an arbitrary constant, which reflects the automorphic property of the re-
construction equation (6.9). Indeed, two solutions to the reconstruction equation (6.9)
will differ by at most an additive constant.

Since ιn(xn) = 0 and ιn(yn) = [(b− 1)Jn]1/(1−b), the solution to the original system
of finite difference equations (2.4) is obtain by acting on (0, [(b− 1)Jn]1/(1−b)) with the
left moving frame (6.10). The result is

xn = ρn · 0 = hn+ ρ0

yn = ρn · [(b− 1)Jn]1/(1−b) = (1− b)1/(1−b)
[
k xn +

x1+an

1 + a
+ C

]1/(1−b)
,

where C = −J0 − k ε0 is a constant.

Example 6.6. As a second example, we consider the finite difference equations

yn+1 − 2yn + yn−1
(xn − xn−1)2

=

(
yn − yn−1
xn − xn−1

)1/2

,
(xn+1 − xn)3/2

(yn+1 − yn)1/2
=

(xn − xn−1)3/2

(yn − yn−1)1/2
. (6.11)

These equations provide an invariant approximation of the second order ordinary dif-
ferential equation

3

2
yxx =

√
yx

on a non-uniform mesh. The equations (6.11) admit the three-dimensional solvable
symmetry group

Xn = λxn + a, Yn = λ3yn + b, where λ > 0 and a, b ∈ R.

We now solve (6.11) using the group foliation method. For convenience, we choose
the cross-section

K = {xn = 0, yn = 0, yn−1 = xn−1}. (6.12)

We do not compute the corresponding right moving frame ρn, as this is not necessary
for the implementation of the group foliation algorithm. Let

− Jn = ιn(yn−1), Kn = ιn(xn+1), In = ιn(yn+1) (6.13)

denote three particular normalized joint invariants. Since the problem at hand involves
two functions (x, y) of one discrete variable n ∈ Z, the three invariants (6.13) must be
related by a syzygy. To find this relation we compute the recurrence relations (4.3).
First, we note that the equation yn−1 = xn−1 in the definition of the cross-section (6.12)
implies that

ιn(xn−1) = ιn(yn−1) = −Jn.

To write down the recurrence relations among the normalized invariants, we then need
to determine the Maurer–Cartan invariants mn = (λn, an, bn). From the recurrence
relation

(−Jn,−Jn) = ρn · (xn−1, yn−1) = m−1n−1 · (0, 0),

it follows that mn−1 · (−Jn,−Jn) = (0, 0). Shifting by S+, we obtain the equations

an = λn Jn+1, bn = λ3n Jn+1. (6.14)
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Similarly, the recurrence relation

(Kn, In) = ρn · (xn+1, yn+1) = mn · (0, 0)

yields
Kn = an, In = bn. (6.15)

Combining (6.14) and (6.15), we find that the Maurer–Cartan invariants are given by

λn =

(
In
Jn+1

)1/3

, an = I1/3n J
2/3
n+1, bn = In. (6.16)

We also deduce the syzygy

Kn = I1/3n J
2/3
n+1.

By Theorem 5.7, a generating set for the algebra of joint invariants is given by {n, In, Jn}.
Now that a generating set of invariants has been identified, we express (6.11) in

terms of the invariants {n, In, Jn} and their shifts to obtain the resolving system. As
in the previous example, there is no syzygy among the generating invariants. Once the
system of equations (6.11) and been invariantized and simplified, we obtain the reduced
system of equations

In = Jn + J2
n, Jn+1 = Jn.

The second equation implies that Jn is constant and thereby In also. Thus,

In = J0 + J2
0 , Jn = J0, (6.17)

where J0 is a constant. Substituting (6.17) in (6.16), the Maurer–Cartan invariants
reduce to

λn = A, an = AJ0, bn = A3 J0,

where A = (1 + J0)
1/3.

To compute the reconstruction equations, let ρn = (λn, an, bn) denote the com-
ponents of the left moving frame. Then, the reconstruction equations ρn+1 = ρnmn

are
λn+1 = Aλn, an+1 = J0Aλn + an, bn+1 = J0(Aλn)3 + bn.

Provided A > 0 (this is to guarantee that λn > 0), the solution is

λn = λ0A
n, an = a0 + J0λ0

n∑
k=1

Ak, bn = b0 + J0λ
3
0

n∑
k=1

A3k, (6.18)

where λ0 > 0, a0, b0 are integration constants.
Finally, the solution to the original system of finite difference equations (6.11) is

obtained by acting on the phantom invariants ιn(xn) = ιn(yn) = 0 with the left moving
frame (6.18):

(xn, yn) = ρn · (0, 0) =

(
a0 + J0λ0

n∑
k=1

Ak, b0 + J0λ
3
0

n∑
k=1

A3k

)
.
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Example 6.7. In this example we consider the system of finite difference equations

1

ym,n+1 − ym,n

[
um+1,n+1 − um,n+1

xm+1,n+1 − xm,n+1
− um+1,n − um,n
xm+1,n − xm,n

]
= um,n,

xm+1,n − xm,n = h, xm,n+1 − xm,n = 0,

ym+1,n − ym,n = 0, ym,n+1 − ym,n = k,

(6.19)

where h, k > 0 are positive constants. We foliate (6.19) with respect to the three-
dimensional symmetry group

Xm,n = xm,n + a, Ym,n = ym,n + b, Um,n = λum,n, λ 6= 0, a, b ∈ R. (6.20)

Assuming um,n 6= 0, a cross-section to the product group action (6.20) is given by

K = {xm,n = 0, ym,n = 0, um,n = 1}.

Let

Im,n = ιm,n(xm+1,n), Jm,n = ιm,n(xm,n+1), Km,n = ιm,n(ym+1,n),

Hm,n = ιm,n(ym,n+1), Vm,n = ιm,n(um+1,n), Wm,n = ιm,n(um,n+1),
(6.21)

denote some of the normalized invariants. By Theorem 5.4, these normalized invariants,
together with (m,n), form a generating set of the algebra of joint invariants. Let

mm,n = ρm,n · ρ−1m+1,n = (am,n, bm,n, λm,n),

m̃m,n = ρm,n · ρ−1m,n+1 = (ãm,n, b̃m,n, λ̃m,n),

denote the Maurer–Cartan invariants. In terms of the normalized invariants (6.21),
these are given by

(Im,n, Km,n, Vm,n) = ρm,n · (xm+1,n, ym+1,n, um+1,n) = mm,n · (0, 0, 1)

= (am,n, bm,n, λm,n),

(Jm,n, Hm,n, Wm,n) = ρm,n · (xm,n+1, ym,n+1, um,n+1) = m̃m,n · (0, 0, 1)

= (ãm,n, b̃m,n, λ̃m,n).

Unlike the previous two examples, there are now syzygies among the generating
invariants (6.21). Since

ρm,n · (xm+1,n+1, ym+1,n+1, um+1,n+1) = mm,n · m̃m+1,n · (0, 0, 1)

and
ρm,n · (xm+1,n+1, ym+1,n+1, um+1,n+1) = m̃m,n ·mm,n+1 · (0, 0, 1)

we obtain the equality

mm,n · m̃m+1,n · (0, 0, 1) = m̃m,n ·mm,n+1 · (0, 0, 1).

Expanding reveals three fundamental syzygies:

Wm,n Vm,n+1 = Vm,nWm+1,n,

Im,n+1 − Jm+1,n = Im,n − Jm,n, Km,n+1 −Hm+1,n = Km,n −Hm,n.
(6.22a)
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Invariantizating the system of equations (6.19), and expressing the result in terms of
the generating invariants (6.21), we obtain

1

Hm,n

[
Vm,nWm+1,n −Wm,n

Im,n+1
− Vm,n − 1

Im,n

]
= 1,

Im,n = h, Jm,n = 0, Km,n = 0, Hm,n = k.

(6.22b)

After some simplifications, the resolving system (6.22) is equivalent to

Vm,nWm+1,n −Wm,n − Vm,n + 1 = h k, Wm,nVm,n+1 = Vm,nWm+1,n,

Im,n = h, Jm,n = 0, Km,n = 0, Hm,n = k.
(6.23)

It follows that the invariants Im,n, Jm,n, Km,n and Hm,n are constant.
Assuming a solution for Vm,n and Wm,n is known, we now proceed to the reconstruc-

tion procedure. Let ρm,n = (am,n, bm,n, λm,n) denote the left moving frame. Writing
down each component of the reconstruction equations

ρm+1,n = ρm,nmm,n, ρm,n+1 = ρm,n m̃m,n,

we obtain the equations

λm+1,n = λm,nVm,n, λm,n+1 = λm,nWm,n,

am+1,n = am,n + h, am,n+1 = am,n,

bm+1,n = bm,n, bm,n+1 = bm,n + k.

(6.24)

The solutions for am,n and bm,n are

am,n = a0 + hm, bm,n = b0 + k n,

where a0 and b0 are constants. The solution for λm,n will depend on Vm,n and Wm,n.
Assuming λm,n is known, a solution to the original system of equations (6.19) is given
by

(xm,n, ym,n, um,n) = ρm,n · (0, 0, 1) = (a0 + hm, b0 + k n, λm,n),

The first two equations in the resolving system (6.23) are nonlinear finite difference
equations in Vm,n andWm,n. Particular solutions can be obtained by making simplifying
assumptions about the form of the solution. For example, assume Wm,n = W 6= 1 is
constant. Then, the resolving system (6.23) yields

Vm,n = 1 +
h k

W − 1
.

Solving the reconstruction equation (6.24) for λm,n, we obtain

λm,n = λ0W
n

(
1 +

h k

W − 1

)m
, where λ0 6= 0.

Thus,

xm,n = a0 + hm, ym,n = b0 + k n, um,n = λ0W
n

(
1 +

h k

W − 1

)m
is a particular solution of (6.7).
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7 A discrete Schwarz’s Theorem

Consider the Schwarzian equation

yxxx
yx
− 3

2

(
yxx
yx

)2

= F (x), (7.1)

which is invariant under the group of linear fractional transformations

X = x, Y =
ay + b

cy + d
, ad− bc = 1.

Schwarz’s Theorem, [13, 23], states that the general solution of (7.1) is given by the
ratio

y(x) =
ψ1(x)

ψ2(x)
,

where ψ1(x) and ψ2(x) are linearly independent solutions of the linear equation

ψxx +
1

2
F (x)ψ = 0.

As an application of the group foliation method, we derive an analogous theorem in the
discrete setting, expressing the solution of an invariant discretization of the Schwarz
equation as a ratio of solutions to a linear finite difference equation.

For an invariant discretization of (7.1), we take the finite difference equations

xn+1 − xn = h,
6

h2
− 8

h2
(yn+2 − yn+1)(yn+3 − yn)

(yn+2 − yn)(yn+3 − yn+1)
= F (xn), (7.2)

where h is a constant. These equations are invariant under the product action

Xn = xn, Yn =
ayn + b

cyn + d
, ad− bc = 1.

We now apply the group foliation method to (7.2). Using the cross-section intro-
duced in [31], we let

K = {yn = 0, yn+1 →∞, yn+2 = εn},

where

εn = sign

(
− yn+2 − yn

(yn+1 − yn)(yn+2 − yn+1)

)
.

To avoid some complications, we restrict ourselves to the case where εn = ε is constant.
A generating set of the algebra of joint invariants is given by the index n and the
invariants

xn, In = ε · ιn(yn+3) =
(yn+2 − yn+1)(yn+3 − yn)

(yn+2 − yn)(yn+3 − yn+1)
.

There is no syzygy among xn and In. Therefore, by invariantizing (7.2), we obtain the
full resolving system

xn+1 − xn = h, 6− 8In = h2F (xn).
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The first equation is easily solved to obtain

xn = hn+ x0,

and the second equation uniquely specifies In in terms of the function F (xn):

In =
3

4
− h2

8
F (xn) =

3

4
− h2

8
F (hn+ x0). (7.3)

We now compute the corresponding reconstruction equations. To do so, we first
need to determine symbolic expressions for the Maurer–Cartan invariants

mn =

[
an bn
cn dn

]
∈ SL(2,R).

Using the recurrence relations (4.3), we first have, in the limit,

∞← ιn(yn+1) = mn · ιn+1(yn+1) = mn · 0 =
bn
dn
.

Requiring that the Maurer–Cartan invariants be finite, set

dn = 0.

Next, we have the recurrence relations

ε = ιn(yn+2) = mn · ιn+1(yn+2)→ mn · ∞ =
an
cn

and

ιn(yn+3) = mn · ιn+1(yn+3) = mn · ε = ε+
bn
cn
ε.

Using the unitary constraint andn − bncn = 1, we obtain

bn = −ε
√
|1− In| 6= 0

and

cn =
ε√
|1− In|

, an =
1√
|1− In|

.

Therefore, in matrix form, the Maurer–Cartan invariants are

mn =

 ∆n −
ε

∆n
ε∆n 0

 , where ∆n =
1√
|1− In|

.

Taking into account that In is given by (7.3), we have

∆n =
2√∣∣∣∣1 +

h2

2
F (hn+ x0)

∣∣∣∣
. (7.4)

Now let

ρn =

[
an bn
cn dn

]
, andn − bncn = 1,

23



be a left moving frame. The reconstruction equation ρn+1 = ρnmn yields the system
of equations

an+1 = ∆n(an + ε bn), bn+1 = − ε

∆n
an,

cn+1 = ∆n(cn + ε dn), dn+1 = − ε

∆n
dn.

Manipulating these equations, we find that the group components bn, dn must satisfy
the second order linear finite difference equation

βn+2 +
∆n

∆n+1
(−∆nβn+1 + βn) = 0. (7.5)

Acting on the normalized invariant ιn(yn) = 0 by the left moving frame ρn, we conclude
that a solution to (7.2) is given by

xn = hn+ x0, yn =
bn

dn
, (7.6)

where bn and dn are two linearly independent solutions of (7.5). Thus, by applying
the group foliation method to (7.2), we have deduced a discrete analog of Schwarz’s
Theorem.

Theorem 7.1. The general solution to the system of finite difference equations

xn+1 − xn = h,
6

h2
− 8

h2
(yn+2 − yn+1)(yn+3 − yn)

(yn+2 − yn)(yn+3 − yn+1)
= F (xn),

is given by

xn = hn+ x0, yn =
bn

dn
,

where bn and dn are linearly independent solutions to the linear finite difference equation

βn+2 +
∆n

∆n+1
(−∆nβn+1 + βn) = 0,

with ∆n given in (7.4).

To conclude this investigation more concretely, we examine the group foliation for-
mulation (7.6) of (7.2) for some specific functions F (xn). First we consider F (xn) = 0.
In this case ∆n = 2 and (7.5) simplifies to

βn+2 − 2βn+1 + βn = 0.

The general solution to this equation is

βn = kn+ `,

where k and ` are constants. Using (7.6), we then find that the general solution to (7.2)
when F (xn) = 0 is

xn = hn+ x0, yn =
an+ b

cn+ d
=
Axn +B

Cxn +D
, (7.7)
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with AD − BC 6= 0. In this particular situation, the discrete solution (7.7) agrees
exactly with the solution of the differential equation (7.1).

Next we consider F (xn) = F > 0, a positive constant. In this case,

∆n =
2√

1 +
h2F

2

= ∆ > 0

is a positive constant and (7.5) reduces to

βn+2 −∆βn+1 + βn = 0.

The general solution to this equation is

βn = A cos(nθ) +B sin(nθ),

with

θ = arctan

(
h

√
F

2

)
. (7.8)

Using (7.6), we find that the general solution to (7.2) when F (xn) = F > 0 is

xn = hn+ x0, yn =
A cos(nθ) +B sin(nθ)

C cos(nθ) +D sin(nθ)
, with AD −BC 6= 0. (7.9)

Analogously, the general solution to the Schwarzian equation (7.1) is

y =
A cos(ωx) +B sin(ωx)

C cos(ωx) +D sin(ωx)
, where ω =

√
F

2
. (7.10)

Taking the Maclaurin expansion of (7.8), we have

θ = h

√
F

2
+O(h3),

and since

nθ = nh

√
F

2
+O(h3) = (xn − x0)

√
F

2
+O(h3),

we see that (7.9) is an order h2 approximation of the solution (7.10).

8 Numerical simulation

It has been observed via numerical simulations that symmetry preserving numerical
schemes can sometimes outperform traditional numerical integrators, [35, 41]. For or-
dinary differential equations, [2–4, 7, 15, 37], invariant schemes tend to deliver marked
improvements when solutions exhibit sharp variations or singularities. Reasons for
these improvements are not well understood. In this section, we use the alternative
numerical scheme obtained in the previous section through group foliation to give some
explanation of the improvements seen in invariant schemes. Note that our observations
here are exploratory and further investigation of connections between group foliation
and numerical methods still needs to be carried out.
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Consider the Schwarzian equation (7.1) of the previous section with F (x) = 2x. In
this case the general solution to (7.1) is given by

y(x) =
AJ−1/3(

2
3x

3/2) +BJ1/3(
2
3x

3/2)

CJ−1/3(
2
3x

3/2) +DJ1/3(
2
3x

3/2)
, (8.1)

where Jα(x) denotes a Bessel function of the first kind. Consider the particular solution

y(x) =
J1/3(

2
3x

3/2)

J−1/3(
2
3x

3/2)
, (8.2)

corresponding to choices of A = 0, B = C = 1 and D = 0 in the general solution
(8.1). Note that this corresponds approximately to the initial condition y(.5) = 0.3684,
y′(.5) = 0.7602, y′′(.5) = 0.1925. This solution has singularities where J−1/3(

2
3x

3/2) = 0,
e.g. x ≈ 1.986, 3.825, 5.296, et cetera.
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Euler

Actual

x Actual Euler

1.8 3.744 2.543

1.85 4.954 2.873

1.9 7.544 3.297

1.95 17.202 3.857

2. −43.764 4.622

2.05 −8.912 5.711

2.1 −4.708 7.337

2.15 −3.060 9.907

2.2 −2.173 14.262

Figure 2: Integration over an asymptote using Euler’s method.

Using standard finite difference methods such as Euler or Runge–Kutta, one cannot
typically integrate over an asymptote. To illustrate this concretely, we compare the
particular solution (8.2) with the result of numerical integration via a fourth order
Euler’s method with a mesh size of h = .05, shown in Figure 2. As expected, Euler’s
method cannot track the solution across the singularity at x ≈ 1.986.

By contrast, the invariant discretization (7.2) will track the solution across the
singularities. Shown in Figure 3 is the result of integrating via the invariant scheme
(7.2) with a mesh size of h = .05. Reasons for this behavior are not apparent from
(7.2). If we instead examine the group foliation scheme (7.6), this numerical behavior
becomes more transparent. As seen in Theorem 7.1, group foliation integrates a ratio
b̄n/d̄n, where b̄n, d̄n satisfy (7.5), instead of integrating yn directly. Thus the integration
may pass over a singularity of yn by simply allowing d̄n to pass over 0, and the functions
b̄n, d̄n remain bounded throughout the integration, as seen in Figure 4. Taking the ratio
b̄n/d̄n will reproduce exactly the values produced by the original invariant scheme (7.2).
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scheme
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x Actual (7.2)

1.8 3.744 2.959

1.85 4.954 3.579

1.9 7.544 4.591

1.95 17.202 6.568

2. −43.764 12.230

2.05 −8.912 200.57

2.1 −4.708 −12.526

2.15 −3.060 −5.713

2.2 −2.173 −3.524

Figure 3: Integration over an asymptote using invariant scheme (7.2).
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x b̄n d̄n
1.8 2.208 0.7461

1.85 2.158 0.6027

1.9 2.098 0.4570

1.95 2.029 0.3090

2. 1.951 0.1595

2.05 1.863 0.0093

2.1 1.766 −0.1410

2.15 1.660 −0.2906

2.2 1.546 −0.4387

Figure 4: Integration over an asymptote using the group foliation scheme (7.6).
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