Carleton College, winter 2014 Math 232, Solutions to practice midterm 2 Prof. Jones

1. Find a bases for the kernel and image of the following matrix:

$$
A = \begin{bmatrix} 1 & 0 & 2 & 0 & 1 \\ -3 & 0 & 0 & 1 & 0 \\ -1 & 0 & 4 & 1 & 2 \end{bmatrix}.
$$

To find a basis for the kernel, we need to row reduce the augmented matrix

$$
\left[\begin{array}{rrr} 1 & 0 & 2 & 0 & 1 & 0 \\ -3 & 0 & 0 & 1 & 0 & 0 \\ -1 & 0 & 4 & 1 & 2 & 0 \end{array}\right],
$$

and we get the reduced row-echelon form

$$
\left[\begin{array}{cccc|c} 1 & 0 & 0 & -1/3 & 0 & 0 \\ 0 & 0 & 1 & 1/6 & 1/2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right],
$$

Thus the free variables are x_2, x_4 , and x_5 , and we set $x_2 = t_1$, $x_4 = t_2$, and $x_5 = t_3$. The set of solutions is then

$$
\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} \frac{1}{3}t_2 \\ t_1 \\ -\frac{1}{6}t_2 \\ t_2 \\ t_3 \end{bmatrix}.
$$

Separating the arbitrary constants t_1, t_2, t_3 into their own vectors then yields a basis of

$$
\left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1/3 \\ 0 \\ -1/6 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ -1/2 \\ 0 \\ 1 \end{bmatrix} \right\}.
$$

As for the image, the above reduced row-echelon form shows that the non-redundant columns are the first and the third, so a basis for the image is

$$
\left\{ \begin{bmatrix} 1 \\ -3 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 4 \end{bmatrix} \right\}.
$$

2. Find a basis for the following subspace of P_4 .

$$
W = \{ p(x) \in P_4 \mid p(1) = p(-1) = 0 \}.
$$

What is the dimension of W ?

Note that W is the same as

$$
\{a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0 \in P_4 \mid a_4 + a_3 + a_2 + a_1 + a_0 = 0, a_4 - a_3 + a_2 - a_1 + a_0 = 0\}.
$$

There are different ways to do this problem, but the most systematic is to find all solutions to the system of equations

$$
a_0 +a_1 +a_2 +a_3 +a_4 = 0
$$

\n $a_0 -a_1 +a_2 -a_3 +a_4 = 0$.

So we put the augmented matrix

$$
\left[\begin{array}{rrr|rrr} 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & -1 & 1 & -1 & 1 & 0 \end{array}\right]
$$

in reduced row-echelon form. We get

$$
\left[\begin{array}{cccc|c} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \end{array}\right]
$$

Thus our free variables are a_2 , a_3 , and a_4 . Set $a_2 = t_1$, $a_3 = t_2$, and $a_4 = t_3$. The set of solutions is then

$$
\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix} = \begin{bmatrix} -t_1 & -t_3 \\ -t_2 & \\ t_1 & \\ t_2 & \\ t_3 \end{bmatrix}
$$

.

Separating the arbitrary constants t_1, t_2, t_3 into their own vectors then yields a basis of

$$
\left\{\left[\begin{array}{c} -1\\0\\1\\0\end{array}\right], \left[\begin{array}{c} 0\\-1\\0\\1\\0\end{array}\right], \left[\begin{array}{c} -1\\0\\0\\0\\1\end{array}\right]\right\}.
$$

But we need to re-convert these to polynomials, since W is a subspace of P_4 , and hence any basis for it should consist of elements of P_4 . So a basis for W is

$$
\{-1+x^2, -x+x^3, -1+x^4\},\
$$

and W has dimension 3.

3. Determine whether the following mappings are linear transformations. Either prove that a given map is linear or give a counterexample to show it's not linear.

(a)
$$
T : \mathbb{R}^2 \to \mathbb{R}^3
$$
 defined by $T((x_1, x_2)) = (2x_1, x_1 + 4, 5x_2)$

Not linear since $2T((0,0)) = 2(0,4,0) = (0,8,0)$ but $T(2(0,0)) = T((0,0)) = (0,4,0)$.

(b)
$$
T: P_2 \to P_3
$$
 defined by $T(a_2x^2 + a_1x + a_0) = a_0x^3 + (a_1 - a_0)x^2 + 3a_2 - (1/2)a_0$

Linear. Let $\vec{u} = u_2 x^2 + u_1 x + u_0$ and $\vec{v} = v_2 x^2 + v_1 x + v_0$. Then

$$
T(\vec{u} + \vec{v}) = (u_0 + v_0)x^3 + (u_1 + v_1 - u_0 - v_0)x^2 + 3(u_2 + v_2) - (1/2)(u_0 + v_0)
$$

= $(u_0x^3 + (u_1 - u_0)x^2 + 3u_2 - (1/2)u_0) + (v_0x^3 + (v_1 - v_0)x^2 + 3v_2 - (1/2)v_0)$
= $T(\vec{u}) + T(\vec{v})$

A similar calculation shows that $T(c\vec{u}) = cT(\vec{u})$.

4. Let V be a subspace of \mathbb{R}^n with $\dim(V) = n$. Explain why $V = \mathbb{R}^n$.

Since dim(V) = n, V has a basis B containing n elements. Since B is a basis for V, B is linearly independent. However, n linearly independent vectors in the n-dimensional space \mathbb{R}^n must form a basis for \mathbb{R}^n , by Theorem 3.3.4(c). Thus B is a basis for both V and \mathbb{R}^n , and so $Span(B) = V$ and $Span(B) = \mathbb{R}^n$. Hence $V = \mathbb{R}^n$.

5. (a) Consider the mapping $T : \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 2}$ defined by

$$
T\left(\begin{array}{cc}a&b\\c&d\end{array}\right)=\left(\begin{array}{cc}a+b&c-b\\b+2d-3c&d+4a\end{array}\right).
$$

Prove that T is a linear transformation.

Let

$$
\vec{u} = \left(\begin{array}{cc} u_{11} & u_{12} \\ u_{21} & u_{22} \end{array}\right) \qquad \vec{v} = \left(\begin{array}{cc} v_{11} & v_{12} \\ v_{21} & v_{22} \end{array}\right)
$$

Then

$$
T(\vec{u} + \vec{v}) = \begin{pmatrix} u_{11} + v_{11} + u_{12} + v_{12} & u_{21} + v_{21} - (u_{12} + v_{12}) \\ u_{12} + v_{12} + 2(u_{22} + v_{22}) - 3(u_{21} + v_{21}) & u_{22} + v_{22} + 4(u_{11} + v_{11}) \end{pmatrix}
$$

=
$$
\begin{pmatrix} u_{11} + u_{12} & u_{21} - u_{12} \\ u_{12} + 2u_{22} - 3u_{21} & u_{22} + 4u_{11} \end{pmatrix} + \begin{pmatrix} v_{11} + v_{12} & v_{21} - v_{12} \\ v_{12} + 2v_{22} - 3v_{21} & v_{22} + 4v_{11} \end{pmatrix}
$$

=
$$
T(\vec{u}) + T(\vec{v})
$$

A similar calculation shows that $T(c\vec{u}) = cT(\vec{u})$.

(b) Given the basis $\alpha = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \right\}$ $\left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right),$ $\left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right),$ $\left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right)$ of $\mathbb{R}^{2\times 2}$,

give the matrix $[T]_{\alpha}$ of T with respect to the basis α .

$$
T\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 4 \end{array}\right) = 1\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) + 0\left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) + 0\left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right) + 4\left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right)
$$

Thus the first column of $[T]_{\alpha}$ is

$$
\left[\begin{array}{c}1\\0\\0\\4\end{array}\right].
$$

Proceeding similarly with the other columns, we get

$$
[T]_{\alpha} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & -3 & 2 \\ 4 & 0 & 0 & 1 \end{bmatrix}
$$

(c) Show that T is an isomorphism, and use the determinant in your solution.

To show T is an isomorphism, one method is to show directly that T is invertible. We can accomplish this by showing that $[T]_{\alpha}$ from part (b) is an invertible matrix. This, in turn, we can do by finding the determinant of $[T]_{\alpha}$. Expand along the first column to get

$$
\det[T]_{\alpha} = \det\begin{bmatrix} -1 & 1 & 0 \\ 1 & -3 & 2 \\ 0 & 0 & 1 \end{bmatrix} - 4 \det\begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & -3 & 2 \end{bmatrix}
$$

$$
= \det\begin{bmatrix} -1 & 1 \\ 1 & -3 \end{bmatrix} - 4(1 \cdot 1 \cdot 2)
$$

$$
= (3 - 1) - 8 = -6
$$

Since this determinant is non-zero, the matrix is invertible, and thus T is an isomorphism.

- 6. The mapping $T : \mathbb{R}^2 \to P_2$ given by $T \left(\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} \right)$ $a_1 \choose a_2$ $= (a_1 + a_2)x^2 + a_2x + a_1$ is a linear transformation.
	- (a) Prove that $\alpha = \begin{cases} 1 & \text{if } \\ 0 & \text{if } \end{cases}$ 2 1 , $\lceil -1 \rceil$ $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is a basis for \mathbb{R}^2 and $\beta = \{x^2 + 2, x^2 + x, 1\}$ is a basis for P_2 .

First note that α is a basis for \mathbb{R}^2 since α is linearly independent (it is a set of two vectors and neither is a multiple of the other) and the dimension of \mathbb{R}^2 is two. Similarly, one can check that β is linearly independent by assuming that $c_1(x^2 + 2) + c_2(x^2 + x) + c_3(1) = \vec{0}$, setting up a system of equations involving c_1, c_2 , and c_3 , and showing that $c_1 = c_2 = c_3 = 0$. Since $P_2(\mathbb{R})$ has dimension 3 this shows that β is a basis, by Theorem 3.3.4(c).

(b) Find the matrix $[T]_{\alpha}^{\beta}$

To compute the first column of $[T]_{\alpha}^{\beta}$, we find $T((1,2))$ and write it in β -coordinates. We have

$$
T((1,2)) = 3x^2 + 2x + 1 = 1(x^2 + 2) + 2(x^2 + x) - 1(1)
$$

and thus the first column of $[T]_{\alpha}^{\beta}$ is

Note that to find the β -coordinates of $3x^2+2x+1$, you can either eyeball a solution as follows: only $x^2 + x$ involves x, and so we must have $2(x^2 + x)$, and then the only other term with x^2 is $x^2 + 2$, so we must add on $1(x^2 + 2)$ to get $3x^2$, then we have a constant term of 2, so we must subtract $1(1)$. Or you can take the more systematic approach of writing

$$
3x^{2} + 2x + 1 = a_{1}(x^{2} + 2) + a_{2}(x^{2} + x) + a_{3}(1),
$$

which leads to the system of equations

$$
\begin{array}{rcl}\na_2 & +a_1 & = 3 \\
a_2 & = 2 \\
a_3 & +2a_1 & = 1\n\end{array}
$$

which you can solve.

In the same way we can find the second column of $[T]_{\alpha}^{\beta}$, which gives

$$
[T]_{\alpha}^{\beta} = \begin{bmatrix} 1 & -1 \\ 2 & 0 \\ -1 & 1 \end{bmatrix}
$$

(c) What is the dimension of $\text{Ker}(T)$? Find a basis for $\text{Ker}(T)$.

We put the augmented matrix

In reduced row-echelon form, which gives

$$
\left[\begin{array}{cc|c}1&0&0\\0&1&0\\0&0&0\end{array}\right]
$$

There are no free variables, and hence ker $T = \{\vec{0}\}\$. So ker T is zero-dimensional, and has basis ${0}$.

(d) Since the dimension of ker T is zero, by the rank-nullity theorem we know that the dimension of the image of T must equal the dimension of \mathbb{R}^2 , which is two. A basis of the image of the matrix $[T]_{\alpha}^{\beta}$ is

$$
\left\{ \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right\}.
$$

To turn this into a basis for the image of T, we need to re-convert these vectors (which are in β -coordinates) into elements of P_2 . Doing so gives the two elements

$$
1 \cdot (x^{2} + 2) + 2 \cdot (x^{2} + x) + (-1) \cdot 1 = 3x^{2} + 2x + 1
$$

$$
-1 \cdot (x^{2} + 2) + 0 \cdot (x^{2} + x) + (1) \cdot 1 = -x^{2} - 1
$$

So $\{3x^2 + 2x + 1, -x^2 - 1\}$ is a basis for the image of T.