
Introduction

This thesis has four main elements: dynamics, algebraic number theory (in function fields), group

theory, and probability. The dynamics provides inspiration for the problem, the algebraic num-

ber theory allows an important reformulation, the group theory does the heavy lifting, and the

probability theory synthesizes the group theory into a form that solves the problem. Chapter 1

gives the dynamical background, Chapter 2 the number-theoretic translation, and Chapter 3 the

group-theoretic results. Chapter 4 deals almost solely with probability, while Chapter 5 applies the

probability to give a solution to the problem.

In this introduction, we sketch of the origins of the problem, state the problem, and give a

detailed outline of our solution. The origins of the problem and the first stages of the solution lie

in the field of algebraic dynamics, which can be broadly defined as the study of function iteration

over algebraic/arithmetical sets, such as algebraic number fields and rings, polynomial rings, finite

fields, p-adic fields, algebraic curves, etc. This relatively new field evolved naturally from the field

of complex dynamics, whose roots stretch back to the work of Julia and Fatou in the early 1900s.

Complex dynamics enjoyed an explosion of deep results in the 1980s; one could note in particular

Benoit Mandelbrot’s popularization of the remarkable set that bears his name, Dennis Sullivan’s

No Wandering Domains theorem [36], and Curt McMullen’s proof of the nonexistence of generally

convergent algorithms in degree larger than three [23].

In the 1990s, some attention began to turn to p-adic analogues of the blossoming complex theory.

Michael Herman and Fields medalist Jean-Christophe Yoccoz [17] had already gone in this direction

with their 1983 paper on a non-Archimedean version of Siegel’s linearization theorem [34]. Rob

Benedetto proved a partial analogue of the No Wandering Domains theorem in 2000 [6] and Juan

Rivera-Letelier, a student of Yoccoz, fleshed out much of the theory of p-adic Fatou and Julia sets

in the early part of the 2000s [29, 30]. An unexpected impetus for exploring p-adic dynamics has

come from physicists, who began to explore what the world looked like through p-adic eyes. The

first paper whose title contained the phrase “p-adic dynamics” appeared in the Physics literature in

1989 [37].
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The work presented in this thesis stems from a question regarding the degree to which p-adic

dynamics and complex dynamics are analogous. This question deals with the p-adic analogue of the

complex Mandelbrot set. The complex Mandelbrot set, defined to be

M = {c ∈ C : 0 has a bounded orbit under iteration of z2 + c}

not only created a stir among researchers, but its striking images reached an audience far beyond the

mathematical community. It has assumed a place as one of the most widely recognized mathematical

objects. Thus the p-adic analogue of M , at first blush, seems to promise a similar treasure trove of

complexity. This promise unfortunately proves false, as the analogous set is simply the closed unit

disk (for p "= 2).

Peering into the set more closely, however, reveals a particular subset that is more interesting.

It is the subset of parameter values c such that z2 + c is hyperbolic; see below for a definition of

hyperbolicity and see (1) for a definition of the set. Its complex analogue has been much studied

[1, 14, 19, 22]. This complex analogue is a large subset of M , accounting for at least 96% of the area

[11], and is conjectured to be the interior of M [24]. The problem this thesis sets out to resolve is

to determine the “size” of the hyperbolic subset of the p-adic Mandelbrot set. We show that it is in

a certain sense a measure zero subset, contrasting sharply with the complex case.

The first hurdle is to say what is meant by size: there is no suitable notion of measure on the

p-adic analogue of C because it is not locally compact. The way around this, and the first step in

the solution of the above problem, is to use the reduction homomorphism to translate the problem

into one of dynamics over Fp. In Fp we define density measures closely related to the well-known

Dirichlet density and natural density (see e.g. [20]). The proof then follows a path through algebraic

number theory, then the Galois theory of function fields, and eventually into the realm of stochastic

processes, where it reaches its conclusion. This method of proof appears to be highly unusual, and

may be fruitful in answering other density questions regarding dynamically defined sets. We now

give a detailed outline of the argument.

In Chapter 1 we begin with some definitions and background. We call a rational function hy-

perbolic if all its critical points are attracted to attracting cycles (see page 8 for definitions of these

terms). Hyperbolic maps have many nice properties, and are the subject of the biggest unsolved

conjecture in complex dynamics (see page 9 for a statement and [24] for more detail). The map

z2 + c has critical points at infinity and 0, and infinity is an attracting fixed point. Therefore z2 + c

is hyperbolic if and only if 0 is attracted to an attracting cycle. Thus the set

H(C) = {c ∈M : 0 is attracted to an attracting cycle of z2 + c} (1)

is the hyperbolic subset of M . We examine the analogous set defined over the field Cp, which is the
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smallest complete, algebraically closed extension of Qp; it is therefore the p-adic analogue of C. Let

Mp be the natural analogue of M over Cp. It’s easily seen that Mp = {c ∈ Cp : |c| ≤ 1} provided

that p "= 2. (Proposition 1.2). Throughout this discussion, we take p to be a prime different from 2.

However, the subset

H(Cp) = {c ∈Mp : 0 is attracted to an attracting cycle of z2 + c}

is not so easily characterized. Letting φ : {|c| ≤ 1} → Fp be the reduction homomorphism (see

(1.2)), we establish in Corollary 1.6 that H(Cp) = φ−1(H(Fp)), where

H(Fp) = {α ∈ Fp : 0 is periodic under iteration of x2 + α}.

(Note that by periodic we mean that the orbit of 0 is a cycle; some authors refer to this as purely

periodic.) We define two notions of density for subsets of Fp, called Dirichlet density and natural

density, that are closely related to the densities of the same names defined for subsets of primes

in Fp[x]. We denote Dirichlet density by δ and natural density by D (see (1.6) and (1.7) for the

definitions). Our main result (Theorem 1.7) is that δ(H(Fp)) = 0, and its proof is the principal goal

of all of our subsequent work. We also establish, using a similar method, a companion result: we

show D(H(Fp)) = 0 for p ≡ 3 mod 4, and we conjecture that D(H(Fp)) = 0 holds for all p "= 2.

In Chapter 2, we take the first steps toward a proof by giving two translations of the problem.

Although the definition of H(Fp) says that the forward orbit of 0 under iteration of x2 +α is a cycle,

we focus in Section 2.1 on the inverse orbit of 0 under x2 + α. Clearly for any α ∈ Fp the forward

orbit of 0 under iteration of x2 + α is contained in Fp(α). If 0 is periodic, however, this forward

orbit coincides with one branch of the inverse orbit of 0 in Fp, and thus 0 has nth preimages in

Fp(α) for each n ≥ 1. We show (Proposition 2.1) that the converse is also true. Therefore, setting

fα = x2 + α, and denoting by f−n
α (0) the set of nth preimages of 0 (in Fp) under iteration of fα, we

have
H(Fp) = {α ∈ Fp : f−n

α (0) ∩ Fp(α) "= ∅ for all n ≥ 1}.

We can therefore define a sequence of sets

In = {α ∈ Fp : f−n
α (0) ∩ Fp(α) "= ∅} (2)

that serve as progressively better “approximations” of H(Fp) in the sense that In ⊇ In+1 and

H(Fp) =
⋂

n In. We show that if δ(In) exists for all n and lim
n→∞ δ(In) = 0, then δ(H(Fp)) = 0.

In Section 2.2, we prove that δ(In) exists and give a method of computing it using the Galois

groups of certain algebraic extensions of Fp(x). Our main tool in this endeavor is the Tchebotarev

Density theorem for function fields. In order to use it, we find a set of primes in Fp[x] that is
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expressible in terms of the Artin symbol (see page 25 for a definition), and whose Dirichlet density

(in the sense of (2.3)) is equal to δ(In). Note that the set f−n
α (0) consists of the roots of fn

α , and

thus f−n
α (0)∩Fp(α) "= ∅ if and only if the factorization of fn

α over Fp(α) contains at least one linear

term. There is a thus a close relationship between In and the following set of primes in Fp[x]:

In = {p ⊆ Fp[x] : fn
x has a linear factor mod p},

where fx = y2 + x ∈ Fp(x)[y]. Indeed, we show that δ(In) = δ(In), where this second Dirichlet

density is the usual one for sets of primes in a function field (2.3). We then use some standard

arguments in algebraic number theory to show that In differs by only finitely many primes from a

set of primes defined in terms of the Artin symbol (2.14). This allows us to apply the Tchebotarev

Density theorem. Let Kn be the splitting field of fn
x over K = Fp(x), and Gn = Gal (Kn/K). In

Theorem 2.18 we show that δ(In) exists for all n and equals

1
#Gn

# {g ∈ Gn : g fixes at least one root of fn
x } . (3)

The same statement hold for D(In), provided that the extensions Kn/K are geometric for all n (see

Definition 2.14), a statement we conjecture to hold for p "= 2 but which we can only show when

p ≡ 3 mod 4 (Corollary 3.40). To illustrate Theorem 2.18, we give here a few values of δ(In). We

can describe the n = 1 case completely: the roots of fx are {√−x,−√−x}, which we label {a1, a2}.
Clearly we have G1 = {e, (a1 a2)}, whence δ(I1) = 1/2. In Example 2.19, page 29, we work out

the case n = 2, showing that δ(I2) = 3/8. Only with significantly more work (Theorem 3.2, (5.28),

and Corollary 5.11) can we show δ(I3) = 39/128. Moreover we note in Chapter 3 (see the discussion

on page 56) that for n > 7, δ(In) may depend on the prime p, and cannot in general be easily

computed.

In Chapter 3 we undertake an analysis of the groups Gn. We do this through the study of

Hn = Gal (Kn/Kn−1). In (3.2), we show that Kn is obtained from Kn−1 by adjoining the square

roots of 2n−1 elements. Thus |Hn| ≤ 22n−1
, and we call Hn maximal if this inequality is an equality.

One principal result of the chapter is that for all p "= 2, Hn is maximal for n squarefree, and

if p ≡ 3 mod 4 then Hn is maximal for all n (Theorem 3.2). The other result that is of central

importance in later chapters is Corollary 3.23 at the end of Section 3.2 (see below for explanation).

In Section 3.1, we prove some basic properties about fn
x , and we introduce the polynomials

pn ∈ Fp[x], defined by p1 = x and pn = p2
n−1 + x for n ≥ 2, which play an important role. We

show that the discriminant of fn
x is a product of powers of pi for i ≤ n (Proposition 3.9) and use

this to prove that Gn is not alternating, i.e. composed of even permutations (Corollary 3.10). In

Section 3.2 we examine the center of Gn. We note that Gn is a 2-group, and we establish a series of

propositions about 2-groups acting on certain sets. This culminates in Theorem 3.22, which states
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that if Gn is not alternating then a certain permutation of the roots of fn
x must lie in Gn. Indeed,

as shown in Corollary 3.23, this permutation must lie in Hn, proving that Hn is nontrivial for all n.

In Section 3.3 we use abelian Kummer Theory to show that Hn is maximal if and only if pn is

a square in Kn−1 (Theorem 3.27). This relies heavily on Corollary 3.23. In Section 3.4 we use the

work of the previous sections to show that Hn is maximal if and only if a certain element Φn ∈ Fp[x]

is a not a square in K = Fp(x) (Theorem 3.38). Specifically, Φn is the primitive part of pn:

Φn =
∏
d|n

(pd)µ(n/d).

One can easily show that the degree of Φn is odd when n is squarefree (Corollary 3.30), establishing

the maximality of Hn for squarefree n. When n is not squarefree one cannot rule out the possibility

that Φn is a square in K. However, the facts that Φn is separable over Q for all n (see the proof

of Theorem 3.2, page 54) and the degree of Φn grows like 2n suggest this is unlikely. We thus

conjecture that Hn is maximal for all n. In section 3.5 we adapt an argument of Stoll [35] to show

that if p ≡ 3 mod 4 then Hn is maximal for all n.

The results of Chapter 3 provide some insight into the structure of Hn and therefore Gn, but

there is no obvious way to use them to compute the limit as n → ∞ of the expression in (3). In

Chapters 4 and 5 we build a stochastic process where the main results of Chapter 3 have a natural

interpretation. The tools of the theory of stochastic processes then allow us to prove this process is

eventually 0 with probability 1, and this is enough to establish Theorem 1.7.

Chapter 4 focuses on proving the process we seek exists and fleshing out definitions and standard

results from the theory of stochastic processes. In Section 4.1 we recall that a discrete-time stochastic

process (or simply process for short) is a sequence {Xn}n≥0 of random variables defined on a common

probability space. We consider only processes whose random variables take positive-integer values.

Such a process can be thought of as a game of chance, with Xn denoting a gambler’s score at turn

n. We prove that there exists a process where the probability of the gambler having score t at turn

n is determined by the structure of Gn. Specifically,

P(Xn = t) =
1

#Gn
# {g ∈ Gn : g fixes t roots of fn

x } (4)

We actually prove an even stronger property (see (4.3)). From (4) and the remark immediately

before (3) it follows that

δ(In) = P(Xn > 0). (5)

For more on why probability theory is a relatively natural tool in this context, see the introduction

to Chapter 4 on page 59.
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The main work of section 4.1 is to show that a process satisfying (4) exists. We call this process

the Galois process of the iterates of f , or GP(f) for short. (Because there is no possibility of

ambiguity, we drop the x from previous notation and simply write f = y2 + x.) In Section 4.2 we

give some probabilistic background, including definitions of martingales and Markov chains and one

version of the basic martingale convergence theorem (Theorem 4.9). In Section 4.3 we present the

basic theory of branching processes, which not only is useful in Chapter 5 but also illustrates some

of the definitions of Section 4.2.

In Chapter 5 all of the threads come together. In Section 5.1 we use Corollary 3.23, which

guarantees the existence of a certain type of element in each Hn, to establish that GP(f) is a

martingale. Thus GP(f) is the first known example of a class of processes we call Galois martingales

(see the remark on page 80), giving some justification for the first two words of this thesis’ title.

The martingale convergence theorem then shows that with probability 1 the sequence {Xn(ω)}n≥0

is eventually constant (where ω is any element in the underlying probability space).

In Section 5.2 we compute, under the assumption that Hn is maximal, the conditional distribution

of Xn given Xn−1 = t for any value of t. Thus, using the metaphor of the gambler, when n is such

that Hn is maximal we have explicit information about the probability that the gambler’s score goes

from t to t′ at turn n. Using Theorem 3.2, which says that Hn is maximal when n is squarefree, we

show that for any t ≥ 1 and m ≥ 1,

P (Xn = t for all n ≥ m) = 0.

This is Theorem 5.8. It quickly follows that GP(f) converges to 0 with probability 1. We deduce

from this in Section 5.3 that lim
n→∞P(Xn > 0) = 0, and then from (5) and the remark following

(2) we conclude that δ(H(Fp)) = 0, which proves Theorem 1.7. Finally, we show that under the

assumption that Hn is maximal for all n, GP(f) is a particularly simple branching process. We also

give explicit values for δ(In) under this assumption (see (5.28) and Corollary 5.11).


