
Carleton College, Winter 2014
Math 121, Practice Final

Prof. Jones

Note: the exam will have a section of true-false questions, like the one below.

1. True or False. Briefly explain your answer. An incorrectly justified answer may not receive
full (or any) credit.

(a) It’s possible for a power series to converge for all x in (1, 2] and for x = 0 but not for any
other value of x.

This is false. Every power series has a radius of convergence, and so the set of x-values where
the series converges will be an interval (though one that may or may not include its endpoints).
The set given in this problem is not an interval.

(b) Denote by g(x) the twentieth derivative of f(x) = xe−x
4
. Then g(0) = 0.

A power series for f(x) can be found by substitution and multiplication by x. We have that

e−x
4

= 1+(−x4)+
(−x4)2

2!
+

(−x4)3

3!
+

(−x4)4

4!
+

(−x4)5

5!
+· · · = 1−x4+

x8

2
−x

12

6
+
x16

24
− x

20

120
+· · ·

So then

xe−x
4

= x− x5 +
x9

2
− x13

6
+
x17

24
− x21

120
+ · · ·

Since this is a power series representation for f(x), it is also the Taylor series for xe−x
4
. This

means that the coefficient of the x20 term is the twentieth derivative of f(x) evaluated at
x = 0, divided by 20!. This is the same as g(0)/20!. But the x20 term is zero in our power
series, so we conclude that g(0) = 0.

(c) Suppose that for the series
∑∞

n=1 an, the sequence of terms an satisfies limn→∞ an = 0.
Then

∑∞
n=1 an might converge, or might diverge; there is not enough information to tell.

This is true. The nth term test for divergence only tells us that if limn→∞ an is not 0, then∑∞
n=1 an diverges. When limn→∞ an = 0, we can’t conclude anything. For instance, the

series
∑∞

n=1
1
n

and
∑∞

n=1
1
n2 both satisfy limn→∞ an = 0, yet the first diverges and the second

converges.

(d) To evaluate
∫

2x2−2
x3−3x dx, you must use partial fractions.

False. You can use the substitution u = x3 − 3x. Then du = 3x2 − 3 dx = (2/3)(2x2 − 2) dx.

(e) The Taylor series of any function f(x) at x = 0 converges for all values of x.

False. For instance, the Taylor series for ln(1+x) at x = 0 converges only for x in the interval
(−1, 1].

2. Find the following integrals:

(a)
∫

lnx dx
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Use Integration by parts: set u = lnx and dv = dx. Thus du = 1/x dx and v = x. The
integral then becomes x lnx−

∫
dx, which is x lnx− x+ C.

(b)
∫∞
1

lnx
x
dx

This integral diverges. You can show this by comparison to
∫∞
1

1
x
dx, or you can calculate it

directly. To calculate directly, first let’s find
∫

lnx
x
dx, which we can do using the substitution

u = lnx. Then du = (1/x) dx, so the integral becomes
∫
u du. This gives u2/2 + C, or

(lnx)2/2 + C. So now we have∫ ∞
1

lnx

x
dx = lim

t→∞

[
(lnx)2/2

]t
1

= lim
t→∞

(ln t)2/2− 0,

and this last limit is infinity, meaning that the integral diverges.

(c)
∫

x3
√
1−x2 dx

This one is readymade for a trig substitution. Use x = sin θ. Then dx = cos θ dθ, and we get∫
sin3 θ√

1− sin2 θ
cos θ dθ =

∫
sin3 θ

cos θ
cos θ dθ =

∫
sin3 θ dθ.

Since the integral is of an odd power of sine, we convert all but one power to cosines, and
then substitute u = cos θ:∫

sin3 θ dθ =

∫
(1− cos2 θ) sin θ dθ = −

∫
(1− u2) du.

So we now get
1

3
u3 − u+ C,

or
1

3
cos3 θ − cos θ + C.

Since x = sin θ, by drawing our triangle (or using sin2 θ+ cos2 θ = 1), we get cos θ =
√

1− x2,
and so our final answer is

1

3
(1− x2)3/2 − (1− x2)1/2 + C.

3. Solve the initial value problem

dy

dx
=

y2

x2 + 1
, y(0) = 1

Separate to get y−2dy = (x2 + 1) dx. Then integrate to get −1/y = x3/3 + x + C. Solve for
y to get

y = − 1

x3/3 + x+ C
.

Since y(0) = 1, we have 1 = −1/C, so C = −1, and the final answer is y = − 1
x3/3+x−1 .
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4. The integral
∫ 1

0
e−x

3
dx cannot be evaluated exactly. Use a method from the course this term

to approximate this integral to within an error of at most 1/60. Leave your answer as a
fraction. (So select a method where finding the error bound won’t be to difficult)

The most convenient error estimate we saw this term is the one for alternating series. So
wouldn’t it be great if we could express this integral with an alternating series. Well we can!
Substitute −x3 into the Taylor series for ex at x = 0, and we get

e−x
3

= 1− x3 +
x6

2!
− x9

3!
+
x12

4!
− · · · ,

and this equality holds for all x. Therefore∫
e−x

3

dx = x− x4

4
+

x7

7 · 2!
− x10

10 · 3!
+

x13

13 · 4!
− · · · ,

And so ∫ 1

0

e−x
3

dx =

(
1− 1

4
+

1

7 · 2!
− 1

10 · 3!
+

1

13 · 4!
− · · ·

)
− 0

= 1− 1

4
+

1

14
− 1

60
+

1

312
− · · ·

So we’ve expressed the definite integral we want as an alternating series. The alternating
series error estimate then tells us that∫ 1

0

e−x
3

dx = 1− 1

4
+

1

14
,

with an error of at most 1/60. We we express 1− 1/4 + 1/14 as a fraction, we get 23/28.

5. Describe another method for approximating the integral from the previous problem, and write
down (but do not evaluate) a sum of five numbers that is an approximation of this integral.

Another way to approximate the integral is to use Simpson’s rule. When we use it with four
sub-intervals (or in other words n = 4), we get an approximation of

1

12

(
e0 + 4e(−1/4)

3

+ 2e(−1/2)
3

+ 4e(−3/4)
3

+ e−1
)
.

The error estimate here is much harder to find than in the previous problem.

6. Use ideas from the course to approximate e2 to within 0.1. Leave you answer as a fraction,
but explain why your approximations are correct to within 0.1.

One way we can approximate e is to recognize that it’s the value of the function f(x) = ex

when x = 1. So we approximate the function ex using its Taylor series at x = 0:

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ · · · ,
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and so if we truncate at n = 4, we get that the degree-4 Taylor polynomial for f(x) = ex at
x = 0 is

1 + x+
x2

2
+
x3

6
+
x4

24
.

So this tells us that

e = e1 ≈ 1 + 1 +
1

2
+

1

6
+

1

24
= 65/24,

which is approximately 2.70833, though you don’t need that for this problem). How good is
this approximation? Well, we can use the Taylor series error estimate. Since n = 4 here, we
need to take K to be a number such that |f (5)(x)| < K for x in [0, 1]. But f (5)(x) = ex, and
|ex| ≤ e for x in [0, 1], and e < 3. So we take K = 3. The error estimate is

K|b− a|n+1

(n+ 1)!
=

3 · 1
5!

=
3

120
= 0.025.

So we’ve found e to within the desired degree of accuracy. If you want to play more with this,
find the error in the approximation to e that you get by plugging 1 into the degree-10 Taylor
polynomial for ex. (Note that you don’t need to find the actual approximation in order to find
the error, though of course you’re welcome to find the approximation). Then do the same for
the degree-100 Taylor polynomial.

7. Determine whether these series converge. If a series converges and is geometric, find its sum.

a)
∞∑
n=2

2n

n2 − 1

Use the ratio test. The limit you get works out to 1/2, and so the series converges.

b)
∞∑
n=1

√
n

n2 + 1

The expression for the nth term of this series is very close to
√
n/n2 when n is large, and√

n/n2 = n1/2/n2 = 1/n3/2. So use either direct (easier) or limit comparison to the convergent
p-series

∑∞
n=1 1/n3/2 to show that this series converges.

c)
∞∑
n=1

n!

nn
[Hint: it’s helpful to write (n+ 1)n+1 as (n+ 1)n(n+ 1).]

This one is a good candidate for the ratio test, since it involves an n!. When you apply the
ratio test, the limit you get is

lim
n→∞

(n+ 1)!nn

(n+ 1)n+1n!
= lim

n→∞

(n+ 1)nn

(n+ 1)n+1
= lim

n→∞

(n+ 1)nn

(n+ 1)n(n+ 1)
= lim

n→∞

(
n

n+ 1

)n

.

To find this limit, use the technique from class: let bn =
(

n
n+1

)n
, so that ln bn = n ln n

n+1
.

Rewrite this as

ln bn =
ln n

n+1

1/n
,
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so that now limn→∞ ln bn has the form 0/0, so we can apply L’Hopital’s rule. After doing that,
we get

lim
n→∞

ln bn = lim
n→∞

n+1
n
· 1/(n+ 1)2

−1/n2
= lim

n→∞

n+1
n
· −n2/(n+ 1)2

1
= lim

n→∞
− n

n+ 1
= −1.

So we’ve shown that limn→∞ ln bn = −1, and so limn→∞ bn = e−1 = 1/e. Since this is less
than one, the original series converges by the ratio test.

d)
∞∑
n=2

1

n− lnn

Here it looks like the lnn will be insignificant relative to the n in the denominator, and so
it’s tempting to compare to the divergent p-series

∑∞
n=2 1/n. But direct comparison doesn’t

work, since the inequality goes the wrong way. Use limit comparison with the series from the
previous sentence:

lim
n→∞

n

n− lnn
= lim

n→∞

1

1− 1/n
,

by L’Hopital’s rule, and so the limit comes out to 1. Thus the original series behaves the same
as
∑∞

n=2 1/n, and so diverges.

8. Determine whether this series converges absolutely, converges conditionally, or diverges:

∞∑
n=2

(−1)n

n lnn
.

The series converges by the alternating series test: it’s easy to check that for n ≥ 2, 1/n lnn
is decreasing and tends to 0 as n goes to infinity. However, when we take absolute values, we
get the series

∑∞
n=2

1
n lnn

. Use the integral test to show that this series diverges.

9. Determine the interval of convergence of the power series
∞∑
n=1

(x+ 1)n

n23n
.

Using the ratio test, you should get that the series converges when −3 < x+1 < 3, or in other
words when −4 < x < 2. The problem At the endpoint x = 2, we get the series

∑∞
n=1

1
n2 ,

which is a convergent p-series (p = 2). At the endpoint x = 4, we get the series
∑∞

n=1
(−1)n
n2 ,

which converges by the alternating series test (or converges absolutely by the x = 2 case, and
so converges). So the interval of convergence is [−4.2].
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