
Carleton College, winter 2013
Math 232, Solutions to review problems and practice midterm 2

Prof. Jones
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Solutions to practice exam:

1. Find a bases for the kernel and image of the following matrix:

A =

 1 0 2 0 1
−3 0 0 1 0
−1 0 4 1 2

 .
To find a basis for the kernel, we need to row reduce the augmented matrix 1 0 2 0 1 0

−3 0 0 1 0 0
−1 0 4 1 2 0

 ,
and we get the reduced row-echelon form 1 0 0 −1/3 0 0

0 0 1 1/6 1/2 0
0 0 0 0 0 0

 ,
Thus the free variables are x2, x4, and x5, and we set x2 = t1, x4 = t2, and x5 = t3. The set
of solutions is then 

x1
x2
x3
x4
x5

 =


1
3
t2

t1
−1

6
t2 −1

2
t3

t2
t3

 .
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Separating the arbitrary constants t1, t2, t3 into their own vectors then yields a basis of


0
1
0
0
0

 ,


1/3
0

−1/6
1
0

 ,


0
0

−1/2
0
1


 .

As for the image, the above reduced row-echelon form shows that the non-redundant columns
are the first and the third, so a basis for the image is

 1
−3
−1

 ,
 2

0
4

 .

2. Find a basis for the following subspace of P4.

W = {p(x) ∈ P4 | p(1) = p(−1) = 0}.

What is the dimension of W?

Note that W is the same as

{a4x4 + a3x
3 + a2x

2 + a1x+ a0 ∈ P4 | a4 + a3 + a2 + a1 + a0 = 0, a4 − a3 + a2 − a1 + a0 = 0}.

There are different ways to do this problem, but the most systematic is to find all solutions
to the system of equations

a0 +a1 +a2 +a3 +a4 = 0
a0 −a1 +a2 −a3 +a4 = 0

.

So we put the augmented matrix [
1 1 1 1 1 0
1 −1 1 −1 1 0

]
in reduced row-echelon form. We get[

1 0 1 0 1 0
0 1 0 1 0 0

]
Thus our free variables are a2, a3, and a4. Set a2 = t1, a3 = t2, and a4 = t3. The set of
solutions is then 

a0
a1
a2
a3
a4

 =


−t1 −t3

−t2
t1

t2
t3

 .
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Separating the arbitrary constants t1, t2, t3 into their own vectors then yields a basis of


−1

0
1
0
0

 ,


0
−1

0
1
0

 ,

−1

0
0
0
1


 .

But we need to re-convert these to polynomials, since W is a subspace of P4, and hence any
basis for it should consist of elements of P4. So a basis for W is

{−1 + x2,−x+ x3,−1 + x4},

and W has dimension 3.

3. Determine whether the following mappings are linear transformations. Either prove that a
given map is linear or give a counterexample to show it’s not linear.

(a) T : R2 → R3 defined by T ((x1, x2)) = (2x1, x1 + 4, 5x2)

Not linear since 2T ((0, 0)) = 2(0, 4, 0) = (0, 8, 0) but T (2(0, 0)) = T ((0, 0)) = (0, 4, 0).

(b) T : P2 → P3 defined by T (a2x
2 + a1x+ a0) = a0x

3 + (a1 − a0)x2 + 3a2 − (1/2)a0

Linear. Let ~u = u2x
2 + u1x+ u0 and ~v = v2x

2 + v1x+ v0. Then

T (~u+ ~v) = (u0 + v0)x
3 + (u1 + v1 − u0 − v0)x2 + 3(u2 + v2)− (1/2)(u0 + v0)

= (u0x
3 + (u1 − u0)x2 + 3u2 − (1/2)u0) + (v0x

3 + (v1 − v0)x2 + 3v2 − (1/2)v0)

= T (~u) + T (~v)

A similar calculation shows that T (c~u) = cT (~u).

4. Let V be a finite-dimensional vector space, and let S be a linearly independent subset of V .
Let S ′ be a proper subset of S (this means that S ′ ⊆ S and S ′ 6= S). Prove that S ′ cannot be
a basis for V . [Hint: use Theorem 3.3.4.]

Suppose that the dimension of V is n. Since S is a linearly independent subset of V , by
Theorem 3.3.4(a), S can contain at most n vectors. Since S ′ is a proper subset of S, it must
contain strictly fewer than n vectors. But by Theorem 3.3.4(b), at least n vectors are required
to span V , and hence S ′ cannot span V . Therefore S ′ cannot be a basis for V .

5. (a) Consider the mapping T : R2×2 → R2×2 defined by

T

(
a b
c d

)
=

(
a+ b c− b

b+ 2d− 3c d+ 4a

)
.
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Prove that T is a linear transformation.

Let

~u =

(
u11 u12
u21 u22

)
~v =

(
v11 v12
v21 v22

)
Then

T (~u+ ~v) =

(
u11 + v11 + u12 + v12 u21 + v21 − (u12 + v12)

u12 + v12 + 2(u22 + v22)− 3(u21 + v21) u22 + v22 + 4(u11 + v11)

)
=

(
u11 + u12 u21 − u12

u12 + 2u22 − 3u21 u22 + 4u11

)
+

(
v11 + v12 v21 − v12

v12 + 2v22 − 3v21 v22 + 4v11

)
= T (~u) + T (~v)

A similar calculation shows that T (c~u) = cT (~u).

(b) Given the basis α =

{(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}
of R2×2,

give the matrix [T ]α of T with respect to the basis α.

T

(
1 0
0 0

)
=

(
1 0
0 4

)
= 1

(
1 0
0 0

)
+ 0

(
0 1
0 0

)
+ 0

(
0 0
1 0

)
+ 4

(
0 0
0 1

)
Thus the first column of [T ]α is 

1
0
0
4

 .
Proceeding similarly with the other columns, we get

[T ]α =


1 1 0 0
0 −1 1 0
0 1 −3 2
4 0 0 1



6. The mapping T : R2 → P2 given by T ((a1, a2)) = (a1 + a2)x
2 + a2x + a1 is a linear transfor-

mation.

(a) Prove that α = {(1, 2), (−1, 0)} is a basis for R2 and β = {x2 + 2, x2 + x, 1} is a basis for
P2.

First note that α is a basis for R2 since α is linearly independent (it is a set of two vectors and
neither is a multiple of the other) and the dimension of R2 is two. Similarly, one can check
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that β is linearly independent by assuming that c1(x
2 + 2) + c2(x

2 + x) + c3(1) = ~0, setting
up a system of equations involving c1, c2, and c3, and showing that c1 = c2 = c3 = 0. Since
P2(R) has dimension 3 this shows that β is a basis, by Theorem 3.3.4(c).

(b) Find the matrix [T ]βα

To compute the first column of [T ]βα, we find T ((1, 2)) and write it in β-coordinates. We have

T ((1, 2)) = 3x2 + 2x+ 1 = 1(x2 + 2) + 2(x2 + x)− 1(1)

and thus the first column of [T ]βα is  1
2
−1

 .
Note that to find the β-coordinates of 3x2+2x+1, you can either eyeball a solution as follows:
only x2 + x involves x, and so we must have 2(x2 + x), and then the only other term with x2

is x2 + 2, so we must add on 1(x2 + 2) to get 3x2, then we have a constant term of 2, so we
must subtract 1(1). Or you can take the more systematic approach of writing

3x2 + 2x+ 1 = a1(x
2 + 2) + a2(x

2 + x) + a3(1),

which leads to the system of equations

a2 +a1 = 3
a2 = 2

a3 +2a1 = 1

which you can solve.

In the same way we can find the second column of [T ]βα, which gives

[T ]βα =

 1 −1
2 0
−1 1



(c) What is the dimension of Ker(T )? Find a basis for Ker(T ).

We put the augmented matrix  1 −1 0
2 0 0
−1 1 0


In reduced row-echelon form, which gives 1 0 0

0 1 0
0 0 0


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There are no free variables, and hence kerT = {~0}. So kerT is zero-dimensional, and has
basis {~0}.
(d) Since the dimension of kerT is zero, by the rank-nullity theorem we know that the dimen-
sion of the image of T must equal the dimension of R2, which is two. A basis is

 1
2
−1

 ,
 −1

0
1

 .
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