
Math 232:  Linear Algebra Projects      Winter 2013 
 
 

Project I: Lights Out 
 
Lights out is a one-player game that consists of a grid of squares that can be either “on” 
(colored red) or “off” (colored yellow).  Each time a square is clicked, that square and the four 
squares immediately north, south, east, and west of it are toggled.  You win the game by 
turning all of the squares yellow.  Try it out at  
 

http://www.cs.middlebury.edu/~schar/java/lightsout.html 
 

You will need to have the latest version of Java to get this website to work. If you’re having 
trouble, use the computer lab in CMC 301. The “classic” game is played on a 5x5 board and 
beginning with all reds. Try to beat this game, just making up your strategy as you go along.  
Now try with the 2x2 board, and then the 3x3.    
 
This project consists of using Linear Algebra to analyze how to win this game, and to answer 
many other questions one might have about it, such as how many ways there are to win, and 
what happens if we start with initial configurations other than all lights on.   
 
Let’s begin with the 2x2 case, to give us an idea of what’s going on. We associate every 
configuration of the board to a vector with four entries corresponding to the squares as you 
move from right to left on each row and then move down a row. An entry is 1 if the 
corresponding light is on (red) and 0 if the light is off (yellow). So when all the lights are 
turned on, the vector is (1,1,1,1). You win the game by turning all the lights off, that is, 
arriving at the state (0,0,0,0). 
 
Let’s call a strategy a sequence of squares that you click on (with each click toggling some of 
the adjacent squares, of course). Note that any square should be clicked on either once or not 
at all – clicking twice has no effect – and the order in which you click them makes no 
difference to the final configuration on the board. We can also represent a strategy by a vector 
with four entries: an entry is 1 if the strategy involves clicking on that square and 0 if it does 
not. So the strategy (0,0,0,0) involves doing nothing, while the strategy (1,0,1,1) involves 
clicking on all the squares except the upper-right-hand one.   
 
Now suppose we begin with all lights on, i.e. at the starting point b = (1,1,1,1). Suppose we 
apply a strategy (x_1, x_2, x_3, x_4) to b.  Let’s isolate the effects on the upper-left corner, 
which is the first entry in the vector.  If x_1 = 1, then it toggles the first entry of b. To 
algebraically represent the toggling, we can add one and then take the result modulo 2 (i.e. 0 
if the result is even and 1 if the result is odd).  If x_2 = 1, then the first entry of b is also 
toggled, and the same if x_3 = 1.  Clicking on the lower-right square does not change the 
upper-right square, so we may disregard x_4.  The result of applying our strategy is thus  
 

x_1 + x_2 + x_3 + 1  (modulo 2), 
 

where the 1 on the end is the initial state of the upper-left corner, namely the first entry of the 



vector b.  So in order to have the end state of the upper-left corner be off (yellow), we need  
 

x_1 + x_2 + x_3 + 1 = 0  (modulo 2). 
 
Problem 1: Perform similar analyses for effects of applying the strategy x = (x_1, x_2, x_3, 
x_4) to the other squares on the board, beginning with the initial state b.  Write the result of 
your analysis in the form of a matrix equation Ax – b = 0.  The matrix A is called the 
adjacency matrix.   
 
Problem 2: Determine if there is a solution to the 2x2 puzzle beginning with b = (1,1,1,1).  If 
you find there is one, try it out on the web applet and make sure it works.   
 
Problem 3: Is there a solution to the 2x2 puzzle no matter what the initial state?  Give a 
solution (in vector form) for the initial state with the upper left and lower right squares on and 
the others off.   
 
 
Let’s now move up to a slightly larger game: a 2 x 3 lights out game: two rows and three 
columns.  (Unfortunately, the web applet above doesn’t have this size available.) 
 
Problem 4: Determine whether there is a solution to the 2x3 puzzle beginning with all the 
lights on.  Is this solution unique?  Usually having free variables means that we get an infinite 
number of solutions; however, in this particular problem our scalars are restricted to just the 
values of 0 and 1. With this in mind, how many different solutions are there to the puzzle?  
Write them down.   
 
Problem 5:  Let A be the adjacency matrix for the 2x3 game.  Describe all the solutions to the 
system Ax = 0. What happens to the board when we push all of the buttons described by one 
of these solutions? 
  
Problem 6:  Find the dimensions of Ker(T) and Im(T), where T is the linear transformation 
whose matrix is A.  While you’re at it, go ahead and find bases for Ker(T) and Im(T).  If 
possible, find a vector b that is not in Im(T).  What does such a vector b represent in the 
Lights Out puzzle? 
 
Problem 7:  True or False:  In a general Lights Out puzzle, if a solution to the puzzle from a 
given starting state is unique, then it is possible to solve every puzzle now matter how the 
lights are initially configured.  Explain in some detail. 
 
Now you’re ready to move on to larger boards, namely the 3x3, 4x4, and 5x5 boards.  
The questions you should consider in each case: 
 

i) What is the rank of the adjacency matrix?   
  
ii) Can we solve the puzzle if we start with all of the lights on?  If so, write down a 

solution (i.e., a list of which buttons to push.)   



 
iii) Is the solution unique?   
 
iv) Can we solve every puzzle no matter how the pattern of lights is initially 

configured? If not, how many initial configurations are solvable? How many are not solvable? 
 
Whatever additions you pursue to these types of questions will be welcomed and rewarded. 
For instance, how do you think the answers to the above four questions will change for an nxn 
board as n grows? Can you prove your answer is correct? 
 
 
A note on computation:  For the 3x3 case and larger cases, the matrices involved are quite 
large, and it is necessary to use a computer algebra system to work with them. One option for 
doing this is to use Mathematica, which is installed in the computers in the CMC (I 
recommend using room 301, where you’ll always be able to find a free machine). Double 
click on the Mathematic icon on the desktop, and then open a new notebook. Here’s an 
example of how to create a matrix: 
 
M = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}  
 
To execute this command, you need to hold down the shift key and hit return. 
 
Once you execute this command, Mathematica will show you the output, though only as you 
typed it and not in matrix form. If you want to see it in matrix form, type MatrixForm[M]. 
Remember to hit shift-return to execute. Now comes the part that computers are so good for: 
 
RowReduce[M] – returns the reduced row-echelon form of the matrix M 
NullSpace[M] – returns a basis for the kernel of M 
  
You can find more matrix-related commands in the help menu. 
 
Remember that you’ll need to interpret any answers you get as numbers modulo 2.  
 
 
Instructions for the writeup: you should explain as carefully as you can the steps you’ve 
taken to solve each part of the project.  Write in complete sentences and give details.  You’ll 
be graded 75% on the mathematical accuracy of what you’ve done and how far you pushed 
the project – extensions you come up with will be rewarded – and 25% on the clarity of your 
write-up (25%). Both handwritten and word-processed writeups are fine. You should include  
the results of your computer calcuations, but you don’t need to hand in the code you used.  


