Carleton College, Winter 2014 Math 121, Practice Final Prof. Jones

Note: the exam will have a section of true-false questions, like the one below.

1. True or False. Briefly explain your answer. An incorrectly justified answer may not receive full (or any) credit.

(a) It's possible for a power series to converge for all x in (1, 2] and for x = 0 but not for any other value of x.

(b) Denote by g(x) the twentieth derivative of $f(x) = xe^{-x^4}$. Then g(0) = 0.

(c) Suppose that for the series $\sum_{n=1}^{\infty} a_n$, the sequence of terms a_n satisfies $\lim_{n\to\infty} a_n = 0$. Then $\sum_{n=1}^{\infty} a_n$ might converge, or might diverge; there is not enough information to tell.

- (d) To evaluate $\int \frac{2x^2-2}{x^3-3x} dx$, you must use partial fractions.
- (e) The Taylor series of any function f(x) at x = 0 converges for all values of x.
- 2. Find the following integrals:
 - (a) $\int \ln x \, dx$ (b) $\int_1^\infty \frac{\ln x}{x} \, dx$ (c) $\int \frac{x^3}{\sqrt{1-x^2}} \, dx$
- 3. Solve the initial value problem

$$\frac{dy}{dx} = \frac{y^2}{x^2 + 1}, \qquad y(0) = 1$$

- 4. The integral $\int_0^1 e^{-x^3} dx$ cannot be evaluated exactly. Use a method from the course this term to approximate this integral to within an error of at most 1/60. Leave your answer as a fraction. (So select a method where finding the error bound won't be to difficult)
- 5. Describe another method for approximating the integral from the previous problem, and write down (but do not evaluate) a sum of five numbers that is an approximation of this integral.
- 6. Use ideas from the course to approximate e^2 to within 0.1. Leave you answer as a fraction, but explain why your approximations are correct to within 0.1.

7. Determine whether these series converge. If a series converges and is geometric, find its sum. $\sum_{n=1}^{\infty} 2^{n}$

a)
$$\sum_{n=2}^{\infty} \frac{2^n}{n^2 - 1}$$

b)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2 + 1}$$

c)
$$\sum_{n=1}^{\infty} \frac{n!}{n^n} \text{ [Hint: it's helpful to write } (n+1)^{n+1} \text{ as } (n+1)^n (n+1).\text{]}$$

d)
$$\sum_{n=2}^{\infty} \frac{1}{n - \ln n}$$

8. Determine whether this series converges absolutely, converges conditionally, or diverges:

$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n \ln n}.$$

9. Determine the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(x+1)^n}{n^2 3^n}$.