1. Here is a truth table involving the two propositions:

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>Q ∨ R</th>
<th>P ⇒ (Q ∨ R)</th>
<th>P ⇒ Q</th>
<th>P ⇒ R</th>
<th>(P ⇒ Q) ∨ (P ⇒ R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

Comparing the fifth column and the last column, we see that they are the same, and hence the two propositions are logically equivalent.

2. There exists a positive integer n such that for all positive integers k, either k is not prime or $k^2 > n$.

3. We argue by induction on n.

When $n = 1$, the claim is that $\frac{1}{1 \cdot 5} = \frac{1}{4(1) + 1}$, which is clearly true.

Now suppose that $k \geq 1$ is given, and that the result holds for k. Then our induction hypothesis says that

$$\frac{1}{1 \cdot 5} + \frac{1}{5 \cdot 9} + \cdots + \frac{1}{(4k-3)(4k+1)} = \frac{k}{4k+1}.$$

Now note that $\frac{1}{(4(k + 1) - 3)(4(k + 1) + 4)} = \frac{1}{(4k + 1)(4k + 5)}$, and when we add this to both sides of the equation above, we find

$$\frac{1}{1 \cdot 5} + \frac{1}{5 \cdot 9} + \cdots + \frac{1}{(4k-3)(4k+1)} + \frac{1}{(4k+1)(4k+5)} = \frac{k}{4k+1} + \frac{1}{4k+5} = \frac{k(4k+5)+1}{(4k+1)(4k+5)} = \frac{(4k+1)(k+1)}{(4k+1)(4k+5)} = \frac{k+1}{4k+5}.$$

This chain of equations establishes the result for $k + 1$, and completes the proof.

4. (a) This statement is false. Here is a counterexample: let $A = \{1\}$ and $B = \{2\}$. Then we have $\mathcal{P}(A \cup B) = \emptyset, \{1\}, \{2\}, \{1, 2\}$ and $\mathcal{P}(A) \cup \mathcal{P}(B) = \emptyset, \{1\}, \{2\}$. Note that $\{1, 2\} \in \mathcal{P}(A \cup B)$ but $\{1, 2\} \notin \mathcal{P}(A) \cup \mathcal{P}(B)$.

5. To prove that a number is not rational, it’s a good idea to use an indirect proof. Let’s use a proof by contradiction. Suppose to the contrary that \(\log_3(5) \) is rational. Then there exist integers \(p \) and \(q \) such that \(\log_3(5) = p/q \). Note that since \(\log_3(5) \) is positive (in fact, since \(5 > 3 \), it is at least 1), we in fact have that both \(p \) and \(q \) are positive. By the definition of logarithm, \(\log_3(5) = p/q \) means that \(3^{p/q} = 5 \). Raising both sides to the \(q \) power then gives \(3^p = 5^q \). But \(3^p \) is divisible by 3 (because \(p \) is a positive integer), and \(5^q \) is not. This contradiction proves the theorem.

6. (a) \(R \) is not symmetric, since \((2, 1) \in R \) but \((1, 2) \notin R \). \(R \) is not anti-symmetric, since \((1, 3) \in R \) and \((3, 1) \in R \) but \(1 \neq 3 \).

(b) To be systematic about this, we need to first consider all \((x, y) \in R \) with \(x = 1 \). This gives just one pair, namely \((1, 3) \), so \(y = 3 \). Now let’s find all \((y, z) \) with \(y = 3 \), namely \((3, 1) \) and \((3, 3) \). Transitive requires that since \(R \) contains the two pairs \((1, 3) \) and \((3, 1) \), then \(S \) must contain \((1, 1) \). Also, since \(R \) contains \((1, 3) \) and \((3, 3) \), \(S \) must contain \((1, 3) \); but \(R \) already has \((1, 3) \), so we don’t need to add anything.

So we must add \((1, 1) \) to \(R \) to get the relation \{\((1, 1), (2, 1), (1, 3), (3, 1), (3, 3), (4, 1)\)\}. Considering all \((x, y) \in R \) with \(x = 1 \) as before, we see that we do not need to add any elements to the new relation. So consider all \((x, y) \in R \) with \(x = 2 \). The only one that needs attention is the pair \((2, 1) \) and \((1, 3) \); we must add \((2, 3) \), which gives a new relation

\[\{ (1, 1), (2, 1), (2, 3), (1, 3), (3, 1), (3, 3), (4, 1) \} \]

Now if we considering all \((x, y) \in R \) with \(x = 1 \) or \(x = 2 \), we need to add no new elements. The same goes for \(x = 3 \). To account for the pairs with \(x = 4 \), we need to add \((4, 3) \). Thus we take

\[S = \{ (1, 1), (2, 1), (2, 3), (1, 3), (3, 1), (3, 3), (4, 1), (4, 3) \} \]

7. (a) Reflexive: Yes, since \((A - A) = \emptyset \), so \((A - A) \cup (A - A) = \emptyset \).

(b) Symmetric: Yes, since \(S \cup T = T \cup S \) for any sets \(S \) and \(T \), and so \(A \cap B \) implies \((A - B) \cup (B - A) = \emptyset \), which implies \((B - A) \cup (A - B) = \emptyset \), which implies \(B \cap A \).

(c) Anti-symmetric: Yes. Suppose that \(A \cap B \) and \(B \cap A \). Then \((A - B) \cup (B - A) = \emptyset \), which implies that both \((A - B) \) and \((B - A) \) are empty, for if either contained an element, then \((A - B) \cup (B - A) \neq \emptyset \). Now \((A - B) \) being empty implies that there does not exist \(x \) with \(x \in A \) and \(x \notin B \). Hence for all \(x \), either \(x \notin A \) or \(x \in B \). Therefore if \(x \in A \), then we must have \(x \in B \). This proves that \(A \subseteq B \). The same argument, with the roles of \(A \) and \(B \) reversed, shows that if \((B - A) \) is empty, then \(B \subseteq A \). We’ve now shown that \((A - B) \cup (B - A) = \emptyset \) implies \(A = B \). This proves that \(R \) is anti-symmetric.

(d) Transitive: Yes. Suppose that \(A \cap B \) and \(B \cap C \). In part (c), we showed that this implies \(A = B \) and \(B = C \). Hence \(A = C \), and so by part (a), \(A \cap C \). Hence \(R \) is transitive.