An arithmetic dynamical Mordell-Lang conjecture

Rafe Jones
Carleton college

August 15, 2015
Silvermania!

Warmup: squares in polynomial orbits

For a field $K, f \in K(x)$, and $\alpha \in K$, the orbit $O_{f}(\alpha)$ is $\left\{f^{n}(\alpha): n \geq 0\right\}$.

Let $f \in \mathbb{Q}[x]$ be monic and quadratic, and let S be the set of rational squares. Suppose there is $\alpha \in \mathbb{Q}$ such that $O_{f}(\alpha) \cap S$ is infinite. What can be said about f ?

Motivation:

- If $f \in \mathbb{Q}(x)$ has degree at least two and there is $\alpha \in \mathbb{Q}$ with $O_{f}(\alpha) \cap \mathbb{Z}$ infinite, then $f^{2}(x) \in \mathbb{Q}[x]$ (Silverman 1993)
- If $f, g \in \mathbb{C}[x]$ have degree at least two and there are $\alpha, \beta \in \mathbb{C}$ with $O_{f}(\alpha) \cap O_{g}(\beta)$ infinite, then f and g have a common iterate (Ghioca-Tucker-Zieve 2008)

Theorem (Cahn-RJ-Spear 2015)

If $f \in \mathbb{Q}[x]$ is monic and quadratic and $O_{f}(\alpha) \cap S$ is infinite for some $\alpha \in \mathbb{Q}$, then either

- $f(x)=(x+c)^{2}$ for some $c \in \mathbb{Q}$, or
- $f(x)=x^{2}+4 x$.

Remarks (let $f(x)=x^{2}+4 x$):

- $O_{f}(1 / 2)=\left\{1 / 2,(3 / 2)^{2},(15 / 4)^{2},(255 / 16)^{2}, \ldots\right\}$
- $f^{2}(x)=\left(x^{2}+4 x\right)(x+2)^{2}$
- $f(x)=T_{2}(x+2)-2$, where $T_{2}(x)=x^{2}-2$. Critical orbit of $f(x)$ is $-2 \mapsto-4 \mapsto 0 \mapsto 0$.
- For any monic, quadratic $f \in \mathbb{Q}[x]$ and any $\alpha \in \mathbb{Q}$, $\left\{n: f^{n}(\alpha) \in S\right\}$ is a finite union of arithmetic progressions.

The Dynamical Mordell-Lang conjecture

Conjecture (Dynamical Mordell-Lang)

Let X / \mathbb{C} be a quasi-projective variety, $V \subseteq X$ a subvariety, and $f: X \rightarrow X$ a morphism. Then for all $\alpha \in X(\mathbb{C})$, the set $\left\{n: f^{n}(\alpha) \in V(\mathbb{C})\right\}$ is a finite union of arithmetic progressions.

Singletons are considered arithmetic progressions. So if $\left\{n: f^{n}(\alpha) \in V(\mathbb{C})\right\}$ is finite, then the conjecture holds.

Theorem (Skolem-Mahler-Lech)
If $F\left(x_{0}, \ldots, x_{\ell-1}\right)=\sum_{i=0}^{\ell-1} a_{i} x_{i}$ is a linear form on \mathbb{C}^{ℓ} and $a_{n+\ell}=F\left(a_{n}, \ldots, a_{n+\ell-1}\right)$ for all $n \geq 0$, then $\left\{n: a_{n}=0\right\}$ is a finite union of arithmetic progressions.

Special case of dynamical M-L conjecture: $f: \mathbb{A}^{\ell} \rightarrow \mathbb{A}^{\ell}$, $f\left(x_{0}, \ldots, x_{\ell-1}\right)=\left(x_{1}, \ldots, x_{\ell-1}, F\left(x_{0}, \ldots, x_{\ell-1}\right)\right), V=\left\{x_{0}=0\right\}$.

The dynamical $\mathrm{M}-\mathrm{L}$ conjecture is known to hold for

- $X=\mathbb{A}^{n}$ and f an automorphism of X (Bell 2006)
- X a semi-abelian variety (Ghioca-Tucker 2009).
- X arbitrary and f étale (Bell-Ghioca-Tucker 2010)
- $X=\mathbb{A}^{2}$ (Xie 2015)
- $X=\mathbb{A}^{n}, V$ is a curve, and $f=\left(f_{1}, \ldots, f_{n}\right)$ with $f_{i} \in \mathbb{C}[x]$ (Xie 2015)

A question over number fields

From now on, K is a number field.
A K-endomorphism of a variety X is a morphism $X \rightarrow X$ defined over K.

Question: Let X / K be a quasi-projective variety, $V \subset X(K)$ the value set $\lambda(X(K))$ of a K-endomorphism λ of X, and f a K-endomorphism of X. For $\alpha \in X(K)$, must $\left\{n: f^{n}(\alpha) \in V\right\}$ be a finite union of arithmetic progressions?

Proposition

Let G be a finitely generated abelian group, $H \leq G$, and $f: G \rightarrow G$ a homomorphism. Then for any $\alpha \in G$, $\left\{n: f^{n}(\alpha) \in H\right\}$ is a finite union of arithmetic progressions.

Consequence: if X is an abelian variety, f and λ are isogenies on X, and $\alpha \in X(K)$, then $\left\{n: f^{n}(\alpha) \in \lambda(X(K))\right\}$ is a finite union of arithmetic progressions.

Bad example: $K=\mathbb{Q}, X=\mathbb{A}^{1}, \lambda(y)=y^{2}, V=\{$ squares in $\mathbb{Q}\}$, $f(x)=x+1, \alpha=0$.

Then $f^{n}(0)=n$ for all $n \geq 0$, so

$$
\left\{n: f^{n}(0) \in V\right\}=\{0,1,4,9, \ldots\} .
$$

A heuristic

Revised Question: Let X / K be a quasi-projective variety, λ a K-endomorphism of $X, V=\lambda(X(K))$, and f a sufficiently complicated K-endomorphism of X. For $\alpha \in X(K)$, must $\left\{n: f^{n}(\alpha) \in V\right\}$ be a finite union of arithmetic progressions?
Suppose there is i with $f^{i}=\lambda \circ g$, where g is a K-endomorphism of X.
Then for $n \geq i$, we have $f^{n}(\alpha)=\lambda\left(g\left(f^{n-i}(\alpha)\right)\right) \in \lambda(X(K))$.
So if an iterate of f has a "close functional relationship" to λ, we should expect the question to have an affirmative answer.

For $n \geq 1$, let Z_{n} be the subvariety of $X \times X$ given by $f^{n}(x)=\lambda(y)$.

Then there is a natural K-morphism $f: Z_{n+1} \rightarrow Z_{n}$ taking (x, y) to $(f(x), y)$. Thus if $i>j$, a point in $Z_{i}(K)$ maps to a point in $Z_{j}(K)$. Suppose that $\left\{n: f^{n}(\alpha) \in \lambda(X(K))\right\}$ is infinite.

Then $Z_{n}(K)$ is infinite for all $n \geq 1$.

First leap of faith: For each n, the infinitely many points in $Z_{n}(K)$ are Zariski dense in Z_{n}.

Second leap of faith: The Bombieri-Lang conjecture is true: if a variety has a Zariski-dense set of K-rational points, then it is not of general type (i.e. not of full Kodaira dimension). Therefore Z_{n} is not of general type for any n.

Third leap of faith: Because f is sufficiently complicated, the varieties Z_{n} will be of general type for large n unless some iterate of f has a "close functional relationship" to λ.

Conjecture (Arithmetic dynamical Mordell-Lang conjecture)
Let $X=\left(\mathbb{P}^{1}\right)^{g}$ and let $f=\left(f_{1}, \ldots, f_{g}\right)$ with $f_{i} \in K(x)$, deg $f_{i} \geq 2$. Then for any K-endomorphism λ of X and any $\alpha \in X(K)$, the set $\left\{n: f^{n}(\alpha) \in \lambda(X(K))\right\}$ is a finite union of arithmetic progressions.

If $\lambda=\left(\lambda_{1}, \ldots, \lambda_{g}\right)$ with $\lambda_{i} \in K(x)$, then the conjecture may be proved one coordinate at a time, and reduces to the case where $X=\mathbb{P}^{1}$.

Theorem (Cahn-RJ-Spear)
The conjecture holds for $X=\mathbb{P}^{1}$ and $\lambda(y)=y^{m}$, where $m \in \mathbb{Z}$.

Proof Sketch

Let $f \in K(x)$, and note Z_{n} is the curve $f^{n}(x)=y^{m}$. Suppose that $O_{f}(\alpha) \cap\left(\mathbb{P}^{1}(K)\right)^{m}$ is infinite, so that $Z_{n}(K)$ is infinite for each n.

First leap of faith First fact: For each n, the infinitely many points in $Z_{n}(K)$ are Zariski-dense in Z_{n}.

Second leap of faith Second fact: The Bombieri-Lang conjecture is true for curves (Faltings' Theorem). Therefore Z_{n} is not of general type for any n, i.e. the genus of Z_{n} is ≤ 1.

Third leap of faith Third step: Show the genus of $Z_{n}: f^{n}(x)=y^{m}$ is at least two unless some iterate of f has a "close functional relationship" to λ.

Definition

For $\beta \in \mathbb{P}^{1}(\mathbb{C})$, define $\rho_{n}(\beta)$ to be the number of $z \in f^{-n}(\beta)$ with $e_{f n}(z)$ not divisible by m. Call βm-branch abundant for f if $\rho_{n}(\beta)$ is bounded as $n \rightarrow \infty$.

From genus formulae for superelliptic curves, the genus of Z_{n} is bounded if and only if 0 and ∞ are m-branch abundant for f.

We classified all rational functions over \mathbb{C} with two m-branch abundant points, and showed their components are defined over K.

First attempt: determine all possible ramification structures of pre-image trees of an m-branch abundant point.

1.	2.	3. $p=2$	4. $p=3$	5.

Figure 1. Ramification structures for $O^{-}(\alpha)$, where α is p-branch abundant for $f \in \mathbb{C}(z)$ and $p \nmid \operatorname{deg} f$.

6. $\begin{gathered} \alpha \\ p \\| \end{gathered}$	7. $\\| p$ $p \mid(a+b)$	8. $p=2 ; a, b$ odd	9. $p=3$
10. $p=2$	11. $p=2$	12. $p=2$	

Figure 2. Ramification structures for $O^{-}(\alpha)$, where α is p-branch abundant for $f \in \mathbb{C}(z)$ and $p \mid \operatorname{deg} f$.

Theorem (Cahn-RJ-Spear)

Let $f \in K(x)$ and fix $m \geq 2$. Then the genus of $Z_{n}: f^{n}(x)=y^{m}$ is bounded as $n \rightarrow \infty$ if and only if one of the following holds:

- $f(x)=c x^{j}(g(x))^{m}$ with $g(x) \in K(x), 0 \leq j \leq m-1, c \in K^{*} ;$
- (requires $m \in\{2,3,4\}$) f is a Lattès map with 0 and ∞ in its post-critical set;
- (requires $m=2$) Either $f(x)$ or $1 / f(1 / x)$ can be written in one of the following ways $\left(B, C \in K^{*}, p, q, r \in K[x] \backslash\{0\}\right)$:

1. $-\frac{p(x)^{2}}{(x-C) q(x)^{2}}$ with $p(x)^{2}+C(x-C) q(x)^{2}=C x r(x)^{2}$;
2. $-\frac{(x-C) p(x)^{2}}{q(x)^{2}}$ with $(x-C) p(x)^{2}+C q(x)^{2}=x r(x)^{2}$;
3. $B \frac{(x-C) p(x)^{2}}{q(x)^{2}}$ with $B(x-C) p(x)^{2}-C q(x)^{2}=-C r(x)^{2}$;
4. $B \frac{x(x-C) p(x)^{2}}{q(x)^{2}}$ with $B x(x-C) p(x)^{2}-C q(x)^{2}=-C r(x)^{2}$;

In each case of the theorem, the genus of Z_{n} is at most 1 for all n.

Theorem (Cahn-RJ-Spear)

Let $f \in K(x)$ and fix $m \geq 2$. Then the genus of $Z_{n}: f^{n}(x)=y^{m}$ is bounded as $n \rightarrow \infty$ if and only if one of the following holds:

- $f(x)=c x^{j}(g(x))^{m}$ with $g(x) \in K(x), 0 \leq j \leq m-1, c \in K^{*} ;$
- (requires $m \in\{2,3,4\}$) f is a Lattès map with 0 and ∞ in its post-critical set;
- (requires $m=2$) Either $f(x)$ or $1 / f(1 / x)$ can be written in one of the following ways $\left(B, C \in K^{*}, p, q, r \in K[x] \backslash\{0\}\right)$:

1. $-\frac{p(x)^{2}}{(x-C) q(x)^{2}}$ with $p(x)^{2}+C(x-C) q(x)^{2}=C x r(x)^{2}$;
2. $-\frac{(x-C) p(x)^{2}}{q(x)^{2}}$ with $(x-C) p(x)^{2}+C q(x)^{2}=x r(x)^{2}$;
3. $B \frac{(x-C) p(x)^{2}}{q(x)^{2}}$ with $B(x-C) p(x)^{2}-C q(x)^{2}=-C r(x)^{2}$;
4. $B \frac{x(x-C) p(x)^{2}}{q(x)^{2}}$ with $B x(x-C) p(x)^{2}-C q(x)^{2}=-\operatorname{Cr}(x)^{2}$;

In each case of the theorem, the genus of Z_{n} is at most 1 for all n.

Theorem (Cahn-RJ-Spear)

Let $f \in K(x)$ and fix $m \geq 2$. Then the genus of $Z_{n}: f^{n}(x)=y^{m}$ is bounded as $n \rightarrow \infty$ if and only if one of the following holds:

- $f(x)=c x^{j}(g(x))^{m}$ with $g(x) \in K(x), 0 \leq j \leq m-1, c \in K^{*} ;$
- (requires $m \in\{2,3,4\}$) f is a Lattès map with 0 and ∞ in its post-critical set;
- (requires $m=2$) Either $f(x)$ or $1 / f(1 / x)$ can be written in one of the following ways $\left(B, C \in K^{*}, p, q, r \in K[x] \backslash\{0\}\right)$:

1. $-\frac{p(x)^{2}}{(x-C) q(x)^{2}}$ with $p(x)^{2}+C(x-C) q(x)^{2}=C x r(x)^{2}$;
2. $-\frac{(x-C) p(x)^{2}}{q(x)^{2}}$ with $(x-C) p(x)^{2}+C q(x)^{2}=x r(x)^{2}$;
3. $B \frac{(x-C) p(x)^{2}}{q(x)^{2}}$ with $B(x-C) p(x)^{2}-C q(x)^{2}=-\operatorname{Cr}(x)^{2}$;
4. $B \frac{x(x-C) p(x)^{2}}{q(x)^{2}}$ with $B x(x-C) p(x)^{2}-C q(x)^{2}=-C r(x)^{2}$;

In each case of the theorem, the genus of Z_{n} is at most 1 for all n.

Lattès maps

We say $f \in \mathbb{C}(z)$ is a Lattès map if there is an elliptic curve E, a morphism $\mu: E \rightarrow E$, and a finite separable map π such that the following diagram commutes:

Natural choices: π is the x-coordinate projection and $\mu=[j]$.

Question

Let $X=\mathbb{A}^{2}$ and $\lambda\left(y_{1}, y_{2}\right)=\left(y_{1}^{m_{1}}, y_{2}^{m_{2}}\right)$ with $m_{1}, m_{2} \geq 2$. Are there interesting examples of $f: \mathbb{A}^{2} \rightarrow \mathbb{A}^{2}$ not of the form $\left(f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right)\right)$ such that $Z_{n}: f^{n}\left(x_{1}, x_{2}\right)=\left(y_{1}^{m_{1}}, y_{2}^{m_{2}}\right)$ is a surface of Kodaira dimension <2 for all n ?

Corollary

Let $f \in K(x)$, fix $m \geq 2$, and suppose that the genus of Z_{n} is bounded as $n \rightarrow \infty$. Then there exist $a>b \geq 0$ with $f^{a}(x)=f^{b}(x)(g(x))^{m}$ for some $g(x) \in K(x)$.

Corollary
$\left\{n: f^{n}(\alpha) \in\left(\mathbb{P}^{1}(K)\right)^{m}\right\}$ is a finite union of arithmetic progressions, of modulus bounded by $a-b$.

Maximum modulus?

Example: let

$$
f(x)=\frac{2(x-2)(x+2)^{3}}{x(x-4)^{3}}
$$

Then $a=3, b=0\left(f^{3}(x)=x(g(x))^{3}\right)$, and no smaller a, b suffice.

$$
O_{f}(6)=\left\{6, \frac{4}{3} \cdot 4^{3},\left(\frac{655}{488}\right)^{3}, 6\left(-\frac{129900299507}{120418942015}\right)^{3}, \ldots\right\}
$$

Indeed, for all $m \geq 3$ the modulus is bounded by m, and this is best possible (independent of K):

Let $f(x)=c x(x+1)^{m}$, where $c \notin K^{p}$ for each prime p dividing m.
Then $f^{i}(1)=c^{i}\left(k_{i}\right)^{m}$ for $k_{i} \in K$, for all $1 \leq i \leq m-1$. But $c^{i} \notin K^{m}$, and so $\left\{n: f^{n}(1) \in\left(\mathbb{P}^{1}(K)\right)^{m}\right\}=\{0, m, 2 m, 3 m, \ldots\}$.

For $m=2$ one must have $a-b \leq 4$. This is attained by certain Lattès maps descending from CM elliptic curves.

Example:

$$
f(x)=(8+4 \sqrt{3}) \frac{(x-1)(x-(4+4 \sqrt{3}))^{2}}{x(x-(6+4 \sqrt{3}))^{2}}
$$

has post-critical orbit

$$
0 \rightarrow \infty \rightarrow 8+4 \sqrt{3} \rightarrow 1 \rightarrow 0
$$

Thus $f^{4}(x)=x(g(x))^{4}$, but $f^{i}(x)$ is not of this form for $i=1,2,3$.
This map arises from taking E to have $C M$ by $\mathbb{Z}[\sqrt{-3}]$, $\mu(P)=[\sqrt{-3}] P+T$, where T is a non-trivial 2-torsion point, and π to be projection onto the x-coordinate.

Question 1: Is it possible for a Lattès map with a post-critical four-cycle to have $\alpha \in K$ with $\left\{n: f^{n}(\alpha) \in\left(\mathbb{P}^{1}(K)\right)^{2}\right\}$ an arithmetic progression of modulus 4?

Question 2: Can Lattès maps with a post-critical four-cycle be defined over \mathbb{Q} ?

Thank you!

