ITERATED ENDOMORPHISMS OF ABELIAN ALGEBRAIC
GROUPS

RAFE JONES AND JEREMY ROUSE

ABSTRACT. Given an abelian algebraic group A over a global field K, « € A(K),
and a prime ¢, the set of all preimages of o under some iterate of [¢] has a natural
tree structure. Using this data, we construct an “arboreal” Galois representation w
whose image combines that of the usual ¢-adic representation and the Galois group
of a certain Kummer-type extension. For several classes of A, we give a simple
characterization of when w is surjective. The image of w also encodes information
about the density of primes p in K such that the order of the reduction mod p of «
is prime to £. We compute this density in the general case for several A of interest.
For example, if K is a number field, A/K is an elliptic curve with surjective 2-adic
representation and a € A(K), a € 2A(K), then the density of primes p with o mod
p having odd order is 11/21.

1. INTRODUCTION

Let K be a global field, and denote by O the ring of integers of K if K is a number
field and K[C] if K := K(C) is the function field of the curve C. For any quasipro-
jective variety V, finite morphism ¢ : V' — V and point « all defined over K, we
construct an arboreal Galois representation w : Gal (K5 /K) — Aut(T,(«)), where
Ty(c) is the tree of preimages of o under some iterate of ¢. The image of w gives
density information about the behavior of the orbit of o under ¢ when one reduces
modulo primes of @. Our main results here concern the case where V' = A is an
abelian algebraic group and ¢ is multiplication by a prime £. In this case, finding the
image of w is closely related to doing f-adic Kummer theory on A (see e.g [2, 25];
also [18] contains a nice overview of applications to versions of the support problem).
Moreover, the density information regarding reduced orbits takes the form of divis-
ibility properties of |a,|, the order of the reduction o, € A(O/p) for primes p of O
(see e.g. [24, 7]).

In this paper we consider certain classes of A of general interest, and address both the
determination of the image of w and the computation of the associated density. The
image of w consists of the image of the usual /-adic representation, and in addition an
(-adic Kummer part that is isomorphic to a subgroup of the Tate module (see p. 3 for
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details). When A is a one-dimensional torus, an elliptic curve, or a higher-dimensional
irreducible abelian variety without complex multiplication, and the associated f-adic
representation is surjective, we give a simple characterization of when the Kummer
part is the full Tate module (see Theorems 11, 20, 27, 35). In the latter three
theorems, for all £ # 2 the condition is simply a & (A(K). In the cases we consider,
this makes explicit [3, Theorem 2, p.40], which states that if A is an abelian variety
or the product of an abelian variety by a torus, then the Kummer part is the full Tate
module for all but finitely many ¢ and has open image for all £ (see also [24, Theorem
2.8] and [7, Proposition 2.10] for the latter statement). This result stems essentially
from work of Ribet [25, 11], where it is shown that for A belonging to a large class
of commutative algebraic groups, the modulo-¢ Kummer part is all of A[¢] for all but
finitely many /.

When the Kummer part is the full Tate module, we give a method for computing
the associated density (Theorem 10), and carry out this computation when A is a
one-dimensional torus or an elliptic curve. That the image of w gives the density of
(-power divisibility properties of |a,| has already been established for abelian varieties
in [24] (see also [7, Proposition 2.11]), where it is also shown that all such properties
of |ay| occur for positive density sets of p, though no densities are computed. On
the other hand, work originating with Hasse [8, 9] and including Moree [23] and
others has led to the computation of all such densities in the case where A is a trivial
one-dimensional torus.

As a sample corollary of our work, we obtain the following.

Theorem 1. Let K be a number field and E an elliptic curve defined over K. Suppose
that the 2-adic representation associated to E surjects onto GlLio(Zs2) and o € E(K)
is any point with o ¢ 2E(K). Then the density of primes p C O with o, having odd
order is 11/21.

See Theorems 20 and 24 for results for all /. Note also that the surjectivity of the
2-adic representation is easily verified in specific cases. For instance, in Example 23
we show the curve E : y? + y = z° — x and point a = (0, 0) satisfy the hypotheses of
Theorem 1. An immediate corollary is the following.

Corollary 2. Let E : y> +y = 2> —x, a = (0,0), and suppose ay,as,... is the
corresponding elliptic divisibility sequence, i.e. that a, is the appropriate square root
of the denominator of x([n]a). Then the rank of apparition r, := min{n : p | a,} is
odd for 11/21 of primes p.

Remark. Compare Corollary 2 with the result of Lagarias [20], which is equivalent
to the Fibonacci sequence having odd r, for 1/3 of primes p. Note also that all our
results on elliptic curves may be translated into results about corresponding elliptic
divisibility sequences.
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When E has complex multiplication, we show in Section 5.2 that the density men-
tioned in Theorem 1 is in general only 2/9 when 2 splits in the CM ring of E, and
in general 8/15 when 2 is inert. We obtain similar results in the case of certain tori
(Section 4). In the case of a higher-dimensional abelian variety without complex mul-
tiplication (Section 6), the computation of the associated densities appears difficult.
Throughout, we give many examples to illustrate our large-image and density results.

A more detailed outline of the paper is as follows. In Section 2 we develop some
general aspects of arboreal Galois representations. Let K be a separable closure of
K, and consider the set of nth preimages

(1) Un :={8 € V(EK*®): ¢"(8) = a}.

We define the preimage tree T,,(«) to be the disjoint union of the U,; this set has a
natural tree structure with root .. Since ¢ is defined over K, any o € Gal (K*?/K)
preserves the connectedness of vertices, and thus acts on T,(a) as a tree automor-
phism. This gives a homomorphism wy,, : Gal (K% /K) — Aut(T,(a)) that we call
the arboreal representation associated to ¢, «, and often just denote by w. In general
one expects wy, to be surjective, though this is very difficult to prove for specific
maps (see the discussion on p. 7). Denote by Gy(a) the image of wy,. We define
F(G4(a)) to be the Haar measure of the set of g € Gy(«) fixing at least one infinite
limb of T (cv). We show that F(G,(«)) gives density information about the behavior
of the reduced orbit {¢" (@) : n = 1,2,...}, where the bars denote reduction modulo
a prime p in O.

Beginning in Section 3 we specialize to the case where V' = A is an abelian algebraic
group and ¢ is multiplication by a prime ¢. In the cases of interest to us, Gy(«) is
contained in Ty(A) x Aut(Ty(A)), where Ty(A) is the f-adic Tate module of A. The
image in the right side of this semi-direct product corresponds to the usual ¢-adic
representation of A, while the kernel of projection onto the right side corresponds to
restriction of wy, to Gal (K5 /K (A[(>])), where K(A[(>~]) =, K(A[("]). We call
the subgroup of Ty(A) obtained in this way the Kummer part of G . We give general
criteria for the Kummer part to be all of 7;(A) (Theorem 9), and show that when
this occurs we can determine F(Gy(cv)) via a certain matrix computation (Theorem
10).

In the remainder of the paper, we examine classes of A that hold particular interest,
and for convenience specialize to the case of K a number field (although similar
arguments apply to the case of K a function field). We give simplified versions of
Theorem 9 in each specific case (Theorems 11, 20, 27, 35). We also carry out the
computation of F(Gy(a)) where possible, using Theorem 10. In Section 4 we discuss
the case of algebraic tori. In the case A = G,,, we reprove certain results of Hasse,
Moree and others [23], and we treat the case where A is a twisted G,,. We also
discuss some examples of higher-dimensional tori. In Section 5 we deal with both
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non-CM and CM elliptic curves. When A = FE is an elliptic curve with surjective
(-adic representation, we show that the Kummer part is the full Tate module if and
only if & ¢ /E(K) (Theorem 20). In this case, we compute in Theorem 24 that
-0t —0B+041

O—06—-0r2+1
When E has CM, we obtain similar formulas (see Theorem 30).

F(Go(@)) =

In Section 6 we discuss the case of higher-dimensional abelian varieties. We show the
Kummer part is the full Tate module when ¢ > 2 and o € ¢A(K), and give an example
where wy(a) it is surjective for all £. However, due to the complexity of GSp,,(Z,) the
computation described in Theorem 10 appears quite difficult to carry out. For small
¢ we approximate F(Gy(c)) using MAGMA, and show for instance that if dim A = 2,
¢ =2, and A, « satisfy mild hypotheses, then 0.579 < F(Gy(a)) < 0.586. Thus the
density of the set of p C O such that the order of @ € A(k,) is odd moves farther
from the naive value of 1/2 in the dimension 2 case.

Question 3. If we fix say { = 2 does the limit of F(Gy(c)) as the dimension of A
grows exist? If so, what is it?

The first part of Question 3 is answered in the affirmative by Jeff Achter in the first
appendix to this article. One may also ask whether, if A and « are fixed and ¢ grows,
the limit of F(Gy(a)) must always approach 1. Finally, we have included a brief
appendix of data relating to each example in the paper.

2. GENERAL ARBOREAL REPRESENTATIONS

In this section we develop the theory of general arboreal Galois representations. While
this degree of generality will not be fully used in the sequel, it provides a framework
for the computational component of the paper.

As in (1), we define U, to be the set of nth preimages of  under the morphism
¢ : V. — V. Note that Tj,(«) := ||, U, becomes a rooted tree with root o when we
assign edges according to the action of ¢, i.e. 3; and (3, are connected if and only if
(1) = [2. Moreover, if Ty () is disjoint from the branch locus

By ={y €V :#¢ (7) < deg ¢},

then U, has (deg ¢)" elements and Ty(«) is the complete (deg ¢)-ary rooted tree. This
disjointness may be verified by checking that « is not in |, ¢"(Bj).

Let K, be the extension of K obtained by adjoining the coordinates of the elements
of U,, and let K, :=J, K,. Put G,, = G, 4(a) := Gal (K,,/K), and note that G,
is the quotient of G () obtained by restricting the action of Gy(a) on Ty(cx) to the
first n levels of T, («).
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We now give a formal definition of F(G,(«)). Note that Gy(«) is a profinite group
and thus has a natural Haar measure p, which we take normalized to have total mass
1. Define the ends of Ty(«) to be the profinite set lim{¢™"(a)} under the natural

maps {¢ " (a)} — {¢ " (a)} for n > m given by ¢" ™.

Definition. Assuming the notation above, we let F(Gy(ar)) = p({g € Ggla) :
g fizes at least one end of Ty(r)}).

Remark. A straightforward argument using the definitions yields
F(Gy(a)) = lim 1/#G,, - #{g € G,, : ¢ fixes at least one point in U, }.

One may consider V' as a scheme over Spec O, which we will also denote by V. For
instance, one can embed V in P C Py, and then take as a model the Zariski closure
of V.C P5. For each prime p C O, denote the residue field corresponding to p by k,,
the fiber of V' over p by V,, and the k,-points of V}, by V (k). Note that for o € V(K),
for all but a finite number of primes p there is a well-defined reduction @ € V' (k).
Moreover, the map ¢ : V — V' is given by polynomials in each projective coordinate,
and these polynomials have a common root modulo only finitely many p. For any p
not among these finitely many, we then have a reduced morphism ¢ : Ve, — V, with
deg ¢ = deg ¢. For a more detailed discussion of these matters, see [18, pp. 107-108].

In this section we show that F(Gy(a)) encodes certain dynamical information about
@ under ¢ as p varies over the finite primes of K. By the density of a set S of primes
of K, we mean the Dirichlet density

2pes N(p)
2 D(S) = lim =€ :
? R O
where N(p) denotes the norm of p. In the case where K is a number field, we
may without loss of generality use the notion of natural density given by d(S) =

lim #{p € 5: N(p) < n}/#{p: N(p) <n}.

Before stating the main result of this section, we give some terminology. If S is a set,
f:S — Sisamap, and f" the nth iterate of f, we say that s € S is periodic under
fif f*(s) = s for some n > 1. We say that s is preperiodic if s is not periodic but
f™(s) = f™(s) for some n,m > 1. Note that if S is finite then every point in S is
either periodic or preperiodic.

Theorem 4. Assuming the notation above, we have
F(Gyg(a)) > D({p C O : @€ V(ky) is periodic under ¢}).
If in addition Ko /K 1is finitely ramified, then we obtain equality.

Proof. Let Per(¢,a) = {p € O : ¢"(@) = @ for some n > 1}. We begin by showing
that p € Per(¢, @) if and only if for each n there is v € V(k,) such that ¢ () = @.
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If ¢ (@) = @ for some m, then for any n we may write n = mk +r with 0 < r < m

and take v = ¢ (@). To show the reverse inclusion, the finiteness of V(k,) implies

that there exist ny > ny and 5 such that ¢ (y) = ¢ (y) = @ Then
P M@ =9" (@ () =9" () =@
Now let
Qn = {p : p is unramified in Ky and aN(x) = @ has no solution in V'(k,) }.

If p € Qu, then by the previous paragraph, clearly p ¢ Per(¢, ). Since only finitely
many primes ramify in Ky, we have

(3) D(Per(¢,a)) <1—D(Qy).

Let Gk be Galois group of the separable closure of K, and let Frob, C Gk be the
Frobenius conjugacy class at p. By the Chebotarev density theorem, the density of p

with Frob, having prescribed image C' C Gy is #C/#Gy.

Let p be a prime of K not ramifying in Ky and such that deg ¢ = deg ¢; this excludes

only a finite number. There exists v € V/(k,) such that g_bN(fy) = @ if and only if the
action of Frob, on Uy has a fixed point. By the Chebotarev density theorem the
density of such p is equal to

#{o € Gy : o fixes at least one element of Uy }/#G .

Let us denote this quantity by dy, and note that dy = 1 — D(Qy). By (3) we
now have D(Per(¢, a)) < A}im dy, and this last limit is just F(G), proving the first

assertion of the theorem.

Suppose now that K /K is finitely ramified. By the first paragraph of the proof, we
then have that Per(¢, o) is the same as the complement of [ -, n except for a finite

set of primes. Since the complements of the {2y are nested, this gives D(Per(¢, o)) =
We close this section with some general remarks about arboreal representations that
will not be used in the sequel. A natural question to ask about wg  is how large one
expects the image G,(a) to be. In the case where V is a curve and ¢ is critically
finite, i.e. the forward image of the branch locus B, is a finite set, one can show
that G,(«) is finitely generated as a profinite group (see e.g. [1, Theorem 1.1]). This
immediately implies it cannot be all of Aut(7,(«)). The main considerations of this
paper fall into this category, as the multiplication by ¢ map on an abelian algebraic
group is critically finite.

However, in the absence of this phenomenon, it is reasonable to expect the image of
the arboreal representation to be large.
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Question 5. Let K be a global field, V' be a curve, ¢ : V — V be a finite morphism
defined over K, and a € V(K) be such that Ty(c) is the complete (deg ¢)-ary rooted
tree. Suppose ¢ is not critically finite. Must Gy(a) have finite index in Aut(Ty(«))?

One may ask a similar question for higher-dimensional V', but in that case the def-
inition of critically finite maps, and the ramification properties of extensions corre-
sponding to them, are not well-studied. Question 5 is not even resolved in the case
K=Q, V=P, ¢=ua*+cfor c €Z. Indeed, it is known that w,, is surjective
for certain values of ¢ [31], but for instance when ¢ = 3 surjectivity fails, and indeed
it is not known if the image in this case has finite index in Aut(7,(a)). However,
the first author has answered Question 5 in the affirmative for two infinite families
of quadratic polynomials ¢ : P! — P! [12, Section 3]. For further discussion of these
matters, see [4].

Finally, it can be shown that if G4(a) = Aut(Ty(a) then F(Gy(a)) = 0, e.g via
natural extensions of methods in [13, Section 5.

3. ARBOREAL REPRESENTATIONS ASSOCIATED TO ABELIAN ALGEBRAIC GROUPS

In this section, we specialize to the case of an abelian algebraic group V = A. We first
give an interpretation of F(Gy(«) in this case, then we describe the Galois groups
Gy = Gal (K (U,)/K) in terms of the groups A[¢"] := ker ¢™ and their automorphism
groups. We show that the image Gy(a) of w = wy o @ Gal (K*P/K) — Aut(Ty(a))
lands inside a particular semi-direct product, and fits into a short exact sequence
with the Kummer part and the image of the ¢-adic representation. Moreover, we give
criteria for the Kummer part to be the full Tate module.

We fix a € A(K) and ¢ € End(A), and we refer to Gy(a), Ty(a) and F(Gy(e)) as
G, T, and F(G), respectively. Let K., be the fixed field of kerw. We denote the
group operation on A additively. We assume that ¢ is a degree ¢¢ morphism with
the property that neither 0, o, nor any of their preimages are branch points. This
implies that the extensions K, /K are Galois.

Proposition 6. If A is a torus or an abelian variety and ¢ = [{], then F(G) is the
density of p such that the order of @ € A(ky) is not divisible by (.

Proof. First note that K, /K is a finitely ramified extension. For the torus case this
follows since after passing to a finite extension, the coordinates of elements of U,
consist of roots of unity multiplied by ¢"th roots of fixed algebraic numbers. The
abelian variety case is handled by [10, p. 263]; indeed K,,/K is unramified outside ¢
and the set of primes of bad reduction of A.
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Thus by Theorem 4 we have F(Gy(a)) = D({p C O : @ € V(k,) is periodic under ¢}).
Denote the order of @ € A(ky,) by m. We show that ¢ | m if and only if @ is peri-
odic under ¢. If £ 1 m then ¢ € (Z/mZ)*, whence " = 1 mod m for some n. Thus
[("]a = @, whence @ is periodic under ¢. Conversely, if [("|& = @ for some n, then
[¢" — 1]a = 0, whence £ cannot divide the order of @. O

We now discuss the decomposition of w into two parts in the case that A is an abelian
algebraic group, and give notation and terminology that we use throughout the sequel.
Let A[¢"] = {y € K*P : ¢"(y) = 0}, and let Ty(A) := lim A[¢"] be the Tate module
of A. Note that in the notation of Section 2, T;(A) is the same as T,(O), where
O € A is the identity.

Definition. For each n > 1, let 3, € U, be a chosen element so that ¢(5,) = Bn_1,
with By = a. Define
wy : Gal (K, /K) — Al¢"] x Aut(A[¢"])

by wn(0) := (0(Bn)—Pn, 0|ajgn)). Passing to the inverse limit gives w : Gal (K /K) —
Ts(A) x Aut(T,(A)).

Let also K (A[¢p>]) = U, K(A[¢"]) and p : Gal (K(A[¢>])/K — Aut(T4(A)) be the
associated Galois representation. Denote by p,, the restriction of p to Gal (K (A[¢"])/K),
and let [, = im p, and 7 := lim /,, = im p. Note that w restricted to Gal (K (A[¢>])/K
gives exactly p. Denote by x the map Gal (Ko /K (A[¢p>])) — T,(A). We refer to x
as the Kummer map and its image as the Kummer part of Gal (K, /K). Note that
K is surjective if and only if imw = Ty(A) x Z. The next proposition says that these
two parts give us full information about the image of . It is closely related to [24,

p. 5.

Proposition 7. Assume the notation above. Forn > 1, w, is an injective homomor-
phism.

Proof. For o, € Gal (K,,/K), we have
wn(oT) = (07(Bn) — B, 07| a16m)
= (o(7(Bn)) — 0(Bn) + 0(Bn) = B, 7l ajgnT| a1gm))
= ((0(Bn) = Bn) + 0(7(Bn) = Bn), 0| air 7| atgm1)
= (0(Bn) = By 0)(T(Bn) = B, 7)
= Wy (0)wn (7).

Thus, w, is a homomorphism. Suppose that ¢ € kerw,. Then, o(8,) — B, = 0 so
0(Bn) = Bn. Moreover, o|ap4n is the identity. Thus, if 3 € U, we have ¢"(3) = a and
SO

¢"(8 = Bn) = ¢"(B) = ¢"(fn) =a—a =0.
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Thus, 8 — B, € A[¢"]. Hence, o(8 — B,) = B — B,. It follows that o(5) = 3. Thus o
fixes U,, and hence K,,, proving that ¢ = 1 and w,, is injective. 0

We summarize the preceding discussion and Proposition with the following commu-
tative diagram:

1 —— Gal (Koo /K (A[9p™®])) —— Gal (Ko /K) —— Gal (K(A[¢p*°])/K) —— 1

3 - |

1 Td)(A) T¢(A) ><1Aut(T¢ (A)) —_— Aut(T¢(A))

1

The rows are exact, the maps on the top row being the natural ones. The nontrivial
maps on the bottom row are inclusion into the first factor, and projection onto the
second factor, respectively. The vertical arrows are all injections. For each n one
has a corresponding diagram modulo ¢, with the vertical maps being k,,w,, and
pn. Finally, for the remainder of the article we regard w as mapping into T4y x
Aut(T,(A)), rather than into the full automorphism group of the tree Ty(cr). Thus
we refer to w as surjective when its image is all of T4y x Aut(T4(A)).

We now work toward a theorem that will allow us to determine information about
the image of w. If G is any profinite group, we let ®(G) denote its Frattini subgroup,
namely the intersection of all maximal open subgroups of G. Properties of the Frattini
subgroup of Z will be important for determining the image of w. At this point we
assume that A[¢"] = (Z/€"Z)¢, an assumption which will be in force throughout.

Theorem 8. If there is a finite set S of primes of K such that K(A[¢"])/K is
unramified outside S for all n > 1, then the Frattini subgroup ®(Z) has finite index
m Z.

Proof. For n > m, denote by p,,, the natural restriction I, — I,,. Choosing con-
sistent bases for A[¢"] = (Z/("Z)?, we may consider elements of I,, as belonging to
GL4(Z/0"Z), with the reduction maps p,, ,, given by reducing mod (™.

We will first show that ker p,,11 ,, is an elementary abelian ¢-group. Note that ker p,, 41, =
{Mel,y1: M=1 (mod ¢")}. If My, My € ker ppy1, and we write My = 1+ (" A,
and My =1+ (™A, then

MMy =14 0*(A; + Ag) + (2" A Ay = 1+ (A, + As)  (mod €71,

It follows that if we define 7 : ker py41,, — Mq(Z/lZ) given by (M) = =L, then 7
is a homomorphism. If M € ker 7, then M =1 (mod /") and so M = 1. Tt follows
that 7 is an injective homomorphism, and hence ker p,,1; ,, is an elementary abelian

(-group.

Let N = kerp;. It follows that N is a pro-¢ group. Also, it is clear that N has
finite index in Z. Since every maximal subgroup of a finite ¢-group has index ¢,




10 RAFE JONES AND JEREMY ROUSE

every open maximal subgroup of N has index ¢ and hence N/®(N) may be viewed
as an [Fy-vector space. Let L be the fixed field of N. If L C M C K(A[¢>]) is
an extension with [M : L] = ¢ then M/L is unramified outside S. Hermite proved
that there are only finitely many extensions of a given number field with bounded
degree and unramified outside of a finite set of primes. It follows that N/®(N) is a
finite-dimensional [Fy-vector space and hence [N : ®(N)] < oo.

One may easily check that ®(N) is fixed by all continuous automorphisms of N. Since
conjugation by an element of Z induces a continuous automorphism of N, it follows
that ®(N) <Z. Proposition 2.5.1(b) of [33], pg. 41 states that if K <G, H < G and
K < ®(H) then K < ®(G). Applying this result with K = ®(N), H=Nand G=7
proves that ®(N) C ®(Z). Since ®(V) has finite index in Z, the result follows. [

The following surjectivity criteria for x will be used frequently in the rest of the paper.
Theorem 9. Let notation be as above. Make the following assumptions.

(1) Assume that for all n > 1, A[¢p"] = (Z/("Z)°.
(2) Assume that I,, acts transitively on the elements of order {™ in A[¢p"].
(3) Let k be large enough that ker p, C ®(Z). Assume that K () € K(A[¢*]).

~Y

Then k is surjective, i.e., imw, = A[¢"] x I, for all n.

Proof. Note that
Gal (K, /K(A[¢") = {o(Ba) — B : 0 € Gal (K,,/K(A[¢"]))} € Alg"].

Case I: There is a 0 € Gal (K,,/K(A[¢"])) so that o(f,,) — (3, has order ¢".

We denote elements of A[¢"] by vectors @; € (Z/¢"Z)? and elements of Aut(A[¢"])
by matrices M € GL4(Z/¢"Z). Thus in the present case there is some 0 of order ™
so that (07, 1) € imw,. Now, if ¥, is another vector of order ¢, then by assumption,
Gal (K (A[¢"])/K) acts transitively on the elements of order ¢" in A[¢"] and hence
there is some (U3, M) € imw,, so that M ~*(¢}) = ¥,. Then, one checks that

(T3, M)~ (1, 1) (T3, M) = (¥, 1).
Thus, (U, 1) € imw,. It follows that (v,1) € imw,, for all 7 € A[¢"].

Now, if M € I,, C GL4(Z/("Z), then there is some ¢ so that (¢, M) € w,. Thus since
(—=M~1(?),1) € imw,, the product (¢, M)(—=M~(v),1) = (0, M) is in imw,, as well.
Therefore imw,, = A[¢"] % I,,, as desired.

Case II: For all o € Gal (K,,/K(A[¢"])), 0(8,) — B, has order less than ¢".

Since {y € A[¢"] : v & A[¢" 1]} is precisely the set of all elements of order ¢" in
Alg], it follows that o(8,) — B, € Alp" ] for all 0 € Gal (K,,/K(A[¢"])). Thus,
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0=9¢""Yo(B,)—0Fn) = (" (B,) =" (B,) = o(81)— 1. Tt follows that 3; is fixed
by Gal (K,,/K(A[¢"])) and hence 3; € K(A[¢"]). This shows that K(3;) C K(A[¢"]).
If 3, € K(A[g]), then certainly K(3;) C K(A[¢*]). Hence, assume that 3; ¢ K(A[¢)]).
In this case, f; is not fixed by Gal (K;/K(A[¢])) and hence the Case I applies for
n = 1. This shows that Gal (K;/K) = Alg] x I;.

Next we will show that I; is a maximal subgroup of A[¢] x I;. If M C Al¢p] x I
with [; < M then there is a ¢ € M so that o(;) — 81 # 0. Hence, o(31) — (31 has
order ¢ and the same argument as in Case I shows that M = A[¢] x I; and hence
M = A[¢] x I. Thus, I; is a maximal subgroup of A[¢] x [} = Gal (K;/K).

It follows that K (), the fixed field of I; is a minimal subfield of K; and hence a
minimal subfield of K. Hence, Gal (K,,/K (/1)) is a maximal subgroup of Z. Let
L be the fixed field of ®(Z). If k is such that ®(Z) D ker p;, then L C K(A[¢*]). It
follows that K (5;) C L C K(A[¢*]), a contradiction. O

The following result gives a convenient method of computing F(G) in the case that
K is surjective, i.e. imw = ZJ x 7.

Theorem 10. Suppose that A[¢"] = (Z/"Z)¢ for all n, k is surjective, and p({M €
Z:det(M —1)=0})=0. Then

(4) f‘(G) — /E—ordg(det(M—I)) d,u
A

Remark. One can show that if I,, acts transitively on the elements of order ¢" in A[¢"]
for all n, then p({M € Z :det(M —I) =0}) = 0.

Proof. We will frequently use the fact that if X € My(Z,) acts on V = Z¢ with
det(X) # 0, then the image of X : V — V has index ('4(deX)) " Note that if
det(M — I) = 0 then ¢~°de(det(M=1) g not, defined, however by assumption this set
has measure zero and so does not figure in the integral.

Suppose that o € Gal (K,,/K) and w,(0) = (a, M) € (Z/("Z)* x GL4(Z/¢"Z). Then,
if 8 € U,, then o fixes 3 if and only if o(8) — B, = 8 — B,. Write = (3, + ~, where
v € A[("]. Then, o(3) = o(8,) + o(v) and so

U(ﬁ) — B = U(ﬁn) — B+ 0(7)'

The right hand side equals — 3, if and only if o(3,)—fn+0(y) = v. fw, (o) = (a, M)
then this means that a + M(v) = ~, whence (M — I)(—v) = a. This occurs if and
only if a is in the image of M — I.

It M € I, with det(M — I) # 0 (mod (") and M is any lift of M to H, then
ord(det(M —I)) = ordy(det(M — I)) and therefore the index of the image of M — I
(acting on (Z/"Z)?) and the index of the image of (M — I) (acting on ZJ) are the
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same. It follows that the index of the image of det(M — I) is ¢orde(det(M=1) " Hence,
the number of fixed points divided by the size of G,, = Gal (K,/K) is

#Fn - ZMEIn #lm (M — [) Z/ g?n—orde(det(M—I)) Z” #lm (M _ I)

#Go e Foen e

where Y and Y are taken over all M € I, with det(M — I) # 0 mod (" and
det(M — I) = 0 mod ¢™, respectively. We may rewrite the first sum as

/ E—ordg(det(M—I)) d,u
{M€Z:det(M—1I)#0 mod £7}

From the assumption that pu ({M € Z : det(M — I) = 0}) = 0 it follows that as n —
00, this integral tends to

/ E—ordg(det(M—I)) d,u
T

and the second term tends to zero. This establishes (4). O

4. TORI

The multiplicative group scheme G,, = Spec Z[z,y|/(xy — 1) is one of the simplest
examples of an algebraic group. An algebraic torus A of dimension n is an algebraic
group that is isomorphic to GJ}, over K*P. If K is a number field, then there is a
bijection between algebraic tori of dimension n up to K-isomorphism and

H'(Gal (K/K), Aut(G")) = Homeen (Gal (K/K), GL,(Z)).

In the special case n = 1, GLi(Z) = Z/27Z and Homeu(Gal (K /K),Z/27) =
K*/(K*)?. Tt follows every dimension 1 torus is isomorphic to one of the form

2 —dy? =1
for some d € K*/(K*)?, where the group law is given by
(@1, 51) * (2, 92) = (@122 + dy1ye, T1y2 + T2y1).
For such tori, we have the following surjectivity criteria for the Kummer map x.

Theorem 11. Let A : 22 — dy? = 1 be an abelian algebraic group over a number
field K. Assume that the (-adic representation on A is surjective. The Kummer map
Kk Gal (K/K(A[l>])) — Zy is surjective if and only if the following conditions are
satisfied:

(1) If £ is odd assume that K(B) € K(A[¢?]).
(2) If ¢ = 2 assume that K () € K(A[8]).
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Proof. Necessity is clear. To show sufficiency, we use Theorem 9, whose conditions
(1) and (2) are satisfied by our assumption that Z = Z;. As for condition (3), note
that Z; = Z; x (Z/(¢ — 1)Z) if ¢ > 2 or Z = Zy x (Z/2Z) if { = 2, and a simple
computation of maximal subgroups shows that we may take k =2 if £ > 2 and k =3
if £ = 2. Thus the hypotheses of the present theorem satisfy (3) of Theorem 9 and
the result follows. 0

Remark. In the case K = Q, one can show that for £ > 2, if 8; € Q(A[¢?]) then we
have either that a € LA(Q) or £ = 3, d = —3 and a = 3ay + asz, where as € A(Q)
and as € A(Q)[3].

The following proposition addresses conditions for surjectivity of the ¢-adic represen-
tation.

Proposition 12. Let ¢ be a prime. The (-adic representation p : Gal (K (A[(>])/K) —
Z; is surjective if and only if the following conditions are satisfied:

(1) If ¢ is odd, then [K((p) : K] =£(£ —1).
(2) If ¢ =3 (mod 4), then —{d is not a square in K.
(3) If ¢ =2, then 2, —d, and —2d are not squares in K.

Proof. A straightforward but somewhat lengthy argument using the definitions. [J

Corollary 13. The arboreal representation w : Gal (Ko /K) — Zy X Z; is surjective
if and only if the conditions of Theorem 11 and Proposition 12 are satisfied.

Proof. This follows from a simple diagram chase. O

Example 14. Suppose that K = Q and d = 1. In this case, 22 —y? = 1 is isomorphic
to G, over Q. If £ > 2 and o ¢ (A(Q), then Theorem 11 and the above remark
demonstrate that G = Gal (K /K) = Z; x Z; . Moreover, one verifies directly that
the same conclusion holds for ¢ = 2 as long as the corresponding point (7, 1/7) on
x'y’ = 1 satisfies condition (2) of Theorem 11, namely v ¢ (Q*)? and 2y & (Q*)%

Proposition 15. Suppose that { is prime, and G = Z; x Z; . Then,

|

FO ==

Proof. Clearly pu({z € Z; : x+ —1 = 0}) = 0. Thus we may apply Theorem 10.
Representing elements of Z; with their (-adic expansions, we obtain

(—2)/(t—1) ifn=0

(5) u(mGijw(:}c—l):n):{l/ﬁ T
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The integral in (4) is therefore

(e 9]

e 2 Z1_ 1 —r+1
€2k—€—1 5—1_ 2—-1

O

Returning to Example 14, we see that in the case A = G,,,, K = Q, we have F(G) =
(02—0—1)/(¢*>—1) for general (v,1/v) € G,,(Q). More specifically, if v € Q is neither
a square nor twice a square, the density of p such that the order of v € (Z/pZ)*
odd is 1/3. Similar results were first proved by Hasse [8, 9]; see [23] for a complete
accounting. For instance, Hasse showed that the density of primes p dividing 2" + 1
for some n is 3. Note that p | 2" + 1 if and only if 2" = —1 (mod p), that is
if and only if (2,1/2) has even order in G,,(F,). Similarly, Lagarias’ result [20]
about primes dividing the nth Lucas number L, corresponds to a = (1,1) on the
disconnected abelian algebraic group A : 2? — 5y? = +4. We have [n|a = (L, F},),
and one can easily show that o has even order mod p if and only if p | L, for some
n. Finally, [14], contains a study of primes that divide iterates of polynomials of
the form (z + t)?> — (2 +t). The nth such iterate is the z-coordinate of [2"](¢,u) on
A 2? — dy? = 4, where d and u are chosen so that d is squarefree and t? — 4 = du?.
A prime p divides the nth iterate if and only if z([2"](¢,u)) = ¢ (mod p). This occurs
if and only if (¢,u) has odd order mod p.

Example 16. Suppose that K = Q, d = —7, { = 7 and a = (3/4,1/4). In this
1/
case, one can show that K, is the unique real subfield of Q <C7n (Lﬁ> ) and

K, : K] =3-7*""1. The density in this case is F(G) =
i—é that would be obtained if Proposition 12 applied.

2 4, less than the density of

The situation becomes more complex when we consider tori A with A = G,,, xG,, over
the algebraic closure of K. We will content ourselves with considering two examples.

Example 17. Suppose that K = Q, A = G,, x G,, is given by A: xyz =1. Let £, p
and ¢ be distinct primes and consider multiplication by ¢ with o = (p, ¢, Z%I). In this

case, K, = Q(¢m,p"/*",¢"*") and Gal (K,,/Q) = (Z/("Z)* x (Z/{"Z)*, so that w is

surjective. One can compute that F(G) = —63_5432:14_1-

Example 18. Let K = Q, and let A be defined by
1=a%+2y° +42° — 6ayz = NQ(%)/Q(x +yV2 + 2V/4).

We take £ = 2 and o = (—1,1,0). In this example, A 2 G,, x G,, over L = Q(v/2, (3).
One can show that K, = Q((s, Con, (V2 — 1)Y2" ((33v/2 — 1)V/2"). Then,

Gal (K,,/Q) = (Z/2"Z)* x (S5 x (Z/2"Z)*), and F(G) = 67/168.
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5. ErLLipTic CURVES

5.1. Elliptic curves without complex multiplication. Suppose that A/K is an
elliptic curve without complex multiplication, K is a number field, ¢ = [{], and
a € A(K).

To determine the image of w, we need to determine both the image of the Kummer
map k : Gal (K/K(A[(*])) — Ty,(A) = Z? and the image of the associated ¢-adic
representation p : Gal (K (A[(*])/K) — GLa(Zy).

We treat the Kummer part first, although before doing so we give a lemma that will
be useful for determining surjectivity of both x and p. It is a fairly simple surjectivity
criteria for the 3-adic representation.

Lemma 19. Let A/K be an elliptic curve and £ = 3. Then, p : Gal (K (A[(>])/K) —
GLa(Z3) is surjective if and only if

(1) K is linearly disjoint from Q((o),
(2) Gal (K(A[3])/K) = GLy(Fs3), and
(3) the 9-torsion polynomial (the polynomial in K[x| whose roots are the numbers

x so that (z,y) € A(K) has order 9) is irreducible over K((y).

Moreover, if Gal (K(A[3])/K) = GLy(Fs3), but p is not surjective, then [K(A[9]) :
K] = 144,

Proof. Suppose p is surjective. Then the first two conditions are clearly satisfied.
Also, the mod 9 representation is clearly surjective. The restriction p|x(¢,) then has
image SLo(Z/9Z) in GLy(Z/9Z). 1t is easy to see that SLy(Z/97Z) acts transitively on
the elements of order 9 in (Z/9Z)*. Thus the 9-torsion points lie in a single Galois
orbit over K ((y), and hence the 9-torsion polynomial is irreducible. Therefore the
third condition is also satisfied.

Conversely, suppose that the three conditions are satisfied. It is well-known that if
the mod 9 representation is surjective, then the 3-adic representation is surjective.
Considering the subgroups of GLy(Z/9Z), the surjectivity of the mod 3 representation
and the determinant map show that if the mod 9 representation is not surjective, then
the image of p : Gx — GLo(Z/9Z) is a subgroup G with order 144. Then, the image
of plk(cy) is G N SLy(Z/9Z), which has order 24. It follows that the action of G' on
the 36 x-coordinates of the points of order 9 in A[9] cannot be transitive, and hence
the 9-torsion polynomial is reducible over K ((y). O

Theorem 20. Suppose that the (-adic representation p associated to A is surjective.
Then the Kummer map k : Gal (K/K(A[(>®])) — Z2 is surjective if and only if
a ¢ LA(K).
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Proof. First note that if « € A(K) then  has trivial image.

Assume now that o ¢ (A(K). We apply Theorem 9. Condition (1) of Theorem 9
is easily seen to be satisfied, and the assumption that p is surjective establishes
condition (2). Thus it suffices to establish condition (3) of Theorem 9. To do this, we
first show ) ¢ K(A[(]) when ¢ > 2. We first remark that the surjectivity of p and
the assumption that o ¢ (A(K) imply that if 5, € K(A[{]), then the Galois closure
of K(4y) is K(A[{]). Indeed, 3; cannot be in A(K), and it follows that if 3 # [
is a conjugate of 31, then B, — 31 € A[f] and is nonzero. The surjectivity of p then
implies that Gal (K (A[(])/K) acts transitively and hence the Galois closure contains

All].

Suppose now to the contrary that §; € K(A[(]). We showed that the Galois closure
of K(B1) contains K (A[f]). This implies that if H = Gal (K(A[{])/K(5)) C L =
Gal (K (A[(])/K), then corer(H) = 1. Since H N Z(L) is central in L, it follows that
HNZ(L)< L. However, since corer,(H) = 1 it follows that H N Z(L) = 1. It follows
then that
|L:H|=|L:HZ(L)||HZ(L): H| =|L: HZ(L)| |H|]_;| ) =|L:HZ(L)||Z(L)|.

Note that Z(L) = (Z/¢Z)*. Thus, |Z(L)| =¢—1. Now, |L: H| = |K(f;) : K| is the
size of the Galois orbit of #;. From above, it has size a multiple of ¢ — 1. Applying
the same argument to other preimages of a shows that all the Galois orbits have size
a multiple of £ — 1, and so it follows that ¢ — 1|¢?¢, the number of preimages of a.
This implies that ¢ = 2.

We now show that 8, ¢ K(A[(]) when ¢ = 2. In this case Gal (K(A[2])/K) = S;
and this implies that |L : H| = 3. This implies that each Galois orbit has size three,
which is a contradiction, since there are four preimages of a. Hence, §; ¢ K(A[{]).

As the last step in establishing condition (3) of Theorem 9, we show that surjectivity
criteria for the f-adic representation are satisfied over K () and use this to show
that K(3,) € K(A[(*]), as desired. Since 3; ¢ K(A[{]), an argument analogous to
that in the proof of Theorem 9 shows that K () is a minimal subfield of K (A[¢(*])
and that the Galois closure of K () is K1 = K(6, Alf]). Also, Gal (K;/K) =
(Z)0Z)* x GLy(Z/VZ.).

Let I}, = Gal (K(A[¢¥))/K), M = Gal (K(A[(*])/K(5)), and N = Gal (K (A[¢(*])/ K (A[{])).
Since K (1) € K(A[(]) we have that N Z M, and since M is maximal in I, it follows
that M N = Ii.
Then, p1|p : M — GL2(Z/VZ) has kernel M N N. It follows that
M MN [k
MAN N N
Hence py |y is surjective.

~ GLy(Z/(Z).
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If we think of A as an elliptic curve over K (/3,), it follows that p |5 : Gal (K/K(8)) —
GL3(Z/0Z) is surjective. Note that since K(/1)/K is a minimal subfield whose Ga-
lois closure has Galois group (Z/(Z)* x GLy(Z/{Z), we have K(f;) N K((}) = K. Tt
follows that K (3;) is linearly disjoint from K ({;°).

If ¢ > 5, Theorem 4.1 of [32] applies to A over K (). It follows that Gal (K /K (/1)) =
GLo(Zy).

If £ =2, let A be the discriminant of the quadratic subfield of K(A[2])/K. Vasiu’s
Theorem 4.2.1 [32] gives surjectivity of the 2-adic representation over K () provided
—A, 2A and —2A are not in squares in K (). If this is the case, then there is
a € K(B) so that o* = —A, o = 2A or o® = —2A. This implies that K(3;)
contains a quadratic subfield, contradicting that K ((;)/K is a minimal subfield.

If ¢ = 3, since the mod 3 representation is surjective over K(f3;), either the 3-adic
representation is surjective over K (), or [K (5, A[9]) : K(#1)] = 144, by Lemma 19.
This would imply that [K(A[9]) : K] < [K(651,A[]9]) : K] = 1296. However, the
given assumptions imply that [K(A[9]) : K] = |GLy(Z/9Z)| = 3888, a contradiction.
Hence, plys is surjective.

In any case, we see that Gal (K../K(f1)) = GLy(Z,). However, since K(8;) C
K(A[¢*]), the image must have index [K(3;) : K], a contradiction. O

We now turn to the surjectivity of p, on which there is a large literature. In particular,
a result of Serre [28] implies that if ¢ is large enough, then p is surjective. Here we
wish to give simple, explicit criteria for surjectivity of p for given £. We use Theorem
4.1 of [32] for £ > 5, and Theorem 4.2.1 of [32] for a surjectivity criteria for the 2-adic
representation. The 3-adic representation has already been treated in Lemma 19.

Proposition 21. Let ¢ be a prime. The (-adic representation p : Gal (K (A[(>])/K) —
GLa(Zy) is surjective if and only if the following conditions hold:

(1) K is linearly disjoint from Q((pm) for all n.

(2) Gal (K(A[(])/K) = GLo(Z /(7).

(3) If € = 2, then K(A[2]) is linearly disjoint from Q(\/2,1).

(4) If £ = 3, then the 9-torsion polynomial is irreducible over K((y).

Proof. The necessity of the four conditions is trivial. Conditions (1) and (2) and [32,
Theorem 4.1] imply that p is surjective provided ¢ # 2,3. If £ = 2, [32, Theorem 4.2.1]
gives this result assuming condition (3). When ¢ = 3, condition (4) and Lemma 19
ensure the surjectivity of p. U

Corollary 22. The arboreal representation w : Gal (Ko/K) — (Z;)* x GLa(Zy) s
surjective if and only if the conditions of Theorem 20 and Proposition 21 are satisfied.
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Proof. The necessity is clear. Assume that x is surjective, i.e. for all n (¢,1) € imw,
for all v € (Z/¢"Z)*. The surjectivity of p, implies that for any M € I, there is
some ¥ with (7, M) € imw,. Since (=M ~(¥),1) € N, we have (¢, M)(—M~1(7),1) =
(0, M) € imw,. Therefore w, is surjective. O

Example 23. Let A : y?>+y = 23— 2. Then A is an elliptic curve of conductor 37. In
28] (pg. 310, 5.5.6), it is shown that Gal (Q(A[(])/Q) = GLy(Z/(Z) for all £. 1t is also
known that o = (0,0) is a generator of E(Q) = Z. Moreover, one can check that the
unique quadratic subfield of Q(A[2])/Q is Q(v/37), and that the 9-torsion polynomial
is irreducible over Q((o). It follows that the w representations are surjective for all .

Now we turn to the problem of computing the density F(G) in the situation that w
is surjective, i.e. Gal (K /K) = (Z)* x GLy(Zy). To apply Theorem 10 in this case,
we note that [,, = GLy(Z/("Z) acts transitively on the elements of order £ in A[¢"].

Theorem 24. If |- |, is the normalized absolute value on Zy, then we have

OC—0—B+l+1
det(M — D], du =
/GLQ(ZZ)‘ et e di 0 —03 -2 +1

Proof. Tt is necessary to count the number ¢, of matrices M € GLy(Z/¢"Z) with
det(M —1I)=0 (mod ¢"') but det(M —I) # 0 (mod ¢™). Then the desired integral

1S

00 cn
; #GLo(Z/0"Z)

First, we compute ¢;. This is the number of matrices M € GLy(F,) so that M — I
is invertible, that is, 1 is not an eignevalue of M. We will first count the number
of matrices in GLy(FF,) that do have 1 as an eigenvalue. This implies that the other
eigenvalue is in F, and hence M has a Jordan form over F,. It follows that M is

similar to one of
1 0 11 10
L osna [ O

The size of the conjugacy class is the index of the centralizer. We can easily compute

that the centralizer of the first matrix is {{8 2]} which has size (¢ — 1)?. The

centralizer of the second matrix is g 2 which has size £(¢—1), and the centralizer

of the third matrix is GLy(F,), which has order (¢ — 1)(¢* — £). Tt follows that
ey = #CLy(Fy) =Ll +1) (0 —=2) = (L = 1)l +1) =1 =£* — 20> — 1? + 30
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For n > 2, we pick a matrix M € GLy(F,) and count how many M e GLy(Z/0"Z)
there are with M = M and det(M —1) =0 (mod ") but det(M —1) £ 0 (mod (™).
The following simple lemma will be helpful for this purpose. We omit the proof.

Lemma 25. Suppose that a,b € Z/lZ, c € Z/{"Z, and n > 2. Then, the number of
pairs (o, B) € (Z/0"Z) with aff = ¢ (mod £") with « = a (mod ¢) and f =b (mod ¢)
18

0 ab# ¢ (mod ()

ot ab=c¢ (mod {) and one of a or b is nonzero.
(¢ —1)(ordy(c) = 1"t a=b=c=0 (mod/{),cZ0 (mod (")

(nl —n— €+ 2)m1 a=b=c=0 (mod/{),c=0 (mod ().

If M # I (mod ¢) but M has one as an eigenvalue, a straightforward computation
using Lemma 25 shows that there are (¢ — 1)¢3~3 matrices M € GLy(Z/0"Z) with
ord(det(M —I)) = n — 1 for each M € GLy(FF,). There are ¢3 —2¢ — 1 matrices that
fall into this case.

If M =1 (mod /), a more lengthy computation using Lemma 25 shows that there
are

(€2 o 1)€3n—3 o (62 o 1)€2n—1
matrices M in GLy(Z/¢"Z) with ord,(det(M — I)) = n — 1. Hence, we have
o= (0 =120+ 1) 2 — (12 = 1)1,

Hence, we may split up
o

Z #GLo (nZ/E"Z)

n=1

as a sum of two geometric series, and we get
-t —B+r+1

O = —m—mi1

O

5.2. Complex Multiplication. Suppose that A is an elliptic curve defined over a
number field K, and that A has complex multiplication. Then Endg(A) = R, where
R is an order in an imaginary quadratic field L. Suppose first that L. C K, and put
Ry=R®7Zy. Let T = Gal (K(A[¢*])/K), so that Z is the image of the ¢-adic Galois
representation associated to A. Then Z is known to be isomorphic to a subgroup of
R} (see e.g. [29, p.502]). Indeed, we also have the analogue of Serre’s open image
theorem, namely that for any ¢, 7 must have finite index in R, and in fact Z = R/
for all but finitely many ¢ [28, p. 302].
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A subgroup of GLy(Z,) that is isomorphic to R/ is called a Cartan subgroup, which
we denote by C'. In the case where L ¢ K, we have that 7 is a subgroup of the
normalizer N of some Cartan subgroup C. Indeed, [Z : ZNC] = [K : L] = 2, and
thus Z is the normalizer of its image in C'.

Lemma 26. Let R be the ring of integers in a quadratic imaginary field L, suppose
¢ is unramified in R, and put Ry = R ® Zy. If > 3 then any subgroup G < R}
with full image in (Re/0*Re)* is all of R). For { =2 a similar assertion holds with
(Re/0?Ry)* replaced by (Ry/0PRy)*.

Proof. We proceed by describing the Frattini subgroup ®(R;) of R;. First note that
if S'is the valuation ring in an unramified extension of Q, of degree d, then the /-adic
logarithm gives an isomorphism S* = F; x S if £ > 3 and S = Z/27Z x F; x S if
¢ = 2, where Fy is the finite field with ¢4 elements [26, p. 257]. Since £S is the unique
maximal subgroup of S, it follows that any maximal subgroup of S* must contain
¢S, whence ®(S*) D ¢S. In the isomorphism given by the logarithm, ¢S maps to
{r eSS :x=1mod?}if ¢ >3 and {z € S* : x = 1 mod 3} if { = 2. Thus if
G < 8% and G has full image in S*/¢25* (S*/¢3S* if £ = 2) then G surjects onto
S*/®(S*) and hence G = S*.

If /is inert in R, then Ry is isomorphic to the valuation ring in an unramified quadratic
extension of Q, and the Lemma is proved. If ¢ splits in R, then R = Z, x Z,, and
we have ®(R;) D ¢Z x (Z. The proof then follows as in the previous paragraph. [

Theorem 27. Let A be an elliptic curve defined over a number field K, suppose
A has complex multiplication, and suppose that K does not contain the CM field of
A. Let H < GLy(Zy) be the normalizer of the appropriate Cartan subgroup so that
p: Gal (K(A[(™])/K) — H, and suppose that in fact p is an isomophism. Finally,
suppose { > 3. Then the Kummer map k : Gal (K /K(A[{>®])) — Z2 is surjective if
and only if a ¢ LA(K).

Proof. The only if direction is trivial. Recall that K, is defined to be the compositum
of all K(3) as [ varies over all preimages of a under [¢]. Let H, be the reduction
modulo ¢" of H.

Case I: Suppose that there is 0 € Gal (K,,/K(A[¢("])) with o(5,) — (3, having order
¢". When H is non-split, H,, acts transitively on the points of order ¢" in (Z/("Z)?,
and we conclude that x is surjective just as in the proof of Theorem 9. If H is split,
we must do more. Note that

a O X O a . X
H:{{O b} .a,bEZZ}U{{b 01 .a,bEZZ}.

Let N =imk, = {7: (¥,1) € imw,}, and note that we wish to show N = (Z/("Z)?.
Since p, : Gal (K(A[¢"])/K) — H,, is surjective by hypothesis, for any M € H,, there
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is some (U3, M) in the image of w,. Then,
(T3, M) (0, 1) (T3, M) = (M (3),1) € imw,,.

Hence if v € N and M € H,, then Mv € N. By assumption there is some v; € N of
order ¢". Write #; = [a  b]". Then, since @ has order ", one of a or b is coprime

. 1 . . . :
to £. By applying M = [0 } , we see that there is some v € N with a coprime to £.

10
Then,
1101, |2a
U+{O _1]0—{0].

Since ¢ > 2, it follows that 2a is coprime to ¢. Hence, there is an integer b so that
2ab =1 (mod /) and hence

(oo 2)9-[en

Applying [[1) (1)] again we see that [ﬂ is also in N. It follows that N = (Z/{"Z)>.

Case II: Suppose that for all o € Gal (K, /K(A[¢("])) we have o(f,) — [, of order less
than ¢".

As in the corresponding portion of the proof of Theorem 9, we deduce that (3, €
K(A[("]) and H, is a maximal subgroup of (Z/(Z)*x H;. Note that o & {A(K) implies
01 ¢ K, whence the order of o(f;) — 3 is greater than one. The assumption that
Gal (K(A[(])/K) = H; and the maximality of H; then imply imw; = (Z/¢Z)* x H.
Note also that Hy = Gal (K;/K (1)), whence K(f;) is a minimal subfield of K.

It follows from the proof of Lemma 26 that the Frattini subgroup of H contains
the kernel of reduction modulo ¢?. Hence, every minimal subfield of K(A[("]) is
contained in K(A[¢?]). If K(B1) C K(A[f?]), then since the second is Galois over
K, the Galois closure of the first is contained in the second. Hence K; C K(A[(?]).
Now, |K; : K| = ¢?-|H,|, and this equals 2¢%(¢ — 1)? in the split case and 2¢?(¢* — 1)
in the non-split case. Also, |K(A[¢(?]) : K| = |H,|, which has the same order as
(% - |Hy| in both the split and non-split cases. Hence K; = K(A[¢?]). This implies
that Hy & (Z/VZ)* x H;.

We now obtain a contradiction by comparing the centers of these groups. Note that
in both the split and non-split cases, Z(H,) contains al for a € Z/{*Z and hence has
order a multiple of ¢(¢%) = £(¢ — 1).

However, if (0, M) € Z((Z/{Z)* x Hy), then
(@, M)(0, M) = (¢, M?)
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but (0, M) (7, M) = (M¥, M?). Tt follows that M¥ = ¢ for all M € H,. If £ > 3, then
21 € H; and hence ¢ = 0. Therefore Z((Z/(*Z)* x H,) C Z(H,), which has order
¢—1. This is a contradiction. Hence, Case II does not occur, and w,, is surjective. [

We now address the image of p, and using Lemma 26 we give a simple criteria for it
to be as large as possible:

Proposition 28. Let A, K, and H be as in Theorem 27, and again take ¢ > 3. Then
p: Gal (K(A[(>®]))/K) — H is an isomorphism if and only if Gal (K (A[¢?])/K) = H,.

Proof. The only if direction is trivial. Suppose now that Gal (K (A[¢?])/K) = H,.
Lemma 26 implies that Gal (K(A[¢*>°])/K) contains a subgroup C of H of index two,
namely the Cartan subgroup. Since Gal (K (A[¢?])/K) already properly contains the
reduction modulo ¢? of C, the same is true of Gal (K (A[¢(*])/K), and we conclude
Gal (K (A[(>~])/K) = H. O

Remark. When ¢ = 2, we can obtain the conclusion of Theorem 27 under the stronger
assumption that [K (51, A[8]) : K(A[8])] = 4. We can obtain the conclusion of Propo-
sition 28 with the additional assumption that Gal (K (A[8])/K) = Hs.

The following corollary has the same proof as Corollary 22.

Corollary 29. Let H be as in Theorem 27, and let ¢ > 3. The arboreal representation
w: Gal (Ko /K) — (Z¢)? x H is surjective if and only if the conditions of Theorem
27 and Proposition 28 are satisfied. When ¢ = 2 the conditions of the above remark
are equivalent to the surjectivity of w.

Now we compute the densities F(G) in the CM case.

Theorem 30. Let C be a Cartan subgroup of GLy(Zy), and let G = 72 x C with the
natural action. Let h(z) = (2> —x—1)/(2*—1). Then F(G) = h({)? if C is split and
h(¢?) if C is inert. If G =73 x N, where N is the normalizer of a Cartan subgroup,
then F(G) = (h(€)* + h(£))/2 in the split case and (h(€*) + h({))/2 in the inert case.

Proof. Letting 1 be Haar measure, one easily sees that u({M € C : det(M —I) =
0}) = 0, and similarly for N, whence Theorem 10 applies in all cases. Suppose first
that C' is non-split, whence C' = R/, where R, may be taken to be the valuation ring
in an unramified quadratic extension of Q,. By Theorem 10, to find F(G) it is enough
to compute t,, ;== p({z € R, : v/(r — 1) = n}) for each n > 0 and then evaluate the
integral in (4). Since £ is a uniformizer for R, and the residue field has order (2, we
have tg = (¢* —2)/(¢*> —1). When n > 1, for x — 1 to have valuation precisely n its
(-adic expansion must have constant term 1, order-i term 0 for 1 < i < n — 1, and
order-n term non-zero. Thus forn > 1, ¢, = 1/(£>"—1)-1/02=D. (2 -1) /(% = 1 /0>
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The integral in (4) is therefore
£4n B -1 7

and this last expression is just h(€2).

Now suppose that C' is split, whence C' = Z, x Z, . In this case the Haar measure on
C'is just the product of the Haar measure p on each copy of Z,. The expression for
p{z € Z; x Z; : vy(x — 1) = n}) thus has n + 1 terms, since the valuations of the
two coordinates of x — 1 must sum to n. From (5) it follows that for n = 0 we get a
measure of (¢ —2)?/(¢ —1)%, while for n > 1 a short computation shows the measure

18
Ly =2
A\ "

The integral in (4) thus becomes

((-27 , 204 n—1
((—1)? £—1§:@n e

n=1

and after evaluation of these sums one obtains (¢* — 203 — (2 +20+1)/(¢*> —1)?, which
is equal to h(£)?.

We now consider the case G = Z2 x N, where N is the normalizer of a Cartan
subgroup. We have [N : G] = 2, and thus we need only determine the integral in (4)
on the non-identity coset of C'in N. When C is non-split, let v € R, be such that
Ry = Zy[y] with 2% + cx + d the minimal polynomial of . Note that ordy(c) = 0. We
thus have in the split and non-split cases, respectively, that the non-identity coset of
C in N consists of all

0 a a bd— ac
u=[y o] w=[ )

In the former case we have det(M — I) = 1 — ab and in the latter det(M — I) =
1 — (a* — abc + db*). The maps (a,b) — ab and a + by — a® — abc + db? define
homomorphisms ¢; and ¢o mapping R, — Z, in the respective cases (¢2 is the norm
homomorphism). Both ¢; and ¢ are surjective for ¢ > 3, as their images properly
contain the squares in Z;. For ¢ = 2 the surjectivity of ¢; is clear, while for ¢ it
is useful to take v = (3, so that ¢ = d = 1. Then im ¢5 contains the squares and is
surjective on (Z/8Z)*, and thus is surjective. The sets {z € R, : ordy(1 —¢;(z)) = n}
all have the form ¢;*(S), where S is defined via congruence conditions modulo ¢"+1.
Since the ¢;-preimage of any congruence class modulo ™! contains the same number
of classes, it follows that u(¢;'(S)) = u(S), where the first measure is the Haar
measure on R, and the second is that on Z;. Therefore finding the integral in (4)
reduces to the same computation as in Theorem 15, which comes to h(f). U
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Example 31. Let K = Q, A: y* = 2>+ 32z, a = (1,—-2) and ¢ = 5. The elliptic curve
A has CM by the full ring of integers in Z[i], and 5 splits in Z[i]. One can compute
the Mordell-Weil group A(Q) and check that « is a generator. Hence a ¢ (A(Q).
One can check using MAGMA that Gal (Q(A[25])/Q) = H,. Thus the hypotheses
of Theorem 27 are satisfied, and we conclude by Theorem 30 and Proposition 6 that
@ has order prime to 5 for ((19/24)? + 19/24)/2 = 817/1152 ~ 0.71 of primes p.
Compare this to the generic value of 2381/2976 ~ 0.80 in the non-CM case.

Example 32. Let K = Q, A:y* = 23+3, a = (1,2) and £ = 2. The elliptic curve A
has CM by Z[(3], « is a generator of the Mordell-Weil group of A, and 2 is inert in Z[i].
A straightforward computation using MAGMA shows that Gal (Q(A[8])/Q) = Hj and
wy is surjective. The image of Frobenius at 71 acts on the Galois closure of Q(/)
with order 4, while it acts on Q(A[8]) with order 2. Hence ) ¢ Q(A[8]). Thus the
conclusion of Theorem 27 holds, and by Theorem 30 and Proposition 6 we conclude
that @ has odd order for (11/15+ 1/3)/2 = 8/15 ~ 0.533 of primes p.

Example 33. Let K = Q, A : y* = 23 — 207515z + 44740234, o = (253,2904) and
¢ = 2. The elliptic curve A has CM by the full ring of integers in Q(v/—7), and 2 splits
in this ring. A computation using MAGMA shows that the conditions in the remark
following Proposition 28 are satisfied and thus the conclusion of Theorem 27 holds.
By Theorem 30 and Proposition 6 we have that @ has odd order for (1/9+(1/3))/2 =
2/9 ~ 0.222 of primes p.

Example 34. Let K = Q, A : y*> = 2° + 3z, a = (1,—2) and ¢ = 2. The elliptic
curve A has CM by Z[i] and in this case ¢ is ramified. A lengthy computation shows
that the image of w has index 4 in Z3 x H, where

a b
H:{l$b :l:a} ca,b € Zo,a* +b* =1 (mod 2)}

is the corresponding Cartan normalizer. The image of wy is generated by

(only 5))- (oo 5])- (w0 5])

One can compute that in this case F(G) = 3% ~ 0.531.

6. HIGHER-DIMENSIONAL ABELIAN VARIETIES

If the abelian algebraic group A is projective, then A is an abelian variety. In this
section we will describe the case when dim(A) > 1. Assume that ¢ = [{], the
multiplication by ¢ map and let d = dim(A).

To determine the image of w it is crucial to know about the image of p : Gal (K (A[(*])/K) —
GLou(Z/0"Z).
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The Weil e,,-pairing is a nondegenerate, skew-symmetric, Galois invariant pairing
em : Alm] x Alm] — pn,. If ® : A — A is a polarization defined over K, then
the pairing e, ¢ @ A[m| x Alm] — pn, given by e e(a,b) = en(a, ®(b)) is skew-
symmetric and Galois invariant. Moreover, it is nondegenerate provided that m is
coprime to # ker(®). The Galois invariance and non-degeneracy implies that I,, C
GSpyy(Z/"Z), the group of symplectic similitudes.

The following result gives criteria for when the map to the Kummer part is surjective.

Theorem 35. Let  be prime, d > 2 and assume that ged (¢, # ker(®)) = 1, and the (-
adic representation p is surjective. Then the Kummer map r : Gal (K /K (A[(>*])) —
Z2% is surjective if and only if the following conditions hold:

(1) a & LA(K),
(2) if t =2, by £ K(A[2)).

Proof. The proof follows that of Theorem 20 mutatis mutandis. The only differences
are that Vasiu’s Theorem 4.1 now applies to the ¢/ = 3 case, and that we assume
51 & K(A[(]) when ¢ = 2. O

Remark. When ¢ = 2, GSpy,(F2) = Spy,(F2). This group has subgroups SOZ,(Fy)
and SO, (F3) stabilizing the two isomorphism classes of quadratic forms of dimension
2d. The former has index 22¢-! 4 291 and the latter has index 22¢=! — 29=1 These
indices sum to 2?¢. For d > 2, it therefore seems possible that the preimages of
a might fall into one Galois orbit of size 22¢=! — 29=1 and one Galois orbit of size
22d=1 4 9d=1 Tt is an interesting question whether or not this occurs.

We have the following surjectivity criteria for p.

Proposition 36. Let ¢ be a prime, d > 2 and assume that ged(?, # ker(P)) = 1.
Then, the (-adic representation p : Gal (K(A[(*®])/K) — GSpyy(Zs) is surjective if
and only if the following conditions hold:

(1) Assume that K is linearly disjoint from Q((em) for all n.
(2) Assume that Gal (K(A[(])/K) = GSpyy(Z/lZ).
(3) If ¢ = d = 2 assume also that K(A[(]) is linearly disjoint from Q(v/2,1).

Proof. This is a restatement of Vasiu’s Theorems 4.1 and 4.2.1 from [32]. O

Remark. Suppose that d is odd, d = 2 or d = 6, and End(A) = Z. Théoreme 3 of [27,
Résumé des cours de 1985-1986] implies that the conditions of the above proposition
are satisfied for ¢ sufficiently large.

Corollary 37. The arboreal representation w : Gal (Ko /K) — (Z¢)* x GSp,(Zy) is
surjective if and only if the conditions of Theorem 35 and Proposition 36 are satisfied.
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Proof. Similar to that of 22. O

Example 38. Let C be the hyperelliptic curve with affine model y* = f(x), where
f(x) = 425 — 825 + 42 + 42% — 8z + 5 and let A = Jac(C). In [5, p. 2] a non-singular
model for C' is given by

Y2 =5X; — 8X X, +4X7 +4X7 — 8Xp X3 +4X;
Xo Xy = X7, Xo X3 = X1 X, X1 X5 = X3

The two points at infinity are at (Xo : X7 : Xo : X3 :Y)=(0:0:0:1: —2)
and (0:0:0:1:2). Denote the first by co™. Let P =(1:1:1:1:1) and let
a=o00" — P e AQ).

Proposition 39. With A and « given above, we have
Gal (Koo/ K) 2 (Z¢)* x GSpy(Ze)

for all primes (.

Proof. 1t suffices to verify the conditions of Theorem 35 and Proposition 36. Note
that since J = Jac(C), J is endowed with a canonical principal polarization, so

#ker(®) = 1.

Next, we check condition (1) of Theorem 35. The Kummer surface K associated
to Ais A/{[—1]). Tt is a quartic curve in P? with nodes at the images of A[2], the
fixed points of [—1]. Multiplication by [m| descends to a morphism of K, and one
may use the map ¢ : A — K to define a height function h : A — R on A. Let h
denote the corresponding canonical height. One may use MAGMA to verify that for
all P e A(Q), |h(P) — h(P)| < 3.10933 and that h(a) = 0.247060. Suppose to the
contrary that there is a prime ¢ and 3 € A(Q) with 8 = «. Then, h(8) = e%ﬁ(oz)
and hence |h(3)| < 3.10933 + 0.247060. Computing all points P € J(Q) satisfying
the above bound, we find that there are no such (.

Condition (1) of Proposition 36 is obvious.

Next, we check condition (2) of Proposition 36. In [6], Dieulefait indicates how one
can check that the mod ¢ Galois representations associated to an abelian surface are
surjective at all but finitely many primes, conditional on Serre’s conjecture. Using
the algorithm of Liu ([21]), we find that the conductor of A divides 2*-3°-13-31. We
use Dieulefait’s recipe and the explicit computation of the characteristic polynomials
of the images of Frobenius in Aut(A[(]) afforded by MAGMA. We find that at all
primes ¢ > 7 of good reduction, the mod ¢ representation is surjective conditional on
Serre’s conjecture. The two-torsion points of A[2] are the Weierstrass points of C,
and hence Q(A[2]) is the splitting field of f(z). One can check that the Galois group
of the splitting field of f(z) is isomorphic to Sg = GSp,(Z/2Z). Further, explicit
computations mod 3, 5, 7, 13 and 31 show that the mod ¢ representation is surjective
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there as well. We remark that Serre’s conjecture has been proven thanks to work of
Khare and Wintenberger [15] and [16], and Kisin [17].

Next, we check condition (3) of Proposition 36. Since Q(A[2])/Q has Galois group
Sg, there is a unique quadratic subfield of Q(A[2]), and computing the discriminant
of f(x), we find it to be Q(v/—3-13-31). Hence, Q(A[2]) is linearly disjoint from
Q(v/2,1), as desired.

Finally, we check condition (2) of Theorem 35. In Appendix I to [5], Cassels and Flynn
make explicit the morphism on the Kummer surface K induced by the multiplication
by 2 map on A. One can check that the image ¢(«) of won K'is (0:1:1: —4). Using
this, one may compute the preimages on K of the point ¢(«), which corresponds to
a € A(Q). This gives rise to a system of four quartic equations in four unknowns.
Using MAGMA'’s Grobner basis routine to solve the corresponding system of algebraic
equations, we find that the sixteen preimages are of the form (1 : a; : ay : a3). Here
a1, as and ag generate Q() where 8 has minimal polynomial

g(x) = 2'% — 122 — 362" + 31622 — 9122 4 1412210 — 4722° — 176428
+ 354427 — 41042° 4+ 39122° — 3588z — 588843 + 823222 — 45761 + 884.

It follows that the preimages of (0 : 1 :1: —4) lie in degree 16 extensions of Q and
hence [Q(f;) : Q] = 16. Hence, we cannot have 31 € Q(A[2]) since Gal (Q(A[2])/Q) =
S¢ has no subgroups of index 16. Thus condition (6) holds. It follows that the
splitting field of g(x) is K; and so the Galois group of g(z) is isomorphic to (Z/27Z)* x
GSp,(Z/27.,). O

Unfortunately, we have been unable to exactly compute the corresponding densities
for the groups Zj x GSp,(Z¢). The nature of the explicit method employed in The-
orem 24 seems unlikely to be fruitful. Here is a table of bounds computed from
conjugacy class information for GSp,(Z/("Z).

¢ Lower bound Upper bound n used

2 2L (~0.579) #£n (~0.586) 4

70769 ~ 27203 [
3 qoseso (= 0.683) 55550 (= 0.700) 2

In general, if ¢ is prime and Gy(a) = Zj x GSp,(Z,), we have
T_ 96 _ g5 4 apt_ o3 2 T_ 6 _ g5 4 op3 4 g2
00 =200 —0° 4+ 40% — 20° 4 20 5§.7:(G')§€ 00— 0+ 300 =200+ ¢ 4'
(=12 -1)(l—1) 0C—0 -0+

These follow from the computation of the number of M € GSp,(F,) with det(M —1) #
0 (mod /) in [19, p.61].
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APPENDIX A. A RESULT RELATING TO QUESTION 3
by Jeff Achter

Fix a prime ¢. This appendix provides a proof of:

Proposition 40. The limit lim, ., F(Z7% x GSpy,(Zy)) ewists.

The proof requires some notation concerning symplectic groups. Let ¢ be a fixed
prime. For each natural number g, fix a free Z,~module V; of rank 2g, equipped with
a symplectic pairing (-, -). For each natural number n, let V,,, = V,®z, Z¢/("Z,. After
a choice of basis of V', we have GSpy, (Z¢/("Zs) = GSp(Vyn, (-, -)). For natural num-
bers n > m, let pgnm + GSPoy(Ze/"Zs) — GSpy,(Ze/l™ L) and pg, = GSpy,(Zy) —
GSpy,(Z/l"Zy) be the usual reduction maps. For any ring A there is a group ho-
momorphism mult : GSp,,(A) — A, and Sp,,(A) = mult™'(1). For 0 < r < g
define

. #Sp2g (Ze/ 0" o)
®) ) = S T L) 0y e )
) L(g.n) #SPoy (Ze /0" Zy)

T H#GLy(Z/07Zg) - # GLy(Zy /0" Zy)’

with the convention that for g = 0, Spy,(Z¢/¢"Zs) and GSpy,(Z¢/"Zy) are the
trivial group. Then S(g,7,n) is the number of decompositions V,, = E & W
where £ = V,, and W = V,_, . while L(g,n) is the number of decompositions
Vom = E @ W where E and W are each isotropic. Recall that #Sp,,(Z¢/(Zs) =
[Lo 77107 = 1), # GLG(Ze/lZe) = I3, 71 — 1), and # GSpyy(Ze/l"Ze) =
H (L /€ L) ™ ) #SPog (L [ " ZLy).

For x € GSpy,(Z¢/"Zy), let
€(z) = min{ord,(det(z —id)) : T € p;ib(x)}

Set

1
Fg,m) = o
# GSpoy (Ze /(") xegspg(;z/znze)

Lemma 41. For each g and n, |F(Z}? x GSpyy(Ze)) — F(g,n)| < 7.

Proof. Let Cy, = {x € GSpy,(Ze/l"Zy) : €(x) < n}. If 2 € Cyp, and if T € p, ) (),
then ordy(det(z — id)) = €(z). Let ﬁg,n = GSpoy(Ze) — py(Cyn). By Theorem 10,
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we have

|[Fg,n) — F(Z2 % GSpy, (Z4))] = / (7 — o ®)

Dy.n
< 07"u(Dyy) < €7

Define subsets of GSp,,(Z¢/("Zy)

Uy = {x € GSpy,(Zy/l"Zy) : each eigenvalue of py,,1(z) is 1 or mult(x) mod £}
Ny = {x € GSpyo, (Z¢/1"Zy) : pgm(z) —id is invertible}

and quantities

_ #ugvn _ #'/\/9777/
CLg n ) bg n )
’ #szg(Ze/ (nZy) " # GSpyy(Ze/ 0 Zy)
o) = g Ze/fnze 2

a€lUyn

We adopt the convention that for g = 0, Uy, = Non = GSpy(Ze/0"Zy). In particular,
aon = bO,n =1

Lemma 42. For each g and n, ag, = ag1 and by, = by 1.

Proof. Membership in U, ,, or in N, is detectable modulo ¢, and p, 1 is a surjective
homomorphism. 0

Henceforth, let a; = a4 and by, = by 1.

3

Lemma 43. We have a; = Wﬁ% If g > 2, then a, < ((ﬁ)g—lal'

Proof. The first claim follows from the calculation of ¢; in the proof of Theorem 24.
For the second, suppose g > 2. Recall that if H is a finite group of Lie type over
Z¢/Zy, then the number of unipotent elements in H is ¢dim-rankil [30] = Therefore,
the number of unipotent elements in GSpy (Z/(Zy) is 29 and the number of unipo-

tent elements in GLy(Z¢/(Z;) is €9°~9 . If € U, is not unipotent, then there is
a decomposition V,; = E @ W where £ and W are Lagrangian subspaces, z|g is
unipotent, and x|y is uniquely determined by mult(z) and z|g. The number of such
decompositions of V; 1 is L(g, 1), and the number of choices for mult(z) is (¢ —2). By
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(6) and (7),
_ #Ug 1 _ ad T (¢ —2)t5"9
T Sy (LML) T (= 1) [T, U0 (07— 1)
It (-2
= . + 4
e =1 I (- 1)
g—1 i _
(%1 (-2 (291
< —— .
(E G | (G 1)2> 20 —1
63
= Gy

Define generating functions A(T) =3 - a,79 and B(T) = 3_ -, b,17.

Lemma 44. If { > 3, then there is a number R > 1 such that A(T) is analytic and
nonvanishing on the (complex) disk |T| < R.

Proof. By Lemma 43, 3 o a, < a1, o(6*/(£* —1))™. Because £ > 3, 3° -, a, <
1 = ag. Therefore, A(T) defines a nonvanishing analytic function on |T'] < 1. O

Suppose x € GSpy,(Z/l"Ze) = GSp(Vy,n). Then x uniquely determines a decompo-
sition
(8) ‘/g,n == E:v ©® Wa:;

where E, =V, , for some r, W, =V, .., x|g, € Up,, and z|w, € N,_,,,. Therefore,

g
# GSDog(Ze /0" Ze) =Y~ S(g, v, n)# U H# Ny
r=0

g
#Z/{rn #Ng—rn
= # GSpy, (Ze /"7 : ’ )
# GSpoy (Ze/ Z)TZ:;#szr(ze/fnze)#GSpQ(g_T)(ZZ/K"Zz)
so that
g
(9) > rnbgrn =1.

r=0
Lemma 45. The limit limg_,o by exists.

Proof. Suppose ¢ > 3. By (9), there is an equality of power series

1

AT)-B(T)=> T%= 7
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By Lemma 44, there exists a number R > 1 such that the function C(T") := 1/A(T)
is analytic inside |T'| < R. Let C(T") = > ¢, be the series expansion of C' centered
at the origin. Since B(T) = C(T)/(1 —T'), we have

g
bg: E Cj.
Jj=1

Since C(1) is well-defined, lim, . b, = C(1) exists.

If £ = 2 then for each g, Sp,,(Z/2Z) = GSp,,(Z/2Z), and x € N, if and only if z is
“eigenvalue-free” in the sense of [22]. The existence of lim,_, b, follows immediately
from [22, Thm. 5.3].

O

Proof of Proposition 40. By Lemma 41, it suffices to show that for each n, lim, .., F'(g,n)
exists. So, fix a natural number n; we will calculate F(g,n) explicitly.

Suppose x € GSp(Vy,n) = GSpy,(Z¢/l"Zy). Under the decomposition (8), e(x) =
e(z|p). Since S(g,r,n)/# GSpoy(Ze/ ") = (# GSpyy_r) (Zg |07 74)#SDo, (Zy [ 07 Zy)) 71,

we have

1
F(g,n) = S(g,r,n) - #N, —rn =@
# GSpoy (Ze/ (" L) o;g ’ IEGSPQT%Z/K"ZZ)
-y #No—rin . 1 S @
0<r<g # Gsp2(g—r) (ZZ/KHZE) #Sp2r (Zf/gan) 2EGSpy,. (Ze /0" Zy)
= Z bgfr,nh(gﬂ/l) = Z bgh(-g7n)7
0<r<g 0<r<g

by Lemma 42. Since h(g,n) < a,,/¢ = a,/¥, it follows from Lemmas 43 and 45 that
lim F = li
Jim (g,n) glggo Z byh(g,n)

0<r<g

exists. 0

APPENDIX B. NUMERICAL DATA

In this appendix, we give numerical data related to the examples given in the paper.
Each table below includes several choices of x, the number of primes < x where «
(and/or A) has good reduction (total primes), and the number of such primes where
the order of « is coprime to ¢ (good primes), and the ratio.

The following is data for Example 14, A : 2% —y? =1, with { =2 and a = (2, 3).
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x 103 10 10° 10° 107 00

Good primes | 57 406 3197 26200 221805
Total primes | 167 1228 9591 78497 664578

Ratio 34132 33062 .33333 .33377 .33375 .33333
The following is data for Example 16, A : 2? + 7y* =1, { =7 and v = (2, 1).
T 103 104 109 108 107 %9

Good primes | 115 870 6805 55608 470765
Total primes | 167 1228 9591 78497 664578
Ratio 68862 70847 70952 .70841 .70837 .70833

The following is data for Example 18, A : 23 + 2y3 4+ 423 — 6zyz = 1, with ¢ = 2 and
a=(—1,1,0).

T 103 10* 10° 10° 107 00

Good primes | 62 492 3840 31353 265226
Total primes | 168 1229 9592 78498 664579
Ratio 36905 .40033 40033 .39941 .39909 .39881

The following is data for Example 23, A : y*> +y = 23 — z, with £ = 2 and a = (0,0).
T 103 10 10° 106 107 00
Good primes | 93 654 5029 41080 348035
Total primes | 167 1228 9591 78497 664578

Ratio .5b689 53257 52434 52333 .52369 .52381
The following is data for Example 32, A:y?> =23+ 3,/ =2 and a = (1,2).
T 103 104 10° 108 107 00

Good primes | 90 670 5093 41868 354068
Total primes | 166 1227 9590 78496 664577
Ratio 54217 54605 53107 .53338 .53277 .53333

The following is data for Example 33, A : y? = 23 — 2075152 + 44740234, { = 2 and
a = (253,2904).
x ‘ 103 10* 10° 106 107 00
Good primes | 39 269 2113 17407 147714

Total primes | 165 1226 9589 78495 664576
Ratio 23636 21941 22036 .22176 .22227 22222

The following is data for Example 34, A : y* = 23 + 3z, { =2 and a = (1, —2).
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T ‘ 103 10 10° 10° 107 00
Good primes | 89 663 5082 41757 353023
Total primes | 166 1227 9590 78496 664577
Ratio 53614 .54034 .52993 53196 .53120 .53125

The following is data for Example 38, A = Jac(C') where C' : y* = 42° — 82° + 4z +
422 —8x +5, ¢ =2 and a = oo™ — P.
x| 10 100 10° 10° 107 0
Good primes | 101 725 5H84 45832 388144

Total primes | 164 1225 9588 78494 664575
Ratio 61585 .59183 .58239 .58389 .58405 0.57944 < F < 0.58643
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