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Summary

1. Natural resource agencies often rely on surveys of animal sign (e.g. scat, scent marks, tracks) for

population assessment, with repeat surveys required to model and account for uncertain detection.

Using river otter Lontra canadensis snow-track survey data as a motivating example, we develop a

3-level occupancy model with parameters that describe (i) site-level occupancy probabilities, (ii)

otter movement (and thus, track availability) and (iii) recorded presence–absence of tracks (condi-

tional on the availability of tracks for detection).

2. We incorporated several recent developments in occupancy modelling, including the presence of

both false negatives and false positives, spatial and temporal correlation and repeated sampling

across distinct observers.

3. We investigated optimal allocation of sampling effort (e.g. within and among snowfall events)

using simulations. We also compared models that allowed site-level occupancy and track-laying

processes to be spatially correlated withmodels that assumed independence among sites.

4. Both types of models (independence and spatial) performed well across a range of simulated

parameter values, but the spatial model resulted in more accurate point estimates for detection

parameters and credibility intervals with better coverage rates when data were spatially correlated.

When applied to real data, the spatial model resulted in a higher estimate of the occupancy rate ðŴÞ
than the baseline model (0Æ82 vs. 0Æ59). Aminimum of 15–20 helicopter flights, distributed among at

least three unique snow events, were needed tomeet precision goals (standard error Ŵ < 0�05).
5. Synthesis and applications. We describe a flexible and robust occupancy modelling framework

that accounts for heterogeneous detection rates in surveys of animal sign. The method allows for

spatially correlated sites and should have broad relevance to surveys conducted by many natural

resource agencies.

Key-words: animal sign, Bayesian occupancy model, Lontra canadensis, Markov model,

otter, presence–absence, snow-track surveys, simulation, spatial correlation, WinBugs

Introduction

Wildlife populations are notoriously difficult to monitor,

owing to the challenges of detecting individuals and the costs

of surveying difficult to reach habitat. A variety of approaches

have been developed for estimating detection probabilities in

wildlife surveys, including double sampling, removal methods,

multiple observers, mark–recapture, distance sampling and

regressionmodels (Lancia et al. 2005).

These methods, however, typically require identifying and

possibly marking unique individuals and are therefore difficult

to reliably implement in large-scale monitoring efforts or with

elusive species (Stanley & Royle 2005; Johnson 2008). As a

result, survey designs that record presence or absence of animal

sign (e.g. tracks, scent marks, faeces) remain popular among

natural resource agencies (Stanley & Royle 2005). In particu-

lar, snow-track surveys have been used to monitor a variety of

species; recent examples include Eurasian lynx Lynx lynx (Lin-

nell et al. 2007), white-tailed deer Odocoileus virginianus

(D’Eon 2001), red foxVulpes vulpes and grey foxUrocyon cine-

reoargenteus (Stanley & Bart 1991), Amur tiger Panthera tigris*Correspondence author. E-mail: john.fieberg@state.mn.us
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altaica (Hayward et al. 2002) and wolverine Gulo gulo

(Magoun et al. 2007; Gardner et al. 2010). A flurry of recent

research has been devoted to developing methods, most often

based on a survey design in which sites are repeatedly visited,

to correct for uncertain detection in such surveys. The collec-

tion of methods for monitoring populations using repeated

presence–absence surveys has come to be known as ‘occupancy

modelling’ (MacKenzie et al. 2006; Royle &Dorazio 2008).

Wildlife managers in Minnesota (MN), USA, requested a

monitoring tool that could be used to assess population status

and trends of river otter Lontra canadensis. Until recently,

targeted harvesting was only allowed in northern MN, but

trappers had expressed interest in establishing a season in

south-eastern MN in response to perceived increases in abun-

dance (Martin et al. 2003). Managers were concerned that

otter populations in the south-east might be smaller and more

isolated and therefore more prone to overharvest. As a first

step in developing a monitoring programme, we collected pilot

survey data to determine sources of variation in detection of

otter tracks in the snow. In addition, we developed a 3-level

occupancy model for track survey data collected in the winter

following snowfall events, with parameters that describe (i)

site-level occupancy probabilities, (ii) otter movement (and

thus, track availability) and (iii) recorded presence–absence of

tracks (conditional on the availability of tracks for detection).

Biological considerations, together with our survey approach,

necessitated that we consider several substantive extensions to

the current class of occupancy models, including the preva-

lence of false detections (Royle & Link 2006), spatial correla-

tion (Magoun et al. 2007; Hines et al. 2010) and a model for

how detection probabilities depend on time since a snowfall

event (Stanley & Royle 2005). Together, the data and model

provide a useful tool for optimizing survey design and evaluat-

ing the ability to detect the effects of management practices

(e.g. increased harvest pressure, efforts to reduce wetland

drainage and pollution).

Although we report on a detailed case study motivated by

the need to develop a monitoring programme for river otter,

we expect that our modelling approach will have widespread

applicability to natural resource surveys for which the presence

or absence of animal sign is recorded, as well as occupancy

studies that rely on cluster sampling designs for selecting sites.

Cluster designs, in particular, are popular for wildlife surveys

because they provide a cost-effective means of sampling large

areas (Giudice et al. 2010), but model-based inferences are

often challenging because of spatial dependencies in the data.

Our approach builds on recent applications of spatial occu-

pancy models to track surveys (Magoun et al. 2007; Gardner

et al. 2010; Hines et al. 2010), by incorporating a model com-

ponent that accounts for the process by which tracks are laid

down. Because the presence of tracks will depend on survey

timing relative to the last snowfall, this approach has the

potential to account for an important source of heterogeneity

in the detection process.

The data we consider were collected by the Minnesota

Department of Natural Resources (MNDNR) in 2003 using

helicopter surveys with multiple observers, multiple sampling

intervals (representing unique snowfall events) and multiple

days within each sampling interval (days since the last snowfall

event). Flight paths followed the main channels of river

systems, which were later divided into a series of spatially con-

tiguous quadrats (hereafter, we will refer to these quadrats as

‘sites’ or ‘plots’). Owing to the potential for clustering of indi-

vidual home ranges in space and movement across site bound-

aries, we expected the response, presence or absence of a

recorded track, to be spatially correlated among sites. In addi-

tion, sites were more likely to contain tracks if they were

sampled several days after a snowfall event. Lastly, observer-

to-observer variability was significant, probably owing tomea-

surement error associated with the post hoc creation of site

boundaries (which may have resulted in tracks being assigned

to the wrong site) and the difficulty of correctly identifying

otter tracks (Evans et al. 2009). Thus, these data serve as a use-

ful case study to illustrate methods for handling several com-

plications that may be present in repeated presence–absence

survey applications.

In addition to fitting models to theMinnesota otter data, we

use extensive simulations to evaluate the robustness and preci-

sion of model-based estimates of occupancy probabilities

under this sampling design. To promote learning and to facili-

tate adaption to other applications, we implement our

approach using open source software, Program R (RDevelop-

ment Core Team 2009) and WinBUGS (Lunn et al. 2001), with

the R package BRugs (Thomas et al. 2006) to communicate

between the two software platforms. Lastly, we show how sim-

ulations can be used to compare different sampling designs,

and we make recommendations regarding allocation of sam-

pling effort in future surveys.

Materials and methods

OTTER SURVEY DATA COLLECTION

Details of the survey are given in Martin et al. (2003) and Martin

(2007), but generally, aerial snow-track surveys were conducted using

a Bell OH-58A+helicopter following snowfalls of>2Æ5 cm in depth.

The data discussed in this paper were collected in 2003 from the Mis-

sissippi River (Fig. 1). There were five unique snowfall events. Flights

occurred 1, 2 or 3 days after each unique snowfall event, although

they did not occur on every day. There were three observers, and in

some cases, multiple observers flew over the river in different flights

on the same day.

Surveys followed a near-linear flight path up the river (from South-

east to North-west). A total of 56Æ3 km of the river was flown,

although seven of 20 flights only surveyed the lower half of the route.

Observers collected a Global Positioning System waypoint upon

encountering a track and continued to log waypoints every 5 s there-

after if a track remained present. In cases where a track was difficult

to identify with certainty, the pilot circled the general area containing

the track until the observer felt comfortable deciding track presence

or absence. The pilot then returned to the original flight path.

After all data had been collected, the section of the Mississippi

River that was flown was divided into 140 402-m segments, and the

presence (1) or absence (0) of a waypoint in each segment on a given

flight was determined and recorded.No attempt wasmade tomeasure

effective strip widths or to determine whether detection decreased
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with distance from the flight path, although this information could

easily be collected in future surveys.

MODEL DEVELOPMENT AND LIKEL IHOOD

FORMULATION

Fundamentally, the otter survey data consist of a set of correlated

binary responses, yi,j,k,l, arising from a set of biological (occupancy,

movement) and observational (detection) processes:

yi;j;k;l ¼
1; if the lth observer records a track in site i

on the kth day of the jth snowfall event
0; otherwise.

8<
:

We define wi ¼ P(site i is ‘occupied’), for i ¼ 1,…,N, where we

consider a site to be occupied if it falls within the home range of

at least one otter. Further, let zi be an indicator of site-level occu-

pancy status, with zi�Bernoulli(wi). In addition, we define survey

periods as consisting of the first t days after a snowfall event, but

prior to a subsequent snowfall event (or other event that might

erase tracks, e.g. wind or melting).

In our application, otter tracks, when present, were readily obser-

vable from the air. However, observations made by different observ-

ers on the same day were often inconsistent, and it was not

uncommon for observers to record a track one day and not record a

track a day later (within the same site and survey period). In addition

to potential problems related to locating and correctly identifying

otter sign, we suspect tracks observed near boundaries of the plots

were occasionally assigned to the wrong unit. Thus, we felt it impor-

tant to allow for false positives as well as false absences in our

approach (Royle & Link 2006).

In developing our approach, we make the following assumptions:

(i) We assume site-level occupancies, (z1,…,zN), that do not change

during the course of the study. (ii) Conditional on zi ¼ 1, a track is

laid down with probability hi on any given day following a snowfall

event. (iii) Tracks remain present until the end of the survey period.

(iv) Detection probabilities do not depend on how many tracks are

laid down. That is, the probability of detecting a track is the same

if tracks are laid down on a single day or on multiple days within a

survey period. We revisit this assumption in the discussion. (v)

Conditional on the presence or absence of a track, correct detection

and false detection probabilities (pl and el, respectively) vary by

observer, but they are constant across sites and sampling instances.

(vi) Conditional on true presence or absence of a track, observa-

tions made by different observers are independent. (vii) Conditional

on true presence or absence of a track, observations made by the

same observer (on different sampling dates) are independent. In

other words, observers are not influenced by having flown the river

on a prior date.

Construction of the likelihood of the data is difficult because of the

dependencies arising from the latent occupancy and track-laying pro-

cesses. For example, consider one site (i), surveyed by a single obser-

ver during each of the first 3 days of a survey period. Suppose the

observer records a track the first and third days but no track the sec-

ond day. We denote this outcome as 1-0-1. There are five possible

events that could have produced this data vector, as seen by condi-

tioning on the occupancy of the site and whether or not a track was

laid down on a particular day. Thus, the probability for outcome 1-0-

1 is the sum of the following five terms:

1. wihip(1)p)p (site is occupied, track was laid on first day, and

correctly recorded on the first and third days, and not recorded

on the second day).

2.wi(1)hi)hie(1)p)p (site is occupied, track was first laid on second

day, and falsely recorded on first day, not recorded on the second

day, and correctly recorded on third day).

3.wi(1)hi)
2hie(1)e)p (site is occupied, track was first laid on third

day, and falsely recorded on first day, not falsely recorded on sec-

ond day, and correctly recorded on the third day).

4.wi(1)hi)
3e(1)e)e (site is occupied, no track was laid, and falsely

recorded on first and third days, and not falsely recorded on sec-

ond day).

5. (1)wi)e(1)e)e (site is not occupied, and track was falsely

recorded on first and third days, and not falsely recorded on sec-

ond day).

To extend this approach to additional observers and survey periods

again requires that one consider all surveys at a particular site simul-

taneously (although track-laying processes are assumed to be inde-

pendent among survey periods, occupancy status induces correlation

among observations from the same site).

On the other hand, the likelihood is relatively easy to construct

using a series of hierarchical, conditionally independent latent vari-

ables that together determine occupancy and presence or absence of

tracks. Specifically, let

xi;j;k ¼
1; if a track is laid in site i on the kth day of

the jth snowfall event
0; otherwise

8<
: :

From assumption (2), we have xi,j,k|zi �Bernoulli(hi). Let

wi;j;k ¼
1; if a track is present in site i on the kth day

of the jth snowfall event
0; otherwise

8<
: :

The vector of w’s for each survey period is constructed directly

from the x’s. For k ¼ 1,

wi;j;1 ¼ xi;j;1;

and for k > 1,

wi;j;k ¼
1; ifwi;j;k�1 ¼ 1
xi;j;k; otherwise:

�

Fig. 1.Mississippi River and survey route (black line).
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Finally, from assumptions (4–7), we have that yi,j,k,l|wi,j,k are mutu-

ally independent, and

yi;j;k;ljwi;j;k � Bernoulliðwi;j;kpl þ ð1� wi;j;kÞelÞ:

In summary, our model consists of three levels with parameters

describing (i) occupancy {wi}, (ii) availability of tracks for detec-

tion (due to movement), conditional on occupancy {hi} and (iii)

recorded presence–absence of tracks, conditional on their avail-

ability for detection {el,pl}.

In most occupancy modelling applications, site-level processes are

assumed to be independent and identically distributed (possibly after

conditioning on measured covariates). Thus, one would typically

replace wi and hi with constants w and h (or model these parameters

as functions of covariates). We refer to the model with these indepen-

dence assumptions as the baseline, uncorrelatedmodel.

Rather than determine the marginal likelihood for yi,j,k,l by inte-

grating over the latent variables, we will use Markov chain Monte

Carlo (MCMC) to numerically integrate over the latent variables

using a Bayesian formulation of the problem. For an introduction to

the use of MCMC in occupancy models see MacKenzie et al. (2006).

Alternatively, a Frequentist approach to the problem could be imple-

mented using the EM algorithm to maximize the likelihood (Demp-

ster, Laird &Rubin 1977).

SPATIAL CORRELATION

While it is reasonable, we believe, to assume independence between

observers, there is ample evidence to suggest that sites are not mutu-

ally independent. Otters tend to travel long distances (Evans et al.

2009), which suggests that a track at site i is positively correlated with

a track at site i + 1. We applied a run test (Conover 1980) to our

otter track data and rejected the hypothesis that sites were indepen-

dent.

To account for the spatial dependence in the data, we developed a

second model that incorporated spatial dependence in both the occu-

pancy and track-laying processes. In contrast to the baseline model in

which we assumed the latent occupancy vector (z1,…,zN) consisted of

i.i.d. Bernoulli randomvariables with constantw, in our spatial model

we assumed zi�Bernoulli(wi), with logit(wi) ¼ a0 + ai. Spatial

dependence in the occupancy process was obtained by defining con-

tiguous sites as neighbours and placing an intrinsic conditional auto-

regressive (CAR) prior distribution on the ai’s:

aija�i �
N aiþ1; s2
� �

; if i ¼ 1

N ai�1þaiþ1
2 ; s

2

2

� �
; for i ¼ 2; . . . ;N� 1

N ai�1; s2
� �

; if i ¼ N

8><
>:

where a)i denotes the full a vector except for the ith site, and s2

is the conditional variance of the CAR process (note: WinBugs

parameterizes normal distributions using a precision parame-

ter ¼ 1/s2). The use of CAR models in ecological studies has

been growing in popularity in recent years (Lichstein et al. 2002).

Magoun et al. (2007) describe an application using aerial surveys

of wolverine tracks that shares some similarities to our work.

Together with the correlated occupancy process, the track-laying

process was modelled as a stationary, two-state Markov chain with

parameter b introduced to quantify the additional likelihood that a

site contained a track given that there was a track in a neighbouring

site. Specifically, we define h* as the probability of a track being laid

down in site i, given site i is occupied and no track was laid down in

site i)1, and h*+b as the probability of a track being laid down in site

i, given site i is occupied and there was a track laid down in site i)1.
For simplicity, and to make connections between track-laying

parameters in the spatial (h*,b) and baseline (h) models, assume tem-

porarily thatwi ¼ w is constant over sites. In this case, the probability

that a track is laid down in site i, conditional on no track in site i)1, is
equal to h*w. Similarly, the probability that a track is laid down in site

i, conditional on there being a track in site i)1, is (h* + b)w. The
Markov transitionmatrix for the track-laying process is thus

! 0 1

0 1� h � w h � w
1 1� ðh � þbÞw ðh � þbÞw

: eqn 1

Note that spatial independence in the track-laying process is

equivalent to b ¼ 0, in which case h* ¼ h, and the transition

matrix reduces to that of the baseline model.

The stationary distribution of the Markov chain (i.e. if iterated on

an infinite spatial lattice) is given by:

1� h � w
1� wb

;
h � w
1� wb

� �
:

That is, the stationary probability that a site contains a track one

day after a snowfall event is h*w/(1)wb). It follows that the condi-

tional probability (in stationarity) that a site contains a track one day

after a snowfall event, given that the site is occupied, is

~h ¼ h�
1� wb

: eqn 2

Thus, we expect h in the baseline model to behave like ~h in equa-

tion 2 when the model is fit to data generated using the Markov

model. This equivalence will be exploited in our simulation work (e.g.

to determine reasonable values of h* for generating data and also to

determine a reasonable reference value when summarizing the distri-

bution of ĥs when fitting the baseline model to data simulated with

spatial correlation).

BAYESIAN IMPLEMENTATION

The conditional nature of the biological and observational data pro-

cesses naturally lends itself to a Bayesian hierarchical model specifica-

tion, with parameter estimation accomplished via MCMC using R,

WinBUGS and BRugs. For more background on Bayesian hierarchi-

cal modelling and MCMC, we refer the reader to Royle & Dorazio

(2008) andNtzoufras (2009).

The early occupancy models presented in MacKenzie et al.

(2006) assumed no false positives. As described in Royle & Link

(2006), one difficulty in incorporating false positives into the occu-

pancy model is the ‘dual role’ of the false-positive rate e and the

true detection rate p. Without other contextual information, the

model cannot discern whether a 1 denotes an occupied site that

was correctly detected or an unoccupied site that was falsely

detected. In particular, if h ¼ 1, then the likelihood function has

the symmetrical property that L(w,h,p,e) ¼ L(1)w,h,e,p). This gives
rise to bimodal posterior distributions. The inclusion of the track-

laying parameter h complicates the picture even more because of

the different ways that a 1 in the data can be interpreted. Thus, we

expected issues of nonidentifiability and bimodality to be highly rel-

evant to our approach.
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A suggestion made by Royle & Link (2006), which we pursued in

our models, was to restrict the parameter space so that p >> e. In

particular, we restricted the support of p and e to the intervals (0Æ6,1)
and (0,0Æ3), respectively. This seemed to correspond well with our

intuition and understanding of the actual detection process (e.g. we

expected detection of tracks, once present, to be high). In addition,

we placed Beta(a, b) and Beta(c, b) prior distributions on each pl and

el, respectively, with hyperparameters a,b,c assigned diffuse

Gamma(1, 0Æ1) distributions. This specification is akin to a fixed

effects specification in Frequentist models (i.e. as each observer was

given a separate prior, there was no shrinkage to an overall ‘observer-

mean as would be accomplished in a hierarchical specification in

which all three observer parameters were drawn from the same distri-

bution).

For the spatial model, we assigned a uniform()0Æ1,1) prior distribu-
tion for b, restricting the support of h + b to (0,1). We used a Gam-

ma(0Æ5, 0Æ0005) prior distribution for the inverse variance parameter

of the CAR model as suggested by Kelsall & Wakefield (1999). For

the intercept term, we chose a normal(0, 0Æ1) prior distribution. In all

other cases, we chose vague uniform priors.

Following specification of the likelihood and priors, the MCMC

approach generates a Markov chain to characterize the posterior dis-

tribution empirically. We conducted an extensive simulation study to

evaluate the statistical properties of the baseline and spatial models

and also fit both models to survey data collected on the Mississippi

River. To assess convergence, we ran three independent chains and

inspected the Gelman–Rubin statistic (Brooks & Gelman 1998). This

statistic compares ‘between chain’ and ‘within chain’ variation, with

values close to one suggesting convergence. We also visually

inspected (i) the full trajectory of the Markov chain simulations to

see whether the independent chains had ‘settled down’ to a similar

range of values and (ii) the estimated posterior distributions for signs

of bimodality.

SIMULATION STUDY

To test the reliability, accuracy and precision of our estimators, we

conducted an extensive simulation study. Data were simulated based

on a complete, four-way, three-level factorial design with variables:

(i) occupancy correlation (levels: 0, medium and high), (ii) track-lay-

ing correlation (levels: 0, medium and high corresponding to b ¼ 0,

0Æ4 and 0Æ6, respectively), (iii) occupancy probability (E[wi] ¼ 0Æ3,
0Æ55 and 0Æ8) and (iv) track-laying parameter, ~h (equation 2) ¼ (0Æ1,
0Æ3 and 0Æ5).

To generate correlated occupancy probabilities, we let logit(wi) ¼
c + �i, with �i given by a mean 0, ar(1) process. In contrast to the

intrinsic CARmodel, which uses a single conditional variance param-

eter to capture both heterogeneity and spatial correlation, the ar(1)

process is defined using an unconditional variance parameter (r2) and
autocorrelation parameter (q). Thus, our data generating model dif-

fered slightly from our spatial estimationmodel. We set (r,q) ¼ (0,0),

(1, 0Æ35) and (4, 0Æ8) for the (0, medium and high) correlation scenar-

ios, respectively. In each case, we generated values of �i using the ar-

ima.sim function in Program R (RDevelopment Core Team 2009).

Conditional on a site being occupied, a track was laid down with

either constant probability ~h (independence model) or using the Mar-

kov transitionmatrix (equation 1) (spatialmodel); trackswere always

kept on successive days of the same snow event. To use the Markov

matrix for simulation, we first determined an appropriate value of h*
by plugging in prespecified values of ~h, w and b into equation 2,

replacingwwith themean of the occupancy vector (i.e. the proportion

of occupied sites):

W ¼ 1

N

XN
i¼1

zi; eqn 3

when w was not constant. Finally, conditional on there being a

track, it was either recorded with probability pl or not, and con-

ditional on there not being a track, it was either incorrectly

recorded with probability el or not.

Data were generated for 100 sites with five unique snow events,

three observations after each snow event and three observers. Thus,

in each case, our data consist of a 100 · 45 array of 0s and 1s. We set

p ¼ (p1,p2,p3) ¼ (0Æ65,0Æ70,0Æ80) and e ¼ (e1,e2,e3) ¼ (0Æ05,0Æ10,
0Æ15), to allow for reasonable values of the detection and false-posi-

tive probabilities. Our primary interest in developing the occupancy

model was a desire to estimate otter population-level occupancy rates

(i.e.W in equation 3). For this purpose, we used:

Ŵ ¼ 1

N

XN
i¼1

ẑi:

All simulations were run so that the Markov chain standard error

estimates were an order of magnitude smaller than the standard devi-

ation estimates, typically of order 10)4. We also monitored the Gel-

man–Rubin statistic as a diagnostic for determining whether or not

the MCMC algorithm was converging. The MCMC algorithm for

the base model required 3000 iterations after an initial burn-in of

3000 iterations. The spatial model required 6000 iterations after a

burn-in of 10 000 iterations. The base model took about 5 min to run

on a laptop PC, and the spatial model took about 20 min.

SIMULATION WORK TO LOOK AT STUDY DESIGN

We also used simulations to help determine efficient sampling prac-

tices. Specifically, we aimed to help clarify what types of flights were

most useful and howmany flights were necessary for a desired level of

accuracy. Based in part on the results of fitting our model to the Mis-

sissippi River data (see below), we generated samples with parameter

values of E[wi] ¼ 0Æ76, ~h ¼ 0�20;b ¼ 0�4; p ¼ 0�65; e ¼ 0�05 and

with moderate correlation in the occupancy process (r ¼ 1 and q ¼
0Æ35). We varied the number of snow events (1–5), days flown after a

snow event (1–3) and number of observers (1–3) using a complete fac-

torial design to determine the combination of these parameters that

resulted in the fewest flights, with the requirement that the standard

error for Ŵ < 0�05. We simulated these 45 scenarios twice, both

times using the same set of parameters, to make sure our conclusions

were robust to Monte Carlo error. In each case, we used a burn-in

period of 10 000 iterations, followed by a tracking period of 10 000

iterations.

Results

SIMULATION STUDY

Estimates of W and ~h from the 81 simulation runs are summa-

rized in Figs 2 and 3, respectively. Each panel depicts nine sim-

ulation runs, with the degree of spatial correlation held

constant andW and ~h varied within each panel.
In general, both models resulted in precise estimates of

model parameters with little bias (Figs 2 and 3). When data

were simulated without spatial correlation (in the occupancy

and track-laying processes), b in the spatial model was
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estimated to be close to 0, and the two models (baseline and

spatial) gave similar estimates of W and ~h (Figs 2g and 3g).

Estimates of W from the baseline model had a lower mean-

squared error (MSE) ¼ 0Æ0032 (baseline model) vs. 0Æ0064
(spatial model), whereas mean absolute deviations (MADs)

were more similar, 0Æ030 (baseline model) vs. 0Æ031 (spatial

model). On the other hand, the spatial model outperformed

the baseline model with respect to estimating ~h, with MSE ¼
0Æ0057 (baseline model) vs. 0Æ0012 (spatial model) and

MAD ¼ 0Æ032 (baseline model) vs. 0Æ024 (spatial model). In

particular, the baseline model tended to overestimate ~h when

occupancy and track-laying process were spatially correlated

(e.g. Fig. 3c).

Across the 81 simulated scenarios, 95% credibility intervals

for W included the true value 91% of the time for the baseline

model and 95% of the time for the spatial model (Table 1).

Coverage rates for ~hwere higher for the spatial model (93% vs.

78%; Table 1). Coverage rates for correct and false detection

probabilities (pl and el, respectively) were near nominal values

for both models, as was the coverage rate for b in the spatial

model (Table 1).

For both models, estimates of W became more precise as ~h
increased (i.e. as tracks became more prevalent). When
~h ¼ 0�5, 95% credibility intervals for W were on the order of

0Æ01 in width. Thus, we can expect ‘good’ estimates of popula-

tion occupancy rates when track-laying probabilities are high.

ANALYSIS OF MINNESOTA OTTER DATA

The sampling effort for the Mississippi River data was irregu-

lar both with respect to the number of observers and the num-

ber of days sampled for each snow event. Our formulation of

the problem in WinBugs treated these irregularities as if non-

surveyed dates were missing data (as a result, WinBugs drew

values for these response data at each MCMC iteration).

Although this approach was easier to code in WinBugs, it

resulted in longer run times and more iterations to obtain con-

vergence.

The estimated occupancy rate was higher for the spatial

model (Ŵ ¼ 0�82 vs. 0Æ59; Table 2). This result is consistent

with the findings of Hines et al. (2010), where an independence

model gave lower occupancy rates than their spatial model.

The spatial model estimated lower track-laying rates, with sig-

nificant positive correlation among sites (b̂ ¼ 0�53; Table 2).
Thus, the spatial model suggests that tracks were less likely to

be laid down than indicated by the baseline model parameters,

but when they were laid down, they were likely to cross site

boundaries.

OPTIMAL STUDY DESIGN

In our study design analysis, we were interested in the number

and character of flights, which would result in a maximum

standard error of 0Æ05 for Ŵ. The optimal designs under these

criterion included (i) a total of 18 flights distributed among

three snow events, with 3 days surveyed per snow event and by

two observers each and (ii) a total of 15 flights distributed

among five snow events, with 3 days surveyed per snow event

and by one observer. The first scenario resulted in parameter

estimates (with standard errors) of Ŵ ¼ 0�74ð0�05Þ,
~̂h ¼ 0�22ð0�03Þ and b̂ ¼ 0�44ð0�07Þ: The second scenario

estimates were Ŵ ¼ 0�75ð0�05Þ, ~̂h ¼ 0�18ð0�02Þ and

b̂ ¼ 0�42ð0�08Þ. The true parameters, by comparison, were

given byW ¼ 0Æ76, ~h ¼ 0�20 and b ¼ 0Æ40.
There were different survey designs with similar numbers of

flights (for instance, two snow events, 3 days surveyed, and

three observers each, or five snow events, one day surveyed,

and three observers each) that resulted in less accurate esti-

mates and larger standard errors. The number of days per

snow event appeared to be the most important of the three

control variables (number of snow events, observations per

snow event and number of observers). In almost all cases, three

observations after each snow event on consecutive days were

required for the model to converge and for Ŵ to meet our pre-

cision requirement. The number of snow events appeared to be

of intermediate importance; precision requirements could be

met with at least three unique snow events, and with only two

snow events, the standard errors increased rapidly. Finally, the

number of observers appeared to be the least important of the

variables. Accurate estimates of W were obtained for all

number of observers, as long as therewere sufficient number of

snow events and observations after each snow event.

Discussion

Efficient and cost-effective monitoring tools are needed to

understand ecological systems, and these tools must be able to

separate signal (e.g. population trends) from noise (e.g. owing

to changes in detection probabilities). We were successfully

able to incorporate false detection, spatial data correlation and

the dependence of detection probabilities on time since snow-

fall events into a model, despite the complex and sparse nature

of the data analysed. While others have had success incorpo-

rating one of these processes into occupancy models (Magoun

et al. 2007; Royle & Link 2006; Stanley & Royle 2005), we are

not aware of any studies that have incorporated all three.

Although our models were complex, they were relatively

easy to implement and test using WinBugs. Bayesian methods

excel at problems such as these, where the marginal likelihood

is either analytically or numerically intractable, but it is rela-

tively easy to construct in terms of a series of conditionally

independent latent random variables. WinBugs has built in

tools that make it easy to adaptmodels to allow for spatial cor-

relation. Lastly, large sample theory is not needed to derive

measures of uncertainty. Bayesian credibility intervals con-

tained true values �95% of the time in our simulation study,

despite the small number of sites (100) and despite differences

between the simulation and estimation models [i.e. a proper

CAR process was used to simulate spatial occupancy data, but

models were estimated under an independence assumption

(baseline model) or using an intrinsic CAR model (spatial

model)].

Sampling designs that allow for spatial clustering are appeal-

ing for wildlife surveys because they allow large areas to be

6 C. Aing et al.
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sampled efficiently. Although the effective sample size can

usually be increased by restricting samples to include only

non-neighbouring plots (owing to a reduction in spatial

correlation), the additional costs associated with increased

transit times will often outweigh the benefits to collecting inde-

pendent data (see e.g. Giudice et al. 2010). In our particular

application, we sampled river systems using a single flight path.

Although this resulted in a high degree of spatial correlation

among survey units, the alternatives would be to fly in a less

efficient manner or to ‘throw away data’ (i.e. not use neigh-

bouring plots). Thus, the ability to account for spatial correla-

tion is an important feature of ourmodelling approach.

We accounted for spatial correlation in our models using

two different approaches. First, we used an intrinsic CARprior

on the logit occupancy scale to allow site-level occupancies to

be correlated. Rather than induce spatial correlation via latent

random effects (i.e. using the CAR prior), an alternative

approach would be to directly model correlation among the

site-level occupancy indicators (zi) using an autologistic model

(Besag 1974; Sargeant et al. 2005). The primary advantage of

the CARmodelling approach is that it leads to simpleMCMC

routines that are easily implemented in WinBugs (Magoun

et al. 2007). Second, we used a Markovian model to allow for

spatial correlation in the availability of tracks for detection; a

similar approach was used by Hines et al. (2010) to model the

presence of tigerPanthera tigris sign.Notably, our track-laying

parameters share similarities with parameters used to describe

temporary emigration in mark–recapture models (i.e. both sets

of parameters determine whether animals are available for

detection at the time of a survey). Although our application

focused on spatial correlation, we suspect Markovian models

(e.g. for emigration parameters) may also prove useful for

inducing temporal correlation in a wide range of modelling

applications (Hines et al. 2010).

Many natural resource agencies monitor trends in abun-

dance using indices based on surveys of animal sign (e.g. scat,

scent marks, animal tracks), and our 3-level occupancy model

has broad relevance to these types of studies. For example,
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Fig. 2. Posterior means and 95% credibility intervals for Ŵ ¼
PN

i¼1 ẑi=N; the population occupancy rate, from fitting the baseline model (open

circle, solid lines) and the spatial model (solid circles, dashed lines) to simulated data. True parameter values are given by horizontal red lines.

Data were simulated based on a complete, four-way, three-level factorial design with variables: (i) occupancy correlation [levels: 0 (g–i), medium

(d–f) and high (a–c), represented by separate rows in the figure], (ii) track-laying correlation [levels: 0 (a, d, g), medium (b, e, h) and high (c, f, i),

represented by separate columns in the figure], (iii) occupancy probability (E[wi] ¼ 0Æ3, 0Æ55 and 0Æ8) and (iv) track-laying parameter ~h (equa-

tion 2) ¼ (0Æ1, 0Æ3 and 0Æ5). The latter two factors are varied within each panel.
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large carnivores are often monitored using scent station sur-

veys, with scent stations distributed uniformly along transects

or in a 2-dimensional grid (e.g. Sargeant, Johnson & Berg

1998). Similar 3-level occupancy models could be constructed

for these types of survey designs, with track-laying parameters

replaced with ‘deposition’ parameters, and each scent station

serving as a unique site. A benefit of the 3-level model, particu-

larly for snow-track surveys, is that it offers the potential to

account for a significant source of heterogeneity in the detec-

tion process (i.e. that owing to temporal variability in the pres-

ence of tracks).

The benefit of the 3-level modelling approach can be seen by

considering a recent study by Gardner et al. (2010), in which

they performed wolverine snow-track surveys over the course

of a month. Surveys were conducted provided that at least

24 h had passed since the previous snowfall (with no upper
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Fig. 3. Posterior means and 95% credibility intervals for ~h ¼ probability of laying down a track one day after a snowfall |zi ¼ 1, from fitting the

baseline model (open circle, solid lines) and the spatial model (solid circles, dashed lines) to simulated data. True parameter values are given by

horizontal red lines. Data were simulated based on a complete, four-way, three-level factorial design with variables: (i) occupancy correlation

[levels: 0 (g–i), medium (d–f) and high (a–c), represented by separate rows in the figure], (ii) track-laying correlation [levels: 0 (a, d, g), medium (b,

e, h) and high (c, f, i), represented by separate columns in the figure], (iii) occupancy probability (E[wi] ¼ 0Æ3, 0Æ55, and 0Æ8) and (iv) track-laying

parameter ~h (equation 2) ¼ (0Æ1, 0Æ3 and 0Æ5). The latter two factors are varied within each panel.

Table 1. Coverage rates for model parameters*

Model W ~h b p1 p2 p3 e1 e2 e3

Spatial 95 (77) 93 (75) 95 (77) 95 (77) 95 (77) 91 (74) 94 (76) 98 (79) 93 (75)

Baseline 91 (74) 78 (63) NA 93 (75) 96 (78) 91 (74) 95 (77) 91 (74) 94 (76)

*Percent (number out of 81) of simulations in which Bayesian 95% credibility interval contained the true value.
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time limit). They detected an increasing trend in detection rates

with Julian date. If this trendwas owing to an increased oppor-

tunity for tracks to be laid down over time, then our model

might offer several advantages. First, a mechanistic approach

tomodelling this detection component might do a better job of

adjusting for temporally varying detection probabilities. Sec-

ondly, it could provide an explanation for this temporal trend,

which would be useful when exploring alternative survey

designs. When conducting simulations to look at the power to

detect changes in abundance over time, Gardner et al. (2010)

had to standardize predictions to a common date. By contrast,

our 3-level model would provide a means to explore the power

to detect changes across a range of historical snowfall patterns.

For complexmodels and small numbers of sites, simulations

provide the best way to explore sample design questions (Guill-

era-Arroita, Ridout & Morgan 2010). Our pilot data and

3-level models suggest that the detection process is largely dri-

ven by otter movement following snow events and much less

so by difficulties associated with observing tracks from the air

once present. Importantly, the spatial model predicted lower

track-laying rates than the baseline model but with a high

degree of spatial correlation. Because we believed the spatial

model better represented the true detection process, we used it

to evaluate future survey design choices. We considered a fixed

set of parameters (based on our fits to real data) and recom-

mended a minimum sampling effort of 15–20 flights, distrib-

uted over at least three unique snow events, with at least three

successive daily surveys following each event.

An interesting alternative approach and avenue for future

research would be to investigate optimal survey design ques-

tions using Bayesian experimental design principles, allowing

for parameter uncertainty (Chaloner & Verdinelli 1995). For

example, one could compare designs across a range of simu-

lation scenarios, with parameters in each scenario chosen ran-

domly from fitted posterior distributions. A Bayesian

approach to experimental design would also allow one to

incorporate uncertainty in the number of annual snow events

and the likelihood of missed flights (e.g. as a result of poor

weather conditions or difficulties associated with helicopter

availability). Because these variables are not under user

control, a Bayesian approach to experimental design would

arguably provide a much more realistic test of whether survey

goals (e.g. standard error of Ŵ < 0�05) are likely to be met.

Cost-benefit trade-offs related to collecting repeat survey data

(multiple observers, multiple surveys after each snow event)

could also be evaluated by quantifying the power to detect

trends in occupancy rates over time (for specific alternative

sampling and analysis strategies). We hope to explore these

issues in future work.

In developing our approach, we assumed that detection

probabilities were constant once tracks were laid down (i.e.

detection rates do not increase if tracks are laid down onmulti-

ple days). This assumptionmay be reasonable if detection rates

are high and track-laying rates are low (as in our applied exam-

ple). In that case, few sites will contain more than one set of

tracks, and those that dowill have only slightly higher detection

probabilities. Yet, our models can easily be modified to handle

violations of this assumption. For simplicity, consider only a

single observer and recognize that the parameter p in our mod-

els is really a classification (rather than a detection) parameter

(i.e. it gives the probability of correctly recording a track when

one is present). As discussed by Royle & Link (2006), correct

classifications can occur by mistake (e.g. otter tracks may be

missed, but tracks of another species may be misidentified as

otter tracks). Royle & Link (2006) describe an alternative,

equivalent parametrization of the model specified in terms of

two detection parameters, say da and db: da ¼ the probability

of correctly detecting a track at a site that contains a track.

db ¼ the probability of incorrectly detecting a track at a site

(the site may ormay not contain a track).

Our p ¼ da + db)dadb, and e ¼ db (Royle & Link 2006).

We will need to use this latter formulation of the model and

rather than keep track of the latent variables wi,j,k (¼1 if tracks
are present in site i on the kth day of the jth snowfall event, 0

otherwise), we will need to keep track of the number of days in

which a track is laid down (call this wi,j,k¢, which can take on

values of 0, 1, 2, or 3). If we assume tracks within a site are

detected independently, then the probability of correctly

recording a track when present (p in our original formulation

of themodel) is given by: 1)(1)da)
wi,j,k¢ + db)db(1)(1)da)

wi,j,k¢).
We modified our models as described above and fit them to

the otter survey data. Estimates ofW, h, ~h, and bwere virtually

unchanged. This result was not unexpected, given the high esti-

mates of p and low estimates of e and h.
Unfortunately, sites in our motivating problem were not

defined a priori. Rather than collect way points in a semi-con-

tinuous manner and then create sites post hoc, it would be

desirable in the future to define a grid a priori and use Global

Positioning System information to more accurately record

presence/absence data to spatial units, thereby reducing mis-

classification rates. False positives, in general, deserve more

attention in occupancy models because they can have large

impacts on estimates of occupancy rates (Royle & Link 2006;

McClintock et al. 2010). Adaptations that allow for false

positives significantly increase model complexity, solutions

are relatively new, and models may perform in unexpected

ways because of the challenges associated with parameter

Table 2. Model estimates (Bayesian 95% credibilty intervals) for the

baseline (independence) and spatial occupancy models fit to

Mississippi River data

Parameter

Estimate (95%

credibility interval)

Baseline model Spatial model

e1 0Æ02 (0Æ00, 0Æ04) 0Æ01 (0Æ00, 0Æ02)
e2 0Æ05 (0Æ03, 0Æ07) 0Æ04 (0Æ02, 0Æ06)
e3 0Æ03 (0Æ01, 0Æ05) 0Æ03 (0Æ01, 0Æ05)
p1 0Æ67 (0Æ61, 0Æ75) 0Æ65 (0Æ60, 0Æ72)
p2 0Æ69 (0Æ61, 0Æ79) 0Æ66 (0Æ62, 0Æ70)
p3 0Æ62 (0Æ60, 0Æ67) 0Æ61 (0Æ60, 0Æ65)
w 0Æ59 (0Æ43, 0Æ76) 0Æ82 (0Æ67, 0Æ97)
h 0Æ15 (0Æ11, 0Æ20) 0Æ12 (0Æ09, 0Æ16)
b 0Æ53 (0Æ39, 0Æ66)
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identifiability. In particular, McClintock et al. (2010) recently

found that false positives, combined with heterogeneous detec-

tion probabilities, resulted in poorly identified parameters that

were often estimated with significant biases.We expect the the-

ory underlying these models to continually develop as model-

lers attempt to address increasingly complex problems. In the

meantime, we strongly recommend testing models with simu-

lated data as a means of better understanding their statistical

properties.
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site-level independence for occupancy and track laying processes.

Appendix S4. R code for fitting 3-level occupancy model, assuming

site-level occupancy and track laying processes are spatially corre-

lated.
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