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Abstract. Let f ∈ Z[x], and consider the recurrence given by an = f(an−1),

with a0 ∈ Z. Denote by P (f, a0) the set of prime divisors of this recurrence,
i.e., the set of primes p dividing some non-zero an, and denote the natural den-

sity of this set by D(P (f, a0)). The problem of determining D(P (f, a0)) when

f is linear has attracted significant study, although it remains unresolved in full
generality. In this paper we consider the case of f quadratic, where previously

D(P (f, a0)) was known only in a few cases. We show D(P (f, a0)) = 0 regard-

less of a0 for four infinite families of f , including f = x2 +k, k ∈ Z\{−1}. The
proof relies on tools from group theory and probability theory to formulate a

sufficient condition for D(P (f, a0)) = 0 in terms of arithmetic properties of
the forward orbit of the critical point of f . This provides an analogy to results

in real and complex dynamics, where analytic properties of the forward orbit

of the critical point have been shown to determine many global dynamical
properties of a quadratic polynomial. The article also includes apparently new

work on the irreducibility of iterates of quadratic polynomials.

1. Introduction

1 Let an = f(an−1, . . . , an−k) be a recursively defined sequence of order k, where
f is a polynomial in k variables. Many well-known sequences belong to this class,
such as the Fibonacci numbers (F0 = F1 = 1, Fn = Fn−1 + Fn−2), the Lucas
numbers (L0 = 1, L1 = 3, Ln = Ln−1 + Ln−2), the Fermat numbers tn = 22n

+ 1
(t0 = 3, tn = (tn−1 − 1)2 + 1), and the Mersenne numbers mn = 2n − 1 (m0 =
0,mn = 2mn−1 + 1). The set of prime divisors of an, namely

(1) P (an) = {p prime : p divides ai for some i ≥ 0 with ai 6= 0}
has attracted great interest, although it often is too much to hope for a complete
understanding of this set. For instance, since the Fermat numbers tn are relatively
prime, a full understanding of P (tn) would permit one to resolve the well-known
conjecture that only finitely many of the tn are prime. In this paper we consider
the natural density D(P (an)) for certain an. Recall that the natural density of a
set S of primes is

(2) D(S) = lim
x→∞

#{p ∈ S : p ≤ x}
#{p : p ≤ x}

,

provided that this limit exists.
When an is a linear recurrence, the density of P (an) has been much studied, e.g.

[4], [10], [13], [21], [15]. Note that P (an) is infinite, excluding a few degenerate cases
[7], [23]. It is easy to see that P (mn) contains all p 6= 2 and P (Fn) contains all p (see
e.g. [24] for the latter). However, the same is not true of Ln: Lagarias [13] shows
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D(P (Ln)) = 2/3. Moreover, Hasse [10] showed that the sequence an = 2n + 1,
a relative of the Mersenne numbers, satisfies D(P (an)) = 17/24. More generally,
Moree and Stevenhagen [15], drawing on and correcting work of Stephens [21], have
studied a class of recurrences including the case an = (b+1)an−1−ban−2. Assuming
the Riemann Hypothesis for certain Kummer extensions, and with mild conditions
on a0 and a1, they show that D(P (an)) is positive and depends in a delicate way
on b [15, Theorem 4]. Lagarias [13] remarks that under the Generalized Riemann
Hypothesis it is possible to show that D(P (an)) exists and is positive for any non-
degenerate second-order linear recurrence an.

We restrict our attention in this work to recurrences with first-order representa-
tions, that is, sequences an = f(an−1) with f ∈ Z[x] and a0 ∈ Z (such a sequence
also has a kth-order representation for any k ≥ 1). These sequences are orbits of
integers in the arithmetic dynamical system defined by iteration of f . We write
P (f, a0) instead of P (an), and our main concern is to determine D(P (f, a0)) for
various f and a0. If f is linear, then writing f = bx+ c we note that our sequence
satisfies an = (b + 1)an−1 − ban−2, with a1 = ba0 + c. This is the case treated in
[15].

By contrast, the case where deg(f) ≥ 2 has received relatively little attention.
The main result is of Odoni [17], who proves that “most” polynomials of degree d
have the property that all of their integer orbits contain a “very small” proportion
of the primes. More specifically, he shows the following: let A(d,N) denote the set
of monic f with deg(f) = d ≥ 2 and coefficients of absolute value at most N . Then
for any ε > 0, as N → ∞ the proportion of f ∈ A(d,N) with D(P (f, a0)) < ε for
all a0 ∈ Z approaches 1. Odoni obtains his result by considering the generic monic
of degree d and applying a version of the Hilbert irreducibility theorem. Thus the
nature of the exceptional set is not explicit, and the result does not determine
D(P (f, a0)) for any specific f and a0.

On the other hand, in [18] Odoni gives a thorough analysis of Sylvester’s se-
quence, namely w0 = 2, wn = 1+w0w1 · · ·wn−1. This sequence has a long and rich
history and many interesting properties. Among those that attracted Odoni’s at-
tention are its reminiscence of Euclid’s proof of the infinitude of the primes and the
fact that the sequence is also given by w0 = 2, wn = f(wn−1), where f = x2−x+1.
Odoni shows that D(P (f, a0)) = 0 for all a0 ∈ Z.

In this article we consider the case deg(f) = 2. We note that P (f, a0) is infinite
as long as f 6= x2 and {fn(a0) : n ∈ N} is infinite; we prove this in Section 6. For
n ≥ 1 we denote the nth iterate of f by fn, and we take f0 = x. To give our
primary results, we need a few preliminaries. First, to deal with the case when
some iterate of f is reducible, it is desirable to have results for translated iterated
sequences, that is, those of the form g(fn(a0)), where g, f ∈ Z[x]. We denote by
P (g, f, a0) the set of primes dividing at least one non-zero term of this sequence.
Second, by a rigid divisibility sequence, we mean a sequence bn of S-integers in Q
with two properties: first, for all p 6∈ S, vp(bn) > 0 implies vp(bmn) = vp(bn) for
all m ≥ 1; second, for all p 6∈ S, pe | cn and pe | cm implies pe | cgcd(m,n). This
is a strengthening of the notion of divisibility sequence (i.e., bn | bmn in the case
S = ∅). The cases of interest to us always have S = {2} or S = ∅.

Theorem 1.1. Let f, g ∈ Z[x] be monic with f quadratic, and let γ be the critical
point of f . Suppose that g ◦ fn is irreducible for all n ≥ 0 and the set {g(fn(γ))}
is infinite. If either
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(1) g divides fr for some r ≥ 0 and the set {fn(0) : n = 1, 2, . . .} is finite and
does not contain 0, or

(2) the sequence (g(fn(γ)) : n = 1, 2, . . .) is a rigid divisibility sequence,
then D(P (g, f, a0)) = 0 for all a0 ∈ Z.

Our most frequent application of 1 is when g(x) = x, in which case g divides
f0 = x. The polynomials f meeting the hypothesis of Theorem 1.1 fall into several
families, and these are the subjects of our second main result. We remark that the
proof of Theorem 1.1, part 1 generalizes easily to the setting where Z is replaced by
the ring of integers in a number field, and there it may apply to more polynomials
(see p. 13).

Theorem 1.2. Suppose one of the following holds:
(1) f = x2 − kx+ k for some k ∈ Z
(2) f = x2 + kx− 1 for some k ∈ Z\{0, 2}
(3) f = x2 + k for some k ∈ Z\{−1}
(4) f = x2 − 2kx+ k for some k ∈ Z\{±1}.

Then D(P (f, a0)) = 0 for all a0 ∈ Z.

We note that the recurrence given by wn = k + w0w1 · · ·wn−1 satisfies wn =
f(wn−1), where f = x2 − kx + k, whence part 1 of Theorem 1.2 generalizes the
sequence considered in [18]. Note also that it is not true that D(P (f, a0)) = 0 for
all monic, quadratic f ∈ Z[x]. Indeed, if f = (x − k)2 + k with k = ±p for any
prime p ≥ 3, then one can show D(P (f, 0)) = 1/3. However, it seems likely that
D(P (f, a0)) = 0 for nearly all f whose critical point has infinite forward orbit (see
Conjectures 1 and 2). The ineffectivity of Theorems 1.1 and 1.2 is due to the use
of Siegel’s theorem on finiteness of integral points on elliptic curves.

The method of proof of Theorems 1.1 and 1.2 revolves around a study of the
Galois tower generated by the polynomials g ◦ fn for n = 1, 2, . . .. We focus on the
Galois groups Hn(f, g) of the extensions Q(roots of g ◦ fn)/Q(roots of g ◦ fn−1).
To accomplish this, we amplify the techniques introduced in [12] from the theory of
stochastic processes. This is the primary focus of sections 2 and 3, which build up
to a proof of Theorem 1.1. One important step is Lemma 3.1, which shows that to
establish D(P (f, a0)) = 0, it is generally enough to prove that Hn(f, g) is as large
as possible for infinitely many n. By way of comparison, note that in [17] and [18]
the results are achieved by showing Hn(f, g) is as large as possible for all n. To
apply Theorem 1.1 to specific families, we require results on the irreducibility of
iterates of quadratic polynomials over Q. This is the subject of section 4, and these
results are apparently new. In section 5 we draw on the previous four sections to
prove Theorem 1.2.

A key step in the proof of Theorem 1.1 is Theorem 3.3, which shows thatHn(f, g)
is as large as possible only when the set {g(f i(γ)) : i = 1, 2, . . . , n} satisfies certain
arithmetic properties, where γ is the critical point of f . Thus the density of P (f, a0)
depends on arithmetic properties of the critical orbit {g(f i(γ)) : i = 1, 2, . . .} of
f . This makes for a striking analogy with complex and real dynamics, where
analytic properties of the critical orbit of a quadratic polynomial have been shown
to determine fundamental dynamical behavior of the polynomial. For instance, if
f ∈ C[z] is quadratic, then membership in the Mandelbrot set – and equivalently
the connectedness of the filled Julia set of f – is determined by whether the critical
orbit remains bounded [5, Section 3.8]. If f ∈ R[x] is of the form a − x2 for
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−1/4 ≤ a ≤ 2 the Collet-Eckmann condition states that if |f ′| grows exponentially
along the critical orbit, then f exhibits stochastic behavior on an invariant interval.
An important question is whether almost all maps in this family satisfy the Collet-
Eckmann condition; this question was recently resolved in the affirmative by Avila
and Moreira [2].

2. Galois processes and eventual martingales

Our main technique is to relate the density of P (g, f, a0) to properties of the
Galois groups of g ◦ fn over Q. In order to do this, we make use of the notion of
Galois processes [12].

Let K be a field and g, f ∈ K[x] such that g ◦ fn is separable for all n ≥ 0
(we take f0 to be the identity map). Denote the splitting field of g ◦ fn over K
by K(g ◦ fn). Clearly K(g ◦ fn) ⊇ K(g ◦ fn−1). We now let GP (f, g) be the
Galois process of this tower, as defined in [12, page 13]; for completeness we give
the construction in the present case. Define Gn(f, g) to be Gal (K(g ◦ fn)/K) and
Hn(f, g) to be Gal (K(g ◦fn)/K(g ◦fn−1)). Let G(f, g) = lim

←
Gn(f, g), and take P

to be a Harr measure on G(f, g) with P(G(f, g)) = 1. Letting B be the Borel sigma
algebra, the triple (G(f, g),P,B) is then a probability space. Denote by ψn the
natural projection G(f, g) → Gn(f, g), and define random variables Xn on G(f, g)
as follows:

Xn(σ) = number of roots of g ◦ fn fixed by ψn(σ).

The data (G(f, g),P,B, {Xn}n≥0) by definition give a stochastic process, which we
call the Galois process of g ◦ fn, and denote GP (f, g). Intuitively, this process
resembles a random walk through successively larger quotients of G(f, g) that is
compatible with the natural restriction maps. Positions at each level are assigned
a value based on the number of roots of g ◦ fn left fixed. Note that it follows from
basic properties of Haar measure that

(3) P(X0 = t0, . . . , Xn = tn) =
1

#Gn(f, g)
#

{
σ ∈ Gn(f, g) : σ fixes ti roots of g ◦ f i for i = 0, 1, . . . , n

}
.

The following result links D(P (f, a0)) to Galois processes. We wish to consider
f that may have reducible iterates, and thus it becomes necessary to deal with
translates of recurrences. Given a recurrence an with terms in K and g ∈ K[x], we
refer to the sequence g(an) as a polynomial translate of an.

Theorem 2.1. Let f, g ∈ Z[x] be polynomials with g ◦ fn separable for all n. Let
an = fn(a0) with a0 ∈ Z. The density of prime divisors of g(an) : n = 0, 1, 2, . . . is
bounded above by

lim
n→∞

P(Xn > 0),

where Xn is the nth random variable in GP (f, g).

Remark. It is also true that if g = id, then lim
n→∞

P(Xn > 0) furnishes an upper

bound for the density of primes p such that 0 is periodic in Z/pZ under iteration of
f . This follows from the fact that 0 is periodic in Z/pZ if and only if f−n(0)∩Z is
non-empty for all n ≥ 1; cf [12, Proposition 3.1]. Thus Theorem 1.2 shows that for
the families in question, the density of p with 0 periodic in Z/pZ under f is zero.
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Remark. With trivial modifications to the proof the Theorem can be made to apply
with Z replaced by the ring of integers OK in a number field K.

Proof. Let

ΩN = {p : p - Disc (g ◦ fN ) and g(fN (x)) ≡ 0 mod p has no solution in Z}.

If p ∈ ΩN , then clearly g(fn(a0)) 6≡ 0 (mod p) for all n ≥ N . Thus p - g(an) for
all n ≥ N . There are only finitely many p with p | g(an) for some n < N , and also
only finitely many dividing Disc (g ◦ fN ). Therefore

(4) D(ΩN ) ≤ D({p : p - g(an) for all n ≥ 1}).

If p - Disc (g ◦ fN ), then p cannot divide the discriminant of the splitting field
Q(g ◦ fN ) of g ◦ fN [16, Corollary 2, p. 157], so p is unramified in Q(g ◦ fN ). Now
g(fN (x)) ≡ 0 (mod p) having a solution in Z is equivalent to g(fN (x)) having
at least one linear factor in (Z/pZ)[x]. Except for possibly finitely many p, this
implies that pOK = P1 · · ·Pr, where K/Q is obtained by adjoining a root of g◦fN ,
OK is the ring of integers, and at least one of the Pi has residue class degree one
[16, Theorem 4.12]. This is equivalent to the disjoint cycle decomposition of the
Frobenius conjugacy class at p having a fixed point (in the natural permutation
representation of GN (f, g) = Gal (Q(g ◦ fN )/Q) on the roots of g ◦ fN ). From the
Chebotarev Density Theorem it follows [16, Proposition 7.15] that the density of p
with pOK having such a decomposition is

1
#GN (f, g)

#{σ ∈ GN (f, g) : σ fixes at least one root of g ◦ fN},

and by (3) this is simply P(XN > 0). Thus P(XN > 0) = 1 −D(ΩN ). From (4),
we now have

P(XN > 0) ≥ 1−D({p : p - g(an) for all n ≥ 1}),

and this last expression is the same as D({p : p | g(an) for some n ≥ 1}). �

In light of this result, we study the long-term behavior of GP (f, g); this occupies
the remainder of this section and also the next section. Our main results show that
GP (f, g) has certain convergence properties, and require the following definition:

Definition. A stochastic process X0, X1, X2, . . . taking values in Z is a martingale
if for all n ≥ 1 and any ti ∈ Z,

E(Xn | X0 = t0, X1 = t1, . . . , Xn−1 = tn−1) = tn−1.

We call X0, X1, X2, . . . an eventual martingale if for some N the process XN , XN+1, XN+2, . . .
is a martingale.

Martingales are important chiefly because they often converge in the following
sense:

Definition. Let X1, X2, . . . be a stochastic process defined on the probability space
(Ω,P,F). The process converges if

P
(
ω ∈ Ω : lim

n→∞
Xn(ω) exists

)
= 1.

Note that convergence does not depend on any finite collection of Xn. We give
one martingale convergence theorem (see e.g. [9, Section 12.3] for a proof)
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Theorem 2.2. Let M = (X1, X2, . . .) be a martingale whose random variables take
nonnegative real values. Then M converges.

Since the random variables in GP (f, g) take nonnegative integer values, we im-
mediately have the following:

Corollary 2.3. Suppose that GP (f, g) is an eventual martingale. Then

P({σ ∈ G(f, g) : X1(σ), X2(σ), . . . is eventually constant}) = 1.

A fruitful point of view of the groups Gn(f, g) is as automorphism groups of
rooted forests. A rooted forest is a disjoint union of trees, each with a distinguished
vertex called its root. There is a natural filtration of the forest provided by the
distance to a root. We say a rooted forest is complete of degree d if each vertex is
connected to precisely d others, and that the forest has height h if the length of
the longest path is h. We may form a rooted forest from the polynomials g ◦ fn

as follows: take the roots (in the polynomial sense) of g to be V0, the set of roots
(in the graph sense) of the forest, and for each n ≥ 1, let Vn be the set of roots of
g ◦ fn. Two vertices vn−1 ∈ Vn−1 and vn ∈ Vn are connected if f(vn) = vn−1. For
each root α of g, the set {v : f i(v) = α for some i} forms a tree with root α. It is
easy to check that this defines a rooted forest.

A group G acts on a rooted forest with vertices V if there is an action of G on the
set V such that for all σ ∈ G, v is connected to v′ if and only if σ(v) is connected
to σ(v′).

Lemma 2.4. Let G be a group acting on a rooted forest of height n, and denote the
vertices of distance i from a root by Vi. Let v0 ∈ Vn−1, and suppose the subgroup
H = {σ ∈ G : σ(v) = v for all v ∈ Vn−1} acts transitively on Ev0 = {v ∈ Vn :
v is connected to v0}. Finally, let σ ∈ G satisfy σ(v0) = v0. Then

(5)
1

#H

∑
τ∈H

#{v ∈ Ev0 : στ(v) = v} = 1.

Proof. Since σ(v0) = v0, each element of σH permutes Ev0 . Note that∑
τ∈H

#{v ∈ Ev0 : στ(v) = v} =
∑
τ∈H

∑
v∈Ev0

ε(v, τ),

where ε(v, τ) = 1 if στ(v) = v and ε(v, τ) = 0 otherwise. Interchanging the sums
yields

(6)
∑

v∈Ev0

#Stab σH(v).

Now given v ∈ Ev0 , by the transitivity of H we can choose τ ′ ∈ H with τ ′(v) =
σ−1(v). We then have στ(v) = v if and only if τ ′−1τ(v) = v. Thus

#Stab σH(v) = #{τ ∈ H : τ ′−1τ(v) = v} = #Stab H(v).

By standard group theory and the transitivity ofH, we have #Stab H(v) = #H/#Ev0 .
Hence the expression in (6) is #H. �

Theorem 2.5. Let f, g ∈ K[x] be such that g ◦ fn is separable for all n ≥ 0.
Suppose that there exists n0 such that for all n ≥ n0 and every root α of g ◦ fn−1,
the polynomial f(x)−α is irreducible over the splitting field K(g◦fn−1) of g◦fn−1.
Then GP (f, g) is an eventual martingale.
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Proof. By the definition of eventual martingale and conditional expectation, we
must show that there is an N such that for n > N , the expression

(7)
∑

k

k · P(XN = tN , . . . , Xn−1 = tn−1, Xn = k)
P(XN = tN , . . . , Xn−1 = tn−1)

is equal to tn−1, for any fixed values of the ti. We take N to be n0. Put

S = {σ ∈ Gn(f, g) : σ fixes ti roots of g ◦ f i for N ≤ i ≤ n− 1}
Sk = {σ ∈ S : σ fixes k roots of g ◦ fn}

From the basic property of GP(f, g) given in (3), the expression in (7) is equal to∑
k

k · #Sk

#S

This in turn may be rewritten as

(8)
1

#S

∑
σ∈S

(number of roots of g ◦ fn fixed by σ) .

We denote Hn(f, g) by H. Note that if τ ∈ H, then τ fixes the roots of g ◦ f i

for N ≤ i ≤ n − 1. Thus S is invariant under multiplication by H, whence S is a
union of cosets of H. Let σH ⊆ S, and let T be the complete binary infinite rooted
forest corresponding to the translated iterates g ◦ fn. Note that if Tn denotes the
height n rooted forest consisting of the first n levels of T , then Gn(f, g) acts as
automorphisms of Tn and H is the subgroup stabilizing the vertices of height n−1.

Let α0 be a vertex of height n − 1, and suppose that σ(α0) = α0. We have the
following factorization of g ◦ fn over K(g ◦ fn−1):

(9) g ◦ fn =
∏

α root of g ◦ fn−1

f(x)− α.

Thus the irreducibility of f(x) − α0 implies that H acts transitively on the set
Eα0 = {β root of g ◦ fn : f(β) = α0}, which is the set of vertices of height n
connected to α0. By Lemma 2.4, we have

1
#H

∑
τ∈H

#{β ∈ Eα0 : στ(β) = β} = 1.

On the other hand, if α is a vertex of height n−1 and σ(α) = α′ for some α′ 6= α
then σ maps the roots of f(x) − α to the roots of f(x) − α′, and hence fixes no
roots of f(x) − α. Since σ ∈ S, we have that σ fixes tn−1 roots of g ◦ fn−1, so it
follows that

1
#H

∑
τ∈H

#{roots of g ◦ fn fixed by στ} = tn−1.

Since S is a union of cosets of H, the expression in (8) equals tn−1. �

Lemma 2.6. Let f, g ∈ K[x] where f and g have respectively degrees df , dg and
leading coefficients a, b, and let γ1, γ2, . . . , γd−1 be the critical points of f . Put
∆n = Disc (g ◦ fn). Then for all n ≥ 1 we have

∆n = ±∆df

n−1d
k1
f a

k2bk3

d−1∏
i=1

g(fn(γi)),

where k1 = dgd
n
f , k2 = d2

gd
2n−1
f − dg, and k3 = df − 1.
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Proof. We use the definition of discriminant via resultants. Throughout, we denote
by `(h) the leading coefficient of the polynomial h. Let h1, h2 ∈ Z[x] be two
polynomials with degrees δ1, δ2, and let αi, i = 1, . . . , δ1, denote the roots of h1

and βj , j = 1, . . . , δ2, denote the roots of h2. The resultant may be defined as
R(h1, h2) = `(h1)δ2`(h2)δ1

∏
(αi−βj), or equivalently (and more usefully for us) as

`(h1)δ2
∏

h1(α)=0

h2(α).

Note that the product is taken over roots with multiplicity. The discriminant ∆(h1)
of h1 then satisfies

(10) R(h1, h
′
1) = (−1)δ1(δ1−1)/2`(h1)∆(h1);

see for instance [14, p.204]. From the definition it follows immediately thatR(h1, h2) =
(−1)δ1δ2R(h2, h1) and R(h1h2, h3) = R(h1, h3)R(h2, h3). With slightly more work,
one obtains

(11) R(h1 ◦ h2, h
′
1 ◦ h2) = `(h2)(δ

2
1−δ1)δ2R(h1, h

′
1)

δ2 .

From (10) we have

(12)
∣∣∣∣ ∆n

(∆n−1)df

∣∣∣∣ =
∣∣∣∣`(g ◦ fn−1)df

`(g ◦ fn)
· R(g ◦ fn, (g ◦ fn)′)
R(g ◦ fn−1, (g ◦ fn−1)′)df

∣∣∣∣ ,
Writing g ◦ fn as (g ◦ fn−1) ◦ f , we have (g ◦ fn)′ = f ′ · (g ◦ fn−1)′(f). Thus

|R(g ◦ fn, (g ◦ fn)′)| = |R((g ◦ fn)′, g ◦ fn)|
=

∣∣R(f ′, g ◦ fn) ·R((g ◦ fn−1)′(f), g ◦ fn)
∣∣ .

Using (11) and the fact that the degree of g ◦ fn−1 is dgd
n−1
f , this last expression

becomes

|a|(dgdn−1
f −1)dgdn

f
∣∣R(f ′, g ◦ fn) · (R(g ◦ fn−1, (g ◦ fn−1)′)df

∣∣ .
The right side of (12) then becomes∣∣∣∣`(g ◦ fn−1)df

`(g ◦ fn)

∣∣∣∣ · |a|(dgdn−1
f −1)dgdn

f · |R(f ′, g ◦ fn)| .

From the definition of resultant we have R(f ′, g ◦ fn) = (adf )dgdn
f

∏d−1
i=1 g(f

n(γi)).
Hence the powers of a, b, and df in the formula of the Lemma are those in the
expression

a(dgdn−1
f −1)dgdn

f (adf )dgdn
f
`(g ◦ fn−1)df

`(g ◦ fn)
.

Now `(g◦fn) = bac1 , where c1 = dg(dn−1
f +dn−2

f + · · ·+1), while `(g◦fn−1) = bac2 ,
where c2 = dg(dn−2

f + dn−3
f + · · ·+ 1). Hence

`(g ◦ fn−1)df

`(g ◦ fn)
= bdf−1a−dg .

The formulas in the Lemma follow immediately. �

One consequence of Lemma 2.6 is that g ◦ fn is separable for all n if and only if
g is separable and 0 is not contained in the forward orbit of any critical point of f .
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We also remark that in the case deg(f) = 2 and g is monic and linear, Lemma 2.6
gives

∆n = ±∆2
n−12

2n

a22n−1−1g(fn(γ)),

where γ is the unique critical point of f .
We call a polynomial f ∈ K[x] critically finite if all of its critical points have finite

forward orbits, or equivalently are eventually periodic. In particular, a quadratic
polynomial f = ax2 + bx + c is critically finite if and only if the forward orbit of
−b/2a is finite. We remark that it follows from Lemma 2.6 and the appendix to
this article that the compositum of Q(g ◦ fn), n = 1, 2, . . . is finitely ramified if and
only if f is critically finite (cf [1]).

We now specialize to the case where f is quadratic and K is a number field.

Theorem 2.7. Let K be a number field, f, g ∈ K[x] with f quadratic, and suppose
G0(f, g) = Gal (K(g)/K) is a 2-group. Suppose further that f is critically infinite,
and g ◦ fn is irreducible for all n ≥ 0. Then GP (f, g) is an eventual martingale.

Remark. For the conclusion of Theorem 2.7 to hold, we only need the sequence
{g(fn(γ)) : n = 1, 2, . . .} to contain only finitely many squares. This happens for
many critically finite polynomials, e.g. x2 − 2 and (x − k)2 + k for all nonsquare
k ∈ Z.

Proof. Let Kn be the splitting field of g ◦ fn over K, let Vn be the roots of g ◦ fn,
and let C be the partition of Vn into the sets {roots of f(x)− α}, where α varies
over roots of g ◦ fn−1. Let σC ∈ Sym(Vn) be the permutation associated to C, i.e.
the unique permutation whose orbits are precisely the sets belonging to C. We wish
to show that σC ∈ Gn(f, g) for n sufficiently large.

For all n ≥ 1, it follows from (9) that the field Kn is obtained from Kn−1 by
adjoining square roots. Since G0(f, g) is a 2-group, it follows that Gn(f, g) is a
2-group as well, and thus has non-trivial center. Let δ be a nontrivial element of
Z(Gn(f, g)), and D the corresponding central fiber system (see [12, Proposition-
Definition 4.10]). Then by [12, Theorem 4.9] we have either σC = δ or Gn(f, g) is
composed entirely of alternating permutations.

In the latter case, ∆n = Disc (g ◦ fn) is a square in K. By Lemma 2.6 this
implies that sg(fn(γ)) is a square in K, where γ is the critical point of f and s
satisfies sb ∈ K∗2 if g has even degree and sab ∈ K∗2 if g has odd degree (as in
Lemma 2.6, a and b are the leading coefficients of f and g, respectively). Now
for n ≥ 2, this implies the curve C : y2 = sg(f2(x)) has a pair of points that are
S-integers, indeed a pair with x = fn−2(γ) (we may take S to be the primes in
OK dividing either 2 or the denominator of one of the coefficients of f). Since
f is critically infinite, fk(γ) 6= f j(γ) for all j, k, so that the pairs obtained from
different n are all distinct. Since deg(g ◦ f2) ≥ 4, and g ◦ f2 is irreducible and
thus separable, the genus of C is at least 1, whence by Siegel’s Theorem [11, p.353]
C has only finitely many S-integral points. Thus g(fn(γ)) is a square for only
finitely many n. Denote the largest such n by n′, and take n0 = n′ + 1. Thus for
n ≥ n0 we have shown that σC = δ, and it follows that σC ∈ Gn(f, g). Indeed,
σC ∈ Hn(f, g) def= Gal (Kn/Kn−1), whence Hn(f, g) is nontrivial.

Therefore by (9) there is some root α of g◦fn−1 such that f(x)−α is irreducible
over Kn−1. Since g◦fn−1 is irreducible over Q, the action of Gn−1(f, g) is transitive
on the roots of g ◦fn−1, and it follows that f(x)−α is irreducible over Kn−1 for all
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α. The irreducibility of g ◦ fn over K implies separability, and we now have from
Theorem 2.5 that GP (f, g) is an eventual martingale. �

3. Density results

In this section we prove Theorem 1.1. Note that by Theorem 2.7, the hypotheses
of Theorem 1.1 imply that GP (f, g) is an eventual martingale. In order to parlay
this into a zero-density result, we make use of the following lemma. We remark that
it follows from the factorization in (9) that the extension Q(g ◦ fn)/Q(g ◦ fn−1) is
the compositum of at most deg(g ◦ fn−1) quadratic extensions. Thus Hn(f, g) ∼=
(Z/2Z)m for some 0 ≤ m ≤ deg(g ◦ fn−1). If m = deg(g ◦ fn−1), then we call
Hn(f, g) maximal.

Lemma 3.1. If GP (f, g) is an eventual martingale and Hn(f, g) is maximal for
infinitely many n, then GP (f, g) converges to 0, i.e.

lim
n→∞

P(Xn = 0) = 1.

Proof. The proof of [12, Lemma 5.2] requires only straightforward adaptation to
apply to GP (f, g). The proof of [12, Theorem 1.3] only uses [12, Lemma 5.2] and
that the stochastic process is eventually constant with probability 1, which follows
from Corollary 2.3. �

We now give two results that relate the maximality of Hn(f, g) to the translated
critical orbit {g(fn(γ)) : n ≥ 1}.

Lemma 3.2. Let K be a number field and f, g ∈ K[x] with f = ax2 + bx+ c, and
let γ be the critical point of f . Suppose that g ◦ fn is irreducible over K for all
n ≥ 1. Then for n ≥ 2, Hn(f, g) is maximal if and only if g(fn(γ)) is not a square
in K(g ◦ fn−1).

Proof. We require only minor modifications of [22, Lemma 1.6]. Let d = deg(g ◦
fn−1), Kn = K(g ◦ fn), Kn−1 = K(g ◦ fn−1), and denote the roots of g ◦ fn−1

by αj , j = 1, . . . , d. From (9), we have that Kn/Kn−1 is a 2-Kummer extension
obtained by adjoining to Kn−1 the square roots of b2− 4ac+ 4aαj for j = 1, . . . , d.
Thus [Kn : Kn−1] = 2d−dim V , where V is the F2-vector space of all (ε1, . . . , εd) ∈ Fd

2

such that
∏d

j=1(b
2 − 4ac + 4aαj)εj is a square in Kn−1. By the irreducibility of

g◦fn, we have that Gal (Kn/K) acts transitively on the αj . We now follow precisely
the reasoning in the proof of [22, Lemma 1.6] to show that V 6= 0 if and only if
(1, . . . , 1) ∈ V . Therefore Hn(f, g) is maximal if and only if

∏d
j=1(b

2− 4ac+ 4aαj)
is a square in Kn−1. Since n ≥ 2, we have d even, and thus Hn(f, g) is maximal if
and only if

d∏
j=1

(
αj −

b2

4a
+ c

)
is a square in Kn−1. The same argument as in the proof of Proposition 4.2 (p. 13)
shows that this is equivalent to g(fn(γ)) being a square in Kn−1. �

Theorem 3.3. Let K be a number field with ring of integers OK , and let f, g ∈
OK [x] with f = ax2 +bx+c, and let γ be the critical point of f . Suppose that g ◦fn

is irreducible over K for all n ≥ 1, and denote by vp the p-adic valuation for p a
prime in OK . If n ≥ 2 and there exists p with vp(g(fn(γ))) odd, vp(g(fm(γ))) = 0
for all 1 ≤ m ≤ n− 1, and vp(2a) = 0 then Hn(f, g) is maximal.
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Proof. It follows from Lemma 2.6 and [16, Corollary 2, p. 157] that the only primes
ramifying in K(g ◦ fn−1) are a subset of those dividing 2a and those dividing the
numerator of g(fm(γ)) for some 0 ≤ m ≤ n − 1. Thus if vp(g(fm(γ))) = 0 for
all 1 ≤ m ≤ n − 1, and vp(2a) = 0 then p is unramified in K(g ◦ fn−1). Hence if
vp(g(fn(γ))) is odd, then g(fn(γ)) cannot be a square in K(g ◦ fn−1). By Lemma
3.2 we then have Hn(f, g) maximal. �

As an illustration of Theorem 3.3, consider the case of K = Q, f(x) = x2 + 5,
g(x) = x. We have f(γ) = 5, f2(γ) = 2 · 3 · 5, f3(γ) = 5 · 181, and f4(γ) =
2 ·3 ·5 ·23 ·1187. In each case there is a p 6= 2 with vp(fn(γ)) = 1 but vp(fm(γ)) = 0
for all 1 ≤ m ≤ n− 1, and therefore Hn(f) is maximal for 1 ≤ n ≤ 4.

Theorem 3.3 says that the maximality of Hn(f, g) can be ascertained by exam-
ining arithmetic properties of the critical orbit. This makes for a striking analogy
with complex and real dynamics, where analytic properties of the critical orbit
of a quadratic polynomial have been shown to determine fundamental dynamical
behavior of the polynomial. See the last paragraph of the Introduction for more
details.

We make one final remark before proving Theorem 1.1. Consider f ∈ Z[x]
quadratic, and let g(x) = x. To analyze the arithmetic of the critical orbit of f , we
split the primes dividing some fn(γ) into two classes. We say that p is isolated if
vp(fn(γ)) > 0 for some n and there is no other n′ with vp(g(fn′(γ))) > 0. When
we reduce the coefficients of f modulo p and iterate, this behavior corresponds to
0 being in the orbit of γ in Z/pZ but not in the periodic part. If p is not isolated,
then there are infinitely many n′ with vp(fn′(γ)) > 0, and we call p recurrent. This
corresponds to 0 being in the periodic part of the orbit of γ in Z/pZ. Heuristics and
computation suggest that most primes p dividing some element of the critical orbit
are isolated, but in general there appear to be infinitely many recurrent primes,
and their behavior seems difficult to control. There is one exception, namely when
all primes dividing an element of the translated critical orbit are recurrent. This is
the case when γ = 0, e.g. for f(x) = x2 + k, k ∈ Z. At the other extreme are f
such that all but finitely many primes appearing in the critical orbit are isolated.
This is the case when {fn(0) : n ≥ 1} is finite and does not contain 0, as in the
case of f = x2− kx+ k, for which 0 maps to the fixed point k. These two extremes
correspond to parts (2) and (1), respectively, of Theorem 1.1.

We now give the proof of Theorem 1.1:

Proof. We apply Theorem 2.7 to get that GP (f) is an eventual martingale. Then
by Lemma 3.1 and Theorem 2.1 we need only show that Hn(f, g) is maximal for
infinitely many n. Suppose first that we are in case 1, and let {fn(0) : n =
1, 2, . . .} = {b1, . . . , bk} and {g(fn(0)) : n = 1, 2, . . .} = {β1, . . . , βk′}. We remark
that by hypothesis g | fr, whence g(fn(0)) | fn+r(0) for each n. This means
βi divides some bj , and in particular the assumption that the bi are all nonzero
implies the βi are as well. The outline of the argument is this: it follows from
Siegel’s theorem on S-integral points that for infinitely many n, the rational number
|g(fn(γ))/d| is not a square for any d |

∏
i bi. We use this fact to show that there

must exist p with vp(g(fn(γ))) odd and vp(g(f j(γ))) = 0 for all j < n. It follows
from Theorem 3.3 that Hn is maximal, and this proves the theorem.

To apply Siegel’s theorem, we assume there are infinitely many n with g(fn(γ)) >
0; the argument is similar if there are infinitely many n with g(fn(γ)) < 0. If
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g(fn(γ))/ |d| is a square for n ≥ 2, then the curve Cd : |d| y2 = g(f2(x)) has a
pair of S-integral points (S = {2}) with x = fn−2(γ). By assumption the set
{g(fn(γ))} is infinite, so all points obtained in this way are distinct. Since g(f2(x))
is irreducible and hence separable, it follows that Cd has genus at least 1. From
Siegel’s Theorem on S-integral points [11, p. 353] and the fact that there are only
finitely many values for d (recall d varies over the divisors of

∏
i bi), we have that

for all n large enough, g(fn(γ))/ |d| is not a square for any d. Since g(fn(γ)) > 0
for infinitely many n, we have for these n that |g(fn(γ))/d| is not a square for any
d, as desired.

Suppose for a moment that γ ∈ Z. We now show that for all n large enough,
there exists d |

∏
i bi such that g(fn(γ))/d is an integer not divisible by any primes

p |
∏

i bi. This is equivalent to showing that vp(g(fn(γ))) ≤ vp(
∏

i bi) for all
p |

∏
i bi. Momentarily fix a prime p dividing

∏
i bi, and let m = maxi vp(bi).

Suppose there is some n0 with vp(g(fn0(γ))) > m. By assumption g | fr, say
gh = fr. Then multiplying through by h(fn0(γ)) gives fn0+r(γ) ≡ 0 mod pm+1.
Thus for any j > n0 + r we have

f j(γ) ≡ f j−(n0+r)(fn0+r(γ)) ≡ bi 6≡ 0 mod pm+1

for some i. Since each βi divides some bi, none of the βi can vanish modulo pm+1.
Thus we have g(f j(γ)) ≡ βi′ 6≡ 0 mod pm+1 for some i′. We obtain in this way an
n0 for each p |

∏
i bi, and for any n larger than their max we have vp(g(fn(γ))) ≤

m ≤ vp(
∏

i bi) for all p |
∏

i bi. If γ 6∈ Z, then we wish to show that for all n
large enough there exists an odd d |

∏
i bi such that the numerator of g(fn(γ))/d is

an integer not divisible by any primes p |
∏

i bi (the denominator of g(fn(γ))/d is
an even power of 2). We proceed exactly as before, noting that the numerator of
g(fn(γ)) is odd, and thus d can be taken to be odd as well.

From the previous two paragraphs it follows that for infinitely many n, there
exists a prime p, not dividing any of the bi, such that vp(g(fn(γ))) is odd. Therefore
writing gh = fr and multiplying by h(fn(γ)) we have fn+r(γ) ≡ 0 mod p, so for
each j > n+r we have f j(γ) ≡ bi 6≡ 0 mod p for some i. If vp(g(f l(γ))) > 0 for some
l > n, then multiplying by h(f l(γ)) gives f l+r(γ) ≡ 0 mod p, a contradiction. It
follows that vp(g(f l(γ))) = 0 for all l < n as well, since otherwise vp(g(fn(γ))) = 0,
a contradiction (hence p is isolated in the terminology of the discussion preceding
this proof). It remains to show we can take n large enough to ensure p 6= 2. If
γ 6∈ Z, then the numerator of fn(γ) is odd and for all n, whence the same is true
for g(fn(γ)), since g divides fr. In this situation v2(g(fn(γ)) is never odd. If γ ∈ Z
then either 2 |

∏
i bi or there is at most one n with v2(g(fn(γ))) > 0. Hence p 6= 2

for n large enough, and the theorem now follows from Theorem 3.3.
Now suppose that we are in case 2, and let cn = g(fn(γ)) for n ≥ 1. Recall

that we are assuming (cn) to be a rigid divisibility sequence with S = {2} if γ 6∈ Z
and S = ∅ if γ ∈ Z (see p. 2 for definitions). Consider cq, where q is a prime. If
vp(cq) > 0 for some prime p 6= 2, then we have either vp(c1) > 0 or vp(cn) = 0 for
1 ≤ n < q. If vp(c1) > 0, then vp(c1) = vp(cq), whence vp(cq/c1) = 0.

Thus we need only show that for infinitely many q there exists p 6= 2 with
vp(cq/c1) odd: by Theorem 3.3 this implies that Hq(f, g) maximal for infinitely
many q, which completes the proof.

Note that v2(cq/c1) cannot be odd for q > 2. Indeed, if γ 6∈ Z then since g and
f are monic, v2(cn) = −2n for all n. If γ ∈ Z then either v2(c1) > 0, implying
v2(cn/c1) = 0 for all n, or v2(c1) = 0 and v2(c2) > 0, implying v2(cn) = 0 for n
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odd, or v2(c1) = 0 and v2(c2) = 0, implying that v2(cn) = 0 for all n. The first two
implications follow from the fact that cn is a rigid divisibility sequence, and the
last since g(f(γ)) ≡ 1 mod 2 and g(f2(γ)) ≡ 1 mod 2 imply either g(0) ≡ g(1) ≡
1 mod 2 or fn(γ) ≡ fm(γ) mod 2 for all m,n.

Let q > 2. To show there exists p 6= 2 with vp(cq/c1) odd, it is thus enough to
show that |cq/c1| is not a square in Q. Suppose that infinitely many of the cq are
positive; the proof is similar in the case that infinitely many are negative. If q ≥ 2
and cq/ |c1| is a square, then the curve C : |c1| y2 = f2(x) has a pair of integral
points with x = fq−2(γ) = cq−2. Since {cn : n ≥ 1} is infinite by assumption,
each pair obtained in this way is distinct. Since f2 is separable, it follows that C
has genus 1, whence by Siegel’s Theorem [11, p. 353] there can be only finitely
many such pairs, and thus we have cq/ |c1| not a square for q sufficiently large. By
assumption cq = |cq| for infinitely many q, and this completes the proof. �

Remark. For essentially all quadratic f ∈ Z[x], either fn(γ) > 0 for all n large
enough or fn(γ) < 0 for all n large enough. In this case, the proof of Theorem 1.1,
part 1, shows that for f satisfying the hypotheses of the theorem, Gn(f) has finite
index in the full automorphism group of the complete infinite binary rooted tree.

Remark. With only minor modifications, the proof of Theorem 1.1 applies to the
case of f ∈ OK [x], where OK is the ring of integers in a number field K. In this
case, there can be many more f that satisfy the hypotheses of the theorem. For
instance, if we let α be a root of x3 + 3x2 + 2x + 1 and K = Q(α), then not only
do the families in Theorem 1.2 have {fn(0)} finite and not containing 0 (taking
k ∈ OK rather than k ∈ Z), but so does f(x) = x2 + x + α. Indeed, we have
{fn(0)} = {α, α2 + 2α,−1}.

4. Irreducibility and stability of polynomial iterates

In order to deduce Theorem 1.2 from Theorem 1.1, we must show that for f
belonging to the four families in question, f is critically infinite and g ◦ fn is
irreducible for all n and some appropriate g. This section examines the irreducibility
question, which has been studied in its own right, e.g. in [8], [3].

Definition. Let K be a field and f and g be polynomials in K[x]. We say g is
f -stable if g ◦ fn is irreducible over K for n = 0, 1, 2, . . . (note that in particular
g is irreducible over K). We say f is stable if f is f-stable, i.e., all iterates of f
are irreducible. We say f is eventually stable if some iterate of f is a product of
f-stable polynomials.

Lemma 4.1 (Capelli’s Lemma). Let K be a field, f(x), g(x) ∈ K[x], and let β ∈ K
be any root of g(x). Then g(f(x)) is irreducible over K if and only if both g is
irreducible over K and f(x)− β is irreducible over K(β).

For a proof, see [8, Lemma 0.1]. The following proposition is a remarkably useful
tool for determining f -stability when f is quadratic.

Proposition 4.2. Let f(x) = ax2 +bx+c ∈ K[x] and let γ = −b/2a be the critical
point of f . Suppose that g ∈ K[x] is such that g ◦ fn−1 is irreducible over K for
some n ≥ 2. Then g ◦ fn is irreducible over K if g(fn(γ)) is not a square in K.

Proof. (cf [12, Lemma 4.13]) Denote by d the degree of g ◦ fn−1. By Capelli’s
Lemma and the irreducibility of g ◦ fn−1, we have g ◦ fn irreducible if for any root
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β of g ◦ fn−1, Disc (f(x)− β) = b2 − 4ac+ 4aβ is not a square in K(β). This must
hold if NK(β)/K(b2 − 4ac+ 4aβ) is not a square in K. But

NK(α)/K(b2 − 4ac+ 4aβ) = (−4a)d
∏

β root of g ◦ fn−1

[(
− b

2

4a
+ c

)
− β

]
= (−4a)d · g(fn−1(−b2/4a+ c)) = (−4a)d · g(fn−1(f(γ))).

Since n ≥ 2, we have d even, which proves the proposition. �

From Proposition 4.2, it follows that stability is a generic property for quadratic
polynomials with integral coefficients. As an example of the kind of result that
Proposition 4.2 allows, we give the following lemma and theorem, which show that
for quadratic polynomials with f2 irreducible and given critical point γ, all but
finitely many are stable.

Lemma 4.3. Let f ∈ Z[x] be monic, quadratic, and nonsquare, and write f =
(x− γ)2 + γ +m. Suppose that |m| > 6 + 3

√
|γ|+ 1. Then for every n ≥ 3, fn(γ)

is not a square in Q. Furthermore, if γ ∈ Z then the same conclusion holds if
|m| > 1 +

√
|γ|+ 1.

Proof. Note that either 1) γ ∈ Z or 2) γ 6∈ Z but 2γ ∈ Z. In either case we have
by hypothesis |m| > 2, and since the denominator of m cannot exceed 4 we in fact
have |m| ≥ 9/4. For r/s ∈ Q we have

f
(r
s

)
=

1
s2

[
(r − sγ)2 + s2(γ +m)

]
,

and if we assume that sγ and s2(γ +m) are integers then f(r/s) is not a square if

(13)
∣∣s2(γ +m)

∣∣ < 2 |r − sγ| − 1.

This follows because γ +m 6= 0 (since f is nonsquare) and

min
{∣∣x2 − (x− 1)2

∣∣ , ∣∣x2 − (x+ 1)2
∣∣} ≥ 2 |x| − 1

for x ∈ Z.
Put r

s = fn−1(γ), and note that s = j2
n−1

, where j is 1 if γ ∈ Z and 2 otherwise.
Dividing (13) by s2 then yields that fn(γ) is not a square if

(14) |γ +m| < j−2n−1 (
2

∣∣fn−1(γ)− γ
∣∣− 1

)
.

A quick induction shows that fn−1(γ)− γ = fn−1
m (0), where fm(x) = x2 +m.

We now show that (14) holds for n ≥ 3. First we show that it holds for n = 3;
in this case (14) becomes

(15) j4 |γ +m| < 2
∣∣m2 +m

∣∣− 1.

Suppose j = 2, or equivalently that γ 6∈ Z. We have |m| − 6 > 3
√
|γ|+ 1, whence

by squaring both sides and subtracting we have |m|2−|m| > 11 |m|+9 |γ|+9−36.
Since γ 6∈ Z, we have γ ≥ 1/2. Thus |m| ≥ 9 + 3/4 (since the denominator of m is
4), and we have 11 |m|+ 9 |γ| − 27 > 8 |m|+ 8 |γ|+ 1. Now

2
∣∣m2 +m

∣∣− 1 ≥ 2(|m|2 − |m|)− 1 > 16 |m|+ 16 |γ|+ 1 > 16 |γ +m| ,
and thus (15) is satisfied. In the case j = 1, we have (|m| − 1)2 > |γ|+ 1, and thus
|m|2 − |m| > |γ|+ |m| . Therefore

2
∣∣m2 +m

∣∣− 1 ≥ 2(|m|2 − |m|)− 1 > 2(|γ|+ |m|)− 1 > |γ|+ |m| ,
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where the last inequality follows since |m| ≥ 9/4. Hence (15) is satisfied.
To show that (14) holds for n > 3, we must show the function j−2n

(2 |fn
m(0)| − 1)

increases with n, i.e.

(16) j2
n−1

<
2 |fn

m(0)| − 1
2

∣∣fn−1
m (0)

∣∣− 1

Noting that fn
m(0) = (fn−1

m (0))2 +m, it is enough to prove

j2
n−1

<
∣∣fn−1

m (0)
∣∣− 2 |m|+ 1

2
∣∣fn−1

m (0)
∣∣ .

Since |m| ≥ 9/4, it follows that 2 |m|+1 < 2
∣∣fn−1

m (0)
∣∣ for all n ≥ 3. Thus it suffices

to show

(17)
∣∣fn−1

m (0)
∣∣ > 1 + j2

n−1

for all n ≥ 4. One can easily use |m| > 9 to show that this holds for n = 4 (in the
case j = 1, |m| > 2 suffices). Now assume that (17) holds for n − 1, with n ≥ 5.
We show that it holds for n.

If j = 1, then |m| > 2 guarantees that |fn
m(0)| >

∣∣fn−1
m (0)

∣∣, and we are done. If
j = 2, suppose first that |m| > 2j2

n−1
. Since |m| > 3 (indeed we know |m| > 9), we

have |m|2 − 3 |m| > 0, and this implies that
∣∣m2

∣∣− |m| > 2 |m| > |m|+ 1 + j2
n−1

.
Therefore

∣∣f2
m(0)

∣∣ > |m|+1+j2
n−1

. Squaring both sides leads to
∣∣f3

m(0)
∣∣ > 1+j2

n

.
Since |fn

m(0)| >
∣∣fn−1

m (0)
∣∣, we have |fn

m(0)| > 1 + j2
n

.
Now suppose that |m| < 2j2

n−1
(equality is impossible since j = 2 implies γ 6∈ Z).

Given
∣∣fn−1

m (0)
∣∣ > 1 + j2

n−1
, squaring both sides gives

|fn
m(0)−m| > 1 + 2j2

n−1
+ j2

n

> 1 + j2
n

+ |m| .

Therefore |fn
m(0)|+ |m| > 1 + j2

n

+ |m| , and we are done. �

Theorem 4.4. Let f ∈ Z[x] be monic, quadratic, and irreducible, and write f =
(x−γ)2+γ+m. Suppose that |m| > 6+3

√
|γ|+ 1 (if γ ∈ Z then |m| > 1+

√
|γ|+ 1

suffices), and that

(18)
−m±

√
f2(γ)

2
6∈ Q∗2.

Then f is stable.

Remark. Condition (18) is always true if γ 6∈ Z. Indeed, let f = x2 + ax+ b, with
a odd. We have γ = −a/2, m = (2a− a2 + 4b)/4, and

f2(γ) =
a4 − 4a3 − 8a2b+ 16ab+ 16b2 + 16b

16
.

Reducing the numerator of f2(γ) modulo 8 gives a4 − 4a3. Since a is odd, this is
equivalent to 5 modulo 8, showing that f2(γ) cannot be a square in Q.

Proof. Given that f is irreducible, condition (18) is equivalent to f2 being irre-
ducible, as a quick calculation and application of Proposition 4.2 shows. Since f is
irreducible, it is not a square, whence Lemma 4.3 shows that fn(γ) is not a square
for all n ≥ 3. By induction and Proposition 4.2 this proves that f is stable. �
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Proposition 4.5. Let k ∈ Z\{0,−1}, and put f = x2 + k. Then f is stable if −k
is not a square in Z and f factors as the product of two linear f-stable polynomials
if −k is a square in Z.

Proof. Suppose first that −k is not a square in Z, whence f is irreducible. The
critical point of f is γ = 0, and f2(0) = k2 + k, which is not a square since
k 6∈ {0,−1}. Thus the condition (18) is satisfied, as indeed are all the hypotheses
of Theorem 4.4 as long as k 6= 1, k 6= 2, and k 6= −2. For these cases, we verify
(14) directly for all n ≥ 2. If k = 1, then (14) becomes 1 < 2 |fn(0)| − 1, which
clearly holds for n ≥ 2. A similar argument applies to k = 2. If k = −2 the forward
orbit of 0 lies in {±2}, whence fn(0) is not a square for n ≥ 2. In all three cases
induction and Proposition 4.2 show f is stable.

If−k = a2 for some a ∈ Z then we have f = g1g2, where g1 = x+a and g2 = x−a.
Note that since k 6∈ {0,−1}, we have |a| ≥ 2. To show that gi(fn(0)) is not a square
for all n ≥ 2, we note gi(fn(0)) = fn−1(0)2 − a2 ± a, so by the same reasoning
used to obtain (14) we have gi(fn(0)) not a square if a2 ± a < 2

∣∣fn−1(0)
∣∣ − 1.

Since |a| ≥ 2 this holds for n = 2. Moreover, again because |a| ≥ 2, it follows that∣∣fn+1(0)
∣∣ > |fn(0)| for all n ≥ 2. Induction and Proposition 4.2 now show g1 and

g2 are f -stable. �

Proposition 4.6. Let k ∈ Z\{0}, and put f = x2 + kx − k. Then f is stable if
k 6= 4 and f is the square of an f-stable polynomial if k = 4.

Proof. In the notation of Theorem 4.4, we have γ = −k/2 and m = k(2 − k)/4 =
γ−γ2. Thus f is irreducible as long as 2γ−γ2 6= 0, which is the case when k 6= 0, 4.
To show that f2 is irreducible, we note that f2(γ) = (γ − γ2)2 + 2γ − γ2, so to
ensure f2(γ) is not a square, it is enough to show

∣∣2γ − γ2
∣∣ < 2

∣∣γ − γ2
∣∣− 1. This

holds for |γ| > 2. Now to use Theorem 4.4 we must find the γ with

(19)
∣∣γ − γ2

∣∣ > 6 + 3
√
|γ|+ 1.

A derivative shows that
∣∣γ − γ2

∣∣−6−3
√
|γ|+ 1 increases with |γ| provided |γ| > 2.

One easily sees that (19) holds for all γ 6∈ (−7/2, 9/2). Similarly, a derivative shows
that

∣∣γ − γ2
∣∣−1−

√
|γ|+ 1 increases with |γ| provided |γ| > 1. A quick calculation

now shows
∣∣γ − γ2

∣∣ > 1 +
√
|γ|+ 1 for all γ 6∈ (−2, 3). Therefore by Theorem 4.4

we have that f is stable unless k = −5,−3,−2,−1, 1, 2, 3, 5, 7. For all of these
save k = ±1 one can easily check that all iterates of f are Eisenstein and thus
irreducible. The case k = −1 is proven in [18, Proposition 1.1]. The case k = 1 is
handled in Proposition 4.7.

For k = 4, we clearly have f = g2, with g = (x − 2). Moreover, fn(γ) = 0 for
n = 1 and fn(γ) = 4 for n ≥ 2. Thus g ◦ fn(γ) is not a square for all n ≥ 1, and it
follows that g ◦ fn(γ) is irreducible for all n ≥ 1. �

Proposition 4.7. Let k ∈ Z\{0}, and put f = x2 + kx − 1. Then f is stable if
k 6= −1 and f3 is the product of two f-stable polynomials if k = −1.

Proof. In the notation of Theorem 4.4, we have γ = −k/2 andm = (−k2+2k−4)/4.
We have that f is irreducible as long as k2 + 4 is not a square, which holds for all
k 6= 0. To show f2(x) is irreducible, note that

f2(γ) =
1
16

(k4 − 4k3 + 8k2 + 16k) =
(

1
4
(k − 1)2

)2

+
1
16

(2k2 − 12k − 1).
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Thus f2(γ) is not a square as long as
∣∣2k2 − 12k − 1

∣∣ < 8 |k − 1|2 − 1, which holds
for k 6∈ {0, 1, 2, 3}.

One checks that
∣∣(−k2 + 2k − 4)/4

∣∣ > 6+3
√
|k/2|+ 1 as long as k 6∈ (−7, 9) and

also
∣∣(−k2 + 2k − 4)/4

∣∣ > 1 +
√
|k/2|+ 1 as long as k 6∈ (−2, 4). Using Theorem

4.4, we now have that f is stable as long as k 6∈ {−5,−3,−1, 0, 1, 2, 3, 5, 7}. Consider
k = 7. We have γ = −7/2, m = −39/4. We note that in the proof of Lemma 4.3
we need only verify (14) for some n and (17) for all i ≥ n. When n = 4 we have
fn−1(γ)− γ > 7268 and 22n−1 · |γ +m| = 3392, whence (14) holds. To verify (17)
for n ≥ 4, note that it holds for n = 4 since f3

m(0) > 7268 > 1+28. Moreover, given
that (17) holds for n, to show it holds for n + 1 it is enough to have |m| > 3 (see
proof of Lemma 4.3). Hence we have shown that fn(γ) not a square for n ≥ 4. One
checks the remaining cases by hand, proving that f is stable. In a similar manner,
one verifies that f is stable for k ∈ {−5,−3, 5, 7}, although for k = −3 one must
take n = 6 and for k = 5 one must take n = 7.

For k ∈ {1, 2, 3}, let α1 < α2 be the two (real) roots of f , and put I = (α1, 0).
Using the fact that f(γ) ∈ I, it follows that f(I) ⊆ I, whence fn(γ) < 0 for all n.
Thus fn(γ) cannot be a square, so f is stable. This leaves the case k = −1, where
we see that although f and f2 are irreducible,

f3(x) = (x4 − 3x3 + 4x− 1)(x4 − x3 − 3x2 + x+ 1) := g1(x)g2(x),

where g1 and g2 are irreducible. To prove that g1 is f -stable, it is enough to show
that g1(fn(γ)) is not a square for all n ≥ 1. Note that g1(−1) = −1 and also
f2(−1) = −1. Working modulo 3, we have γ ≡ −1, whence g1(fn(γ)) ≡ −1 mod 3
for n even. Working modulo 19, we have f5(γ) ≡ −1 mod 19, whence g1(fn(γ)) ≡
−1 mod 19 for n odd, n ≥ 5. One now checks that g1(fn(γ)) is not a square in Q
for n = 1, 3, showing that g1 is f -stable. For g2 we have g2(1) = g2(−1) = −1, and
since fn(γ) ≡ ±1 mod 3 for all n, we have g2(fn(γ)) ≡ −1 mod 3 for all n, proving
that g2 is f -stable. �

We note that it is possible for a quadratic f to be irreducible over Q yet for f2 to
have a nontrivial factorization. One example is x2 + 10x+ 17, which is irreducible
yet clearly fails to satisfy condition (18); see [3, p. 91] for an explicit description
of all such polynomials. Moreover, as in the case of f(x) = x2 − x − 1, it is also
possible for f and f2 to be irreducible yet for f3 to have a nontrivial factorization.
Computer searches have revealed no monic, quadratic f ∈ Z[x] whose first three
iterates are irreducible yet whose fourth is not. Moreover, in all cases checked,
the reducible iterate has factored into two f -stable polynomials. Generalizing this
observation, we make the following conjecture:

Conjecture 1. Let f ∈ Z[x] be monic and quadratic, and suppose that 0 is not
periodic under f . Then f is eventually stable.

We remark that if 0 is periodic under f ∈ Z[x], then f cannot be eventually
stable. This is because the factors of fn are the minimal polynomials over Q of the
preimages of 0 (in Q) under f . Thus if 0 is periodic under f , x occurs as a factor
of some fm, and it follows that fn has a linear factor for each n ≥ 1. Thus for
instance no member of the family x2 + kx− (k + 1), k ∈ Z, is eventually stable.
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5. Results for specific families

In this section we draw together the results from all the previous sections to
prove Theorem 1.2, treating one family at a time. We also give Conjecture 2, which
treats more general f than those meeting the hypotheses of Theorem 1.1.

Theorem 5.1. Let f = x2 − kx+ k for k ∈ Z. Then D(P (f, a0)) = 0 for all a0.

Proof. Clearly P (f, a0) is finite for k = 0, so this case is covered. To apply The-
orem 1.1 we must show that f is stable and critically infinite. If k 6= 4, then by
Proposition 4.6 we have that f is stable. We now show that {fn(γ) : n ≥ 1} is
infinite for k 6∈ {−2, 2, 4}. Recall that we denote the critical point of f by γ, which
is k/2 for the family under consideration. Suppose first that k is odd. Letting
an−1 and an denote the numerators of fn−1(γ) and fn(γ) respectively, we have
an = a2

n−1− k22n−1
an−1 + k22n

. Moreover, fn(γ) = an/22n

. Thus by induction an

must be odd, and therefore f is critically infinite since the denominator of fn(γ)
in lowest terms is increasing.

Now suppose that k is even. We note that f is increasing on (γ,∞), and that the
largest fixed point of f is ρ = max{1, k}. If fn(γ) > ρ for some n, one easily sees
that fm+1(γ) > fm(γ) for all m ≥ n, showing that f is critically infinite. We show
fn(γ) > ρ for n = 2. Note that f2(γ) = 1

16 (k4− 4k3) + k. If k > 0 then ρ = k, and
we have f2(γ) > ρ as long as k > 4. If k < 0 then ρ = 1, and we have f2(γ) > ρ as
long as k4 − 4k3 + 16k − 16 > 0. This is equivalent to (k − 2)3(k + 2) > 0, which
holds when k < −2. Thus f is critically infinite as long as k /∈ {−2, 2, 4}, and the
theorem is proved in all but these cases.

For k ∈ {−2, 2, 4}, we first show that #Hn(f, g) = 2 for all n, where g = x − 2
for k = 4 and g = x in the other two cases. When k = 4, the roots of g ◦ fn are the
same as the roots of iterates of x2−2, that is, ζ2n+2 +ζ−1

2n+2 , and the extensions thus
generated are Q(ζ2n+2) ∩ R. For k = −2, i.e. f = x2 + 2x − 2, iterates of f form
extensions that are Q(ζ3·2n+1)∩R. Finally, for k = 2, roots of iterates of f are roots
of x2n

+ 1 for all n ≥ 1. In all three cases one easily shows that #Hn(f, g) = 2 for
all n. We now show by induction that the identity is the only element of Gn(f, g)
that fixes a root of g ◦ fn, whence the proportion of such elements is 2−n and from
Theorem 2.1 we have D(P (f, a0)) = 0. The case n = 1 is clear. Assuming that only
the identity in Gn−1(f, g) fixes any roots of g ◦ fn−1, we have that only elements of
Hn(f, g) can fix any roots of g ◦ fn. Since Hn(f, g) is not trivial, g ◦ fn factors over
Q(g ◦ fn−1) as a product of quadratics, and Hn(f, g) must act transitively on the
roots of each of these factors. Thus Hn(f, g) consists of the identity and an element
that exchanges the roots of each quadratic factor of g ◦ fn over Q(g ◦ fn−1), and
thus fixes no roots of g ◦ fn. �

Theorem 5.2. Let f = x2 + kx − 1 for k ∈ Z\{0, 2}. Then D(P (f, a0)) = 0 for
all a0.

Proof. Part (1) of Theorem 1.1 applies immediately (with g(x) = x) in the case
that f is stable and critically infinite. If k 6= −1, then by Proposition 4.7 we have
that f is stable. We now show that {fn(γ) : n ≥ 1} is infinite for k 6∈ {0, 2}. As in
the proof of Theorem 5.1, the case k odd is covered.

Now suppose that k is even, and note that γ = −k/2, m = (−k2 + 2k − 4)/4.
Following the proof of Theorem 5.1, we have here that the largest fixed point ρ of
f is at most max{1,−k + 2}. Again it is enough to show fn(γ) > ρ for some n,
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and we take n = 2. We have f2(γ) = 1
16 (k4 − 4k3 + 8k2 − 16k), which is greater

than 1 for k ≥ 4 and greater than −k + 2 for k ≤ −2.
This leaves the case k = −1. Since from Proposition 4.7 we have f3 = g1g2 with

g1 and g2 f -stable, Part (1) of Theorem 1.1 applies to show that both P (g1, f, a0)
and P (g2, f, a0) have density 0 for every a0 ∈ Z. Since P (f, a0) is the union of
these two sets, it too has density 0. The theorem is proved. �

The cases of x2−1 and x2 +2x−1 = (x+1)2−2 present peculiar difficulties, as
both are critically finite, but the relevant Galois groups do not lend themselves to
easy analysis. We remark that to show D(P (x2 − 1, a0)) = 0, put f = x2 − 1 and
note that fn(a0) ≡ 0 mod p for some n implies either 1) a0 ≡ 0 or −1 mod p or 2)
fm(a0) ≡ 1 mod p for some m. Thus it suffices to show that the density of primes
p with fn(a0) ≡ 1 mod p is zero, and this may be accomplished by considering
the Galois groups of fn(x)− 1. These are the same as those generated by iterates
of h(x) = (x + 1)2 − 2. Iterates of h generate extensions that are finitely ramified
(indeed, unramified outside {2}), yet are much larger than the extensions generated
in the exceptional cases handled in Theorem 5.1. There appears to be no easy way
to show that lim

n→∞
P(Xn) = 0 in this case.

We now turn to the case where f is monic and quadratic and all primes dividing
an element of the critical orbit are recurrent. This is the case, for instance, whenever
0 is the critical point, as the following lemma shows. See [19, Section 3] for a nice
discussion of matters similar to the following lemma and proposition.

Lemma 5.3. Let f = x2 + k for k ∈ Z\{0,−1}, and put fn(0) = tn for n ≥ 1.
Then tn is a rigid divisibility sequence with S = ∅.

Proof. (cf [12, Lemma 6.1]) Since we have excluded k ∈ {0,−1}, we have tn 6= 0
for all n. We use induction on j to show vp(tn) = e > 0 implies vp(tnj) = e for all
j ≥ 1. The case j = 1 is trivial. Suppose inductively that vp(tn(j−1)) = e. Note
that tnj = fn(j−1)(tn), and also fn(j−1) is a polynomial in x2. Thus we can write

fn(j−1)(x) = x2g(x) + fn(j−1)(0) = x2g(x) + tn(j−1),

for some g ∈ Z[x]. Hence putting x = tn we have tnj = t2ng(tn) + tn(j−1). Now
vp

[
(tn)2(g(tn))

]
≥ 2e, and by our inductive hypothesis vp(tn(j−1)) = e. Since

e ≥ 1, the first summand vanishes to higher order at p than the second, so we
conclude vp(pnj) = e.

We must also show that pe | tn and pe | tm implies pe | tgcd(m,n). Let pe | tn and
pe | tm, and suppose without loss of generality that n > m. Then fn(0) ≡ fm(0) ≡
0 mod pe, whence 0 ≡ fn−m(fm(0)) ≡ fn−m(0) mod pe. Applying this repeatedly
and using the Euclidean algorithm yields pe | tgcd(m,n). �

If fn(0) is a rigid divisibility sequence and f is reducible, its factors give rise to
other rigid divisibility sequences, as the following Proposition shows.

Proposition 5.4. Suppose that f ∈ Z[x] has all iterates separable, and that 0 is a
critical point of f and (fn(0)) is a rigid divisibility sequence (S = ∅) with infinitely
many values. If g divides f then the sequence g(0), g(f(0)), g(f2(0)), . . . is a rigid
divisibility sequence (S = ∅).

Proof. Suppose that gh = f , and for n ≥ 1 put an = fn(0) and bn, cn respectively
for g(fn−1(0)), h(fn−1(0)). Recall that by convention f0(x) = x, and note that we
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have bncn = an for all n ≥ 1. If vp(bi) = e > 0, then we have ai = f i(0) ≡ 0 mod pe,
whence 0 is periodic modpe under f , with period dividing i. Hence in particular
fmi−1(0) ≡ f i−1(0) mod pe for all m ≥ 1. Now vp(bi) = e > 0 implies that
g(f i−1(0)) ≡ 0 mod pe, and thus f i−1(0) is a root of g mod pe. Therefore fmi−1(0)
is also a root of g mod pe, implying that vp(bmi) ≥ e. Similarly, if vp(ci) = e > 0,
then vp(cmi) ≥ e for all m ≥ 1.

Now suppose that vp(bi) = e1 > 0. Then vp(ci) = e2 ≥ 0, and vp(ai) = e1 + e2.
Since (an) is a rigid divisibility sequence, we have vp(ami) = e1 + e2 for all m ≥ 1.
But by the previous paragraph vp(bmi) ≥ e1 and vp(cmi) ≥ e2. Thus ami = bmicmi

implies vp(bmi) = e1 and vp(cmi) = e2.
To show that pe | bn and pe | bm implies pe | bgcd(m,n), one may use the same

argument as in the proof of Lemma 5.3. Hence (bn) is a rigid divisibility sequence,
as desired. �

Theorem 5.5. Let f = x2 + k ∈ Z[x] with k 6= −1. Then D(P (f, a0)) = 0 for all
a0 ∈ Z.

Proof. First suppose that −k is not a square in Z. By Proposition 4.5 f is stable,
and provided that k 6= −2 we have f critically infinite, whence the theorem follows
from Theorem 1.1, part 2, taking g(x) = x. The case k = −2 may be resolved
directly, as has already been done in the proof of Theorem 5.1.

Suppose now that −k = c2 for some c ∈ Z with |c| ≥ 2, thereby excluding
k ∈ {0,−1}. Then {fn(0)} is infinite. Letting g(x) = x − c, we have that g ◦ fn

is irreducible for all n ≥ 1 by Proposition 4.5. Moreover, the critical point of f is
γ = 0 and Lemma 5.3 and Proposition 5.4 imply that g(fn(0)) is a rigid divisibility
sequence. Thus part 2 of Theorem 5.2 shows that D(P (g, f, a0)) = 0 for all a0 ∈ Z.
Similarly, D(P (h, f, a0)) = 0, where h(x) = x + c. Since g(fn(a0)) · h(fn(a0)) =
fn+1(a0), we have that P (f, a0) is the union of two density zero sets, and thus has
density zero.

Finally, if k = 0 it is clear that the set of divisors of an is finite. �

For our final family, we ride the coattails of Theorem 5.5. This is very much
along the lines of the sequence factorization described in [19, Section 3].

Theorem 5.6. Let f = x2 − 2kx + k ∈ Z[x] with k 6= ±1. Then D(P (f, a0)) = 0
for all a0 ∈ Z.

Proof. Note first that f(x) = (x − k)2 − k2 + k, so that f = φ ◦ h ◦ φ−1, where
φ(x) = x + k and h(x) = x2 − k2. Hence fn = φ ◦ hn ◦ φ−1, implying that
fn(a0) = hn(a0 − k) + k. But (hn(a0 − k) + k)(hn(a0 − k) − k) = hn+1(a0 − k),
and D(P (h, a0 − k)) = 0 by Theorem 5.5 provided k2 6= 1. �

We have now completed the proof of Theorem 1.2, in which Theorem 1.1 has
been the driving force. Unfortunately, quadratic f ∈ Z[x] meeting the hypotheses
of Theorem 1.1 are rare (and indeed remain rare despite growing more numerous
if Z is replaced by the ring of integers of a number field). However, we conjecture
that the conclusion of Theorem 1.1 holds for generic quadratic f ∈ Z[x]:

Conjecture 2. Let f ∈ Z[x] be quadratic, and suppose that f is stable and critically
infinite. Then D(P (f, a0)) = 0 for all a0 ∈ Z.

The obstacle impeding a proof of Conjecture 2 is a knowledge of the arithmetic
of the critical orbit of f . It is enough to show that given a stable, quadratic f ∈ Z[x]
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and b ∈ 1
2Z with {fn(b) : n ≥ 1} infinite, then there are infinitely many n such

that there exists a prime p with vp(fn(b)) odd and vp(fm(b)) = 0 for all m < n.
This assertion is plausible in light of work of [6] showing that for any nonzero
c ∈ Z, “most” n have the property that there exists p with vp(n2 + c) = 1 but
vp(m2 + c) = 0 for all m < n. It seems plausible as well that a similar assertion is
true for translated sequences {g(fn(b)) : n ≥ 1}. This would prove that Conjecture
2 holds for all quadratic f that are eventually stable and critically infinite. If
Conjecture 1 is true as well, this would show that D(P (f, a0)) = 0 for virtually all
quadratic f .

6. The infinitude of prime divisors of first-order polynomial
recurrences

Theorem 6.1. Suppose that f ∈ Z[x] is of degree d ≥ 2 and not of the form axd,
and let a0 ∈ Z be such that {fn(a0) : n ∈ N} is infinite. Then there is a constant c
with #(P (f, a0)∩{1, . . . , n}) ≥ c log log n for n large enough. In particular, P (f, a0)
is infinite.

Proof. We adopt an approach suggested independently to the author by I. Shpar-
linski and V. Dimitrov. First note that by [20, Theorem 3.20] the limit

lim
n→∞

1
dn

log |fn(a0)|

exists, and by [20, Theorem 3.22] is 0 if and only if {fn(a0) : n ∈ N} is finite. Since
here {fn(a0) : n ∈ N} is infinite, it follows that there are constants C,C ′ > 1 with

Cdn

< |fn(a0)| < (C ′)dn

for n large enough.
Let h(k) = #{p : p | ai for some i ≤ k}. We show that h(k) > k/3 for k suf-

ficiently large. Consider the h(k) + 1 numbers ak−h(k), . . . , ak, and suppose that
there are infinitely many k with h(k) < k (otherwise we are done). For a nat-
ural number m, call p a champion prime for m if vp(m) ≥ vq(m) for all p 6= q.
Note that pvp(m) ≥ |m|1/s for any champion prime of m, where s is the number
of distinct prime factors of m. By the pigeonhole principle, there are i and j with
k − h(k) ≤ i < j ≤ k such that ai and aj share a champion prime. It follows that

(20) gcd(ai, aj) ≥ |ai|1/h(k) ≥
∣∣ak−h(k)

∣∣1/h(k) ≥ C
dk−h(k)/h(k)
0 .

The inequality |ai| ≥
∣∣ak−h(k)

∣∣ follows by taking k sufficiently large and noting
|fn(a0)| → ∞ since {fn(a0) : n ∈ N} is infinite.

On the other hand, taking i and j as in the previous paragraph and writing
j = i + r with r ≤ h(k), we have aj = fr(ai) ≡ fr(0) mod ai. It follows that
gcd(ai, aj) | fr(0). Suppose now that fr(0) 6= 0 for all r ≥ 1 (we deal with the
other case in a moment). Then we now have gcd(ai, aj) ≤ Cdh(k)

1 . Combining this
with (20), taking log twice and rearranging yields h(k) + C3 log h(k) + C4 > k/2.
For k sufficiently large this gives h(k) > k/3.

Now each of the primes contributing to h(k) can be at most |ak| ≤ Cdk

4 . Hence
#{p ∈ P (f, a0) : p ≤ Cdk

4 } ≥ k/3 for k sufficiently large. It now follows that
#(P (f, a0) ∩ {1, . . . , n}) ≥ C5 log log n for some C5 > 0.

Finally, suppose that fr(0) = 0 for some r ≥ 1. Write fr(x) = xlg(x) with
g(0) 6= 0. Since f is not of the form axd we may take deg(g) ≥ 1. Consider
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the sequence bn = arn, so that bn+1 = fr(bn). Note that bn+1 = bln · g(bn). If
vp(bn) = e ≥ 1 then g(bn) ≡ g(0) mod pe. It follows that if p | g(0) then vp(bn)
goes to infinity with n, whence for n large enough we have vp(bn) > vp(g(0)).
Clearly the same conclusion holds if p - g(0). Therefore in either situation we have
that for n large enough vp(bn) = e ≥ 1 implies vp(g(bn)) < e. Thus if all primes
dividing g(bn) also divide bn, then g(bn) ≤ bn/2. However, by hypothesis bn takes
on infinitely many values, and since deg(g) ≥ 1, we have g(bn) ≥ bn − C for some
constant C. Hence for n large enough there must exist p with p | g(bn) but p - bn,
whence p | bn+1 but p - bn. Putting h(k) = #{p : p | ai for some i ≤ k} as above,
we have now shown that h(k) ≥ k/(r+ε), and #(P (f, a0)∩{1, . . . , n}) ≥ c log log n
follows as above. �

References

[1] Wayne Aitken, Farshid Hajir, and Christian Maire. Finitely ramified iterated extensions. Int.

Math. Res. Not., (14):855–880, 2005.

[2] Artur Avila and Carlos Gustavo Moreira. Statistical properties of unimodal maps: the qua-
dratic family. Ann. of Math. (2), 161(2):831–881, 2005.

[3] Mohamed Ayad and Donald L. McQuillan. Irreducibility of the iterates of a quadratic poly-

nomial over a field. Acta Arith., 93(1):87–97, 2000.
[4] Christian Ballot. Density of prime divisors of linear recurrences. Mem. Amer. Math. Soc.,

115(551):viii+102, 1995.

[5] Robert L. Devaney. An introduction to chaotic dynamical systems. Addison-Wesley Studies
in Nonlinearity. Addison-Wesley Publishing Company Advanced Book Program, Redwood

City, CA, second edition, 1989.

[6] Graham Everest, Shaun Stevens, Duncan Tamsett, and Tom Ward. Primes generated by
recurrence sequences. Amer. Math. Monthly, 114(5):417–431, 2007.

[7] Jan-Hendrik Evertse. On sums of S-units and linear recurrences. Compositio Math.,
53(2):225–244, 1984.

[8] Burton Fein and Murray Schacher. Properties of iterates and composites of polynomials. J.

London Math. Soc. (2), 54(3):489–497, 1996.
[9] Geoffrey R. Grimmett and David R. Stirzaker. Probability and random processes. Oxford

University Press, New York, third edition, 2001.
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