Post-critically finite rational functions over number fields

Rafe Jones

Carleton college

September 26, 2013 Laboratoire de mathématiques de Besançon

イロト イヨト イヨト イヨト

Outline

- I. Post-critically finite (PCF) maps: definitions and examples
- II. Galois representations and finite ramification
- III. A finiteness theorem for PCF maps over number fields:

Theorem (R. Benedetto, P. Ingram, RJ, A. Levy, 2013)

Let $d, B \in \mathbb{Z}$ with $d \ge 2$ and $B \ge 1$. Up to conjugacy, there are only finitely many PCF rational functions of degree d defined over a number field of degree at most B, except for flexible Lattès maps.

イロト イポト イヨト イヨト

Setup Examples

Setup

Let $\phi \in \mathbb{C}(z)$ be a rational function of degree $d \geq 2$.

Denote by ϕ^n the *n*-fold composition of ϕ with itself.

We say ϕ and ψ are *conjugate* if there is a Möbius transformation $f \in PGL_2(\mathbb{C})$ with $f \circ \phi \circ f^{-1} = \psi$.

・ロト ・回ト ・ヨト ・ヨト

Setup Examples

Setup, continued

Riemann-Hurwitz: counting multiplicity, ϕ has 2d - 2 critical points in $\mathbb{P}^1(\mathbb{C})$.

Definition

The orbit of $\alpha \in \mathbb{C}$ under ϕ is the set

$$O_{\phi}(\alpha) = \{\alpha, \phi(\alpha), \phi^2(\alpha), \ldots\}.$$

We say that ϕ is *post-critically finite* (PCF) if for every critical point γ of ϕ , the orbit $O_{\phi}(\gamma)$ is finite. Every conjugate of a PCF map is PCF.

イロト イポト イヨト イヨト

Setup Examples

Examples

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Lattès maps

Setup Examples

We say $\phi \in \mathbb{C}(z)$ is a *Lattès map* if there is an elliptic curve *E*, a morphism $\alpha : E \to E$, and a finite separable map π such that the following diagram commutes:

イロト イヨト イヨト イヨト

Post-critically finite maps

Setup Examples

Galois representations and finite ramification A finiteness theorem for PCF maps

Natural choices: let π be the double cover given by $\pi(P) = x(P)$, and let $\alpha = [m]$.

The resulting maps are called *flexible Lattès maps*. If $\alpha = [m]$ for fixed *m*, and *E* varies, we obtain a family of non-conjugate maps.

イロト イポト イヨト イヨト

Post-critically finite maps

Galois representations and finite ramification A finiteness theorem for PCF maps Setup Examples

Claim: $\phi_{E,m}$ is PCF.

[m] is unramified, so critical points of $\phi_{E,m}$ come from $P \neq Q$ with

$$x(P) = x(Q)$$
 and $[m]P = [m]Q$.

 $x(P) = x(Q) \Rightarrow Q = -P$, so want $P \neq -P$ and [m]P = [-m]Pi. e., want $P \in E[2m] \setminus E[2]$

(ロ) (同) (E) (E) (E)

Setup Examples

Thus
$$\operatorname{Crit}_{\phi_{E,m}} = \{x(P) : P \in E[2m] \setminus E[2]\}.$$

For $n \ge 1$,
 $\phi_{E,m}^n(x(P)) = x([m^n]P).$

If $P \in E[2m] \setminus E[2]$, then $[m^n]P \in E[2]$ for $n \ge 1$. Therefore $\phi_{E,m}$ is PCF, as desired.

Example:
$$E: y^2 = x^3 - x$$
, $m = 2$. $\phi_{E,m} = \frac{x^4 + 2x^2 + 1}{4x^3 - 4x}$.

・ロン ・四マ ・ヨマ ・ヨマ

PCF maps in dynamics Galois representations from pre-image trees Finite ramification

PCF maps in dynamics

・ロト ・回ト ・ヨト ・ヨト

PCF maps in dynamics Galois representations from pre-image trees Finite ramification

Arboreal Galois representations

Let K be a number field, $\phi \in K(z)$, and $b \in \mathbb{P}^1(K)$.

The preimage tree of ϕ with root b has vertex set

$$\bigsqcup_{i\geq 0}\phi^{-i}(b),$$

with two elements connected iff ϕ maps one to the other.

Denote this tree by T_{∞} , and its truncation to the *n*th level by T_n . For simplicity, assume that T_{∞} contains no critical points, so that it is a complete *d*-ary rooted tree.

First two levels of preimage tree of $f(x) = \frac{x^2+1}{x}, b = 0.$

・ロン ・回と ・ヨン ・ヨン

æ

Let
$$K_n = K(\phi^{-n}(b))$$
, and note $K_{n+1} \supseteq K_n$. Let $K_{\infty} = \bigcup K_n$.

Let $G_n = \text{Gal}(K_n/K)$, and $G_{\infty} = \varprojlim G_n$. All these objects depend on ϕ and b, but to ease notation we don't make explicit reference to this dependence.

We have injections

$$G_n \hookrightarrow \operatorname{Aut}(T_n) \cong (S_d)^{\operatorname{wr}(n)} \qquad G_\infty \hookrightarrow \operatorname{Aut}(T_\infty).$$

The latter is the arboreal Galois representation associated to ϕ , b.

When d = 2, G_n is a 2-group, and G_∞ is a pro-2 group.

・ロン ・回 ・ ・ ヨン・ ・ ヨン・

PCF maps in dynamics Galois representations from pre-image trees Finite ramification

Lattès maps, once again

If $\phi_{E,m}$ is a flexible Lattès map and $b = \infty$, then

$$K_n = K(x(E[m^n])).$$

When $m = \ell$ is prime, then

$$G_{\infty} \hookrightarrow \mathrm{GL}_{2}(\mathbb{Z}_{\ell}),$$

and G_{∞} is a subgroup of index at most 2 of the image of the ℓ -adic representation attached to E.

・ロット (四) (日) (日)

PCF maps in dynamics Galois representations from pre-image trees Finite ramification

Finitely ramified representations

Theorem (Aitken-Hajir-Maire 2005, Hajir-Cullinan 2012) Let K be a number field and $\phi \in K(z)$. If ϕ is PCF, then the extension K_{∞}/K is ramified over only finitely many primes of K.

Already known for Lattès maps $\phi_{E,\ell}$ with $b = \infty$: K_{∞} can ramify only at ℓ and the primes of bad reduction for E.

イロト イポト イヨト イヨト

Let $\phi(x) = p(x)/q(x)$ with p, q relatively prime. Assume for simplicity that ∞ is not a critical point of ϕ and b = 0. Then K_{∞} can ramify only over primes of K dividing one of the following:

- 1. $\prod_{\gamma} \phi^i(\gamma)$, where the product is over the critical points γ of ϕ , and over *i* with $1 \le i \le n$.
- 2. The leading coefficient of pq' qp'.
- 3. The leading coefficients of p and q.
- 4. The resultant of p and q.

When ϕ is a monic polynomial, (3) and (4) in the above list are both 1, and (2) is just the degree of ϕ .

(ロ) (同) (E) (E) (E)

Example Let $K = \mathbb{Q}$ and $\phi(x) = x^2 - 2$. $0 \mapsto -2 \mapsto 2 \mapsto 2$ K_{∞} is ramified over \mathbb{Q} only at the prime 2.

 $K_n = \mathbb{Q}(\zeta_{2^{n+2}} + \zeta_{2^{n+2}}^{-1}).$ So $G_n \cong \mathbb{Z}/2^n\mathbb{Z}$, $G_\infty \cong \mathbb{Z}_2$.

Example Let $K = \mathbb{Q}$ and $\phi(x) = (x+1)^2 - 2$. $-1 \mapsto -2 \mapsto -1$ K_{∞} is ramified over \mathbb{Q} only at 2 and ∞ .

$$\begin{aligned} &\#G_2 = 2^3 \\ &\#G_3 = 2^6 \\ &\#G_4 = 2^{11} \\ &\#G_5 = 2^{22} \\ &\#G_6 = 2^{43} \text{ (J. Klüners)} \\ &\#G_7 = 2^{86} \text{ (M. Watkins - MAGMA)} \\ &\#G_8 = 2^{171} \end{aligned}$$

・ロン ・回と ・ヨン・

Post-critically finite maps	PCF maps in dynamics
Galois representations and finite ramification	Galois representations from pre-image trees
A finiteness theorem for PCF maps	Finite ramification

Question: Does there exists a number field K and a PCF map $\phi \in K(x)$ of degree 2 such that K_{∞} is unramified at 2?

・ロト ・回ト ・ヨト ・ヨト

PCF maps in dynamics Galois representations from pre-image trees Finite ramification

An overgroup for G_{∞}

Return to an arbitrary number field K. Instead of b = 0, take b = t, where t is transcendental over K, and work over K(t).

Let $\phi \in K(x)$ be post-critically finite, and put

$$K_{n,t} := K(t)(\phi^{-n}(t))$$
 $G_n^{K(t)} := \operatorname{Gal}(K_{n,t}/K(t)).$

The isomorphism class of $G_{\infty}^{\mathcal{K}(t)}$ is invariant under conjugation of ϕ . It contains G_{∞} as a subgroup (specialization t = b).

We have an exact sequence

$$1 \to G_{\infty}^{\mathbb{C}(t)} \to G_{\infty}^{K(t)} \to \operatorname{Gal}(L/K) \to 1,$$

where $L = \overline{K} \cap K_{\infty,t}$.

The group $G_{\infty}^{\mathbb{C}(t)}$ is the *profinite iterated monodromy group* of f(x).

It is a (topologically) finitely generated group satisfying a property known as self-similarity.

The action of its generators on T_{∞} is given by an explicitly computable finite automaton, which can be calculated via a beautiful theory involving lifts of loops in \mathbb{C} . (V. Nekrashevych)

・ロン ・回と ・ヨン ・ヨン

Example: $\mathcal{K} = \mathbb{Q}$, $\phi(x) = x^2 - 2$. Then $G_{\infty}^{\mathbb{C}(t)}$ is the pro-2 completion of the infinite Dihedral group D_{∞} .

Example: $K = \mathbb{Q}$, $\phi(x) = x^2 - 1$. Then $G_{\infty}^{\mathbb{C}(t)}$ is the pro-2 completion of the *Basilica group B*. Note that $(x + 1)^2 - 2$ is conjugate to $x^2 - 1$ by $x \mapsto x + 1$.

Recent work of R. Pink shows that $G_{\infty}^{K(t)}$ is also a self-similar group.

Moreover, if ϕ is a (PCF) quadratic polynomial whose finite critical point does not have a periodic orbit, then $G_{\infty}^{\mathbb{C}(t)}$ is isomorphic to a subgroup of $G_{\infty}^{K(t)}$ of index at most 4.

Post-critically finite maps	Multipliers and McMullen's theorem
Galois representations and finite ramification	Heights
A finiteness theorem for PCF maps	A non-archimedean version of a theorem of Fatou

Theorem (R. Benedetto, P. Ingram, RJ, A. Levy, 2013) Let $d, B \in \mathbb{Z}$ with $d \ge 2$ and $B \ge 1$. Up to conjugacy, there are only finitely many PCF rational functions of degree d defined over a number field of degree at most B, except for flexible Lattès maps.

向下 イヨト イヨト

Corollary (M. Manes, D. Yap, 2013)

Suppose that $\phi \in \mathbb{Q}(z)$ is quadratic and PCF. Then ϕ is conjugate to one of the following:

$$\begin{array}{ccccccc} z^2 & z^2 - 2 & z^2 - 1 & 1/z^2 \\ \\ \frac{1}{(z-1)^2} & \frac{1}{2(z-1)^2} & \frac{2}{(z-1)^2} & \frac{-1}{4z^2 - 4z} \\ \\ \frac{-4}{9z^2 - 12z} & \frac{2z+1}{4z - 2z^2} & \frac{-2z}{2z^2 - 4z + 1} & \frac{3z^2 - 4z + 1}{1 - 4z} \end{array}$$

Moreover, none of these twelve is conjugate to any of the others.

イロト イポト イヨト イヨト

Multipliers

Ϋ́S

Let K be a field, $\phi \in K(z)$.

Let $\gamma \in \mathbb{P}^1(K)$ be a fixed point of ϕ . The *multiplier* of γ is $\lambda := \phi'(\gamma) \in K$. The set of multipliers of the fixed points of ϕ is invariant under conjugation of ϕ .

Changing coordinates so $\gamma={\rm 0},$ we have

 $\phi(z) = \lambda z + \text{higher order terms}$

in some neighborhood of zero.

We say γ is *attracting* with respect to an absolute value $|\cdot|$ on K if $|\lambda| < 1$.

Extend these definitions to *n*-periodic points of ϕ by considering them as fixed points of ϕ^n .

Multipliers and McMullen's theorem

A non-archimedean version of a theorem of Fatou

Heights

Multipliers and McMullen's theorem Heights A non-archimedean version of a theorem of Fatou

McMullen's theorem

For $\phi \in \mathbb{C}(z)$, denote by $M_n(\phi)$ the unordered set of multipliers of all *n*-periodic points of ϕ .

Theorem (McMullen, 1987)

For fixed $d \ge 2$, there exists $N_d \ge 1$ such that the set

$$\mathcal{M}(N_d) := M_1(\phi) \sqcup M_2(\phi) \sqcup \cdots \sqcup M_{N_d}(\phi)$$

determines the conjugacy class of ϕ up to finitely many choices, unless ϕ is a flexible Lattès map.

Special bonus (Milnor): $N_2 = 1$, and $\mathcal{M}(1)$ uniquely determines the conjugacy class of ϕ when ϕ is quadratic.

・ロン ・回と ・ヨン ・ヨン

Proof strategy

By Thurston rigidity, the multipliers of a PCF map $\phi \in \mathbb{C}(z)$ all lie in $\overline{\mathbb{Q}}$. Thus if ϕ is PCF of degree d, then $\mathcal{M}(N_d) \subset (\overline{\mathbb{Q}})^k$ for some positive integer k.

- If φ is PCF of degree d, show that M(N_d) belongs to a set of bounded height.
- ► Observe that If φ is defined over a number field of degree at most B, then M(N_d) is defined over a number field of degree at most B'.
- ▶ By standard properties of height, there are only finitely many possibilities for $\mathcal{M}(N_d)$.
- From McMullen's theorem, conclude that φ belongs to a finite collection of conjugacy classes.

・ロン ・回 と ・ ヨ と ・ ヨ と

Multipliers and McMullen's theorem Heights A non-archimedean version of a theorem of Fatou

Heights

Definition

The *height* of $\alpha \in K$, where K is a finite extension of \mathbb{Q} , is defined by

$$h(\alpha) = \sum_{\nu \in \mathcal{M}_{\mathcal{K}}} \frac{[\mathcal{K}_{\nu} : \mathbb{Q}_{\nu}]}{[\mathcal{K} : \mathbb{Q}]} \log \max\{1, |\alpha|_{\nu}\},$$

where M_K denotes the set of absolute values of K, and K_v denotes the completion of K with respect to the absolute value v.

- h(α) is invariant under finite extensions of K, so h : Q → R is well-defined.
- ▶ for $A, B \in \mathbb{Z}_{\geq 0}$, there are only finitely many $\alpha \in \overline{\mathbb{Q}}$ satisfying both

$$h(\alpha) \leq A$$
 and $[\mathbb{Q}(\alpha) : \mathbb{Q}] \leq B$.

(ロ) (同) (E) (E) (E)

A non-archimedean version of a theorem of Fatou

Theorem (Fatou, 1920)

Let $\phi \in \mathbb{C}(z)$. A cycle of ϕ whose multiplier satisfies $|\lambda| < 1$ strictly attracts a critical point of ϕ .

Key observation: a PCF rational function ϕ cannot have any critical points strictly attracted to a cycle. So every multiplier of ϕ satisfies $|\lambda| \ge 1$.

Hope: prove that if ϕ is defined over a number field K, in fact $|\lambda| \ge 1$ for every absolute value on K.

Example: $\phi(z) = z^p$. Every cycle is attracting with respect to the *p*-adic absolute value.

Example: $\phi(z) = z^2 - 4z$. The fixed point 0 has multiplier 4, and so is 2-adically attracting. But $2 \mapsto -4 \mapsto 0$, so 0 does not strictly attract a critical point.

Theorem (Benedetto-Ingram-J-Levy)

Let $\phi \in L(z)$, where L has characteristic zero, residue characteristic p, and is complete with respect to a non-archimedean absolute value $|\cdot|_p$. There exists $\epsilon_p \leq 1$ such that any cycle whose multiplier satisfies $|\lambda|_p < \epsilon_p$ strictly attracts a critical point. Moreover, if p > d, then $\epsilon_p = 1$.

More precisely, we can take

$$\epsilon_p = \min\{|m|_p^d : 1 \le m \le d\}.$$

Example: When d = 2, $\epsilon_2 = 1/4$ and $\epsilon_p = 1$ for $p \ge 3$. Note the bound of 1/4 cannot be improved.

This shows that if λ is the multiplier of a fixed point of a quadratic rational map $\phi \in \mathbb{C}(z)$, then $h(\lambda) \leq \log 4$.