
THE MOVE-TO-ROOT RULE FOR
SELF-ORGANIZING TREES WITH

MARKOV DEPENDENT REQUESTS

by Robert P. Dobrow1

National Institute of Standards and Technology

ABSTRACT

The move-to-root (MTR) heuristic is a self-organizing rule which attempts to keep
a binary search tree in near-optimal form. It is a tree analogue of the well-studied
move-to-front (MTF) scheme. We study a Markov move-to-root (MMTR) model,
where the sequence of record requests is a Markov chain, and analyze several
characteristics of the tree chain, including the stationary distribution, eigenvalues,
and stationary expected search cost.

INTRODUCTION AND SUMMARY
Self-organizing linear search heuristics are adaptive algorithms that seek

to dynamically reorder elements in a list in order to increase search efficiency.
See [8] for a gentle introduction.

The most well-studied self-organizing rule is the move-to-front (MTF)
scheme. A collection of n items is stored in a sequential list. Associated with
the ith record is a probability (weight) ri measuring the long-run frequency of
its use. At each unit of time, item i is removed from the list with probability
ri and replaced at the front of the list. This gives a Markov chain on the
permutation group Sn.

In this paper we consider an extension of this model to binary search trees.
Allen and Munro [1] introduce a natural analogue of MTF for binary search
trees—the move-to-root (MTR) rule, described in Section 2. They also give
an exact formula for stationary expected search cost (the asymptotic average
cost of retrieving a record). Dobrow and Fill [4] show that the MTR

1Research supported in part by NSF grant DMS-9311367 while the author was a grad-
uate student at The Johns Hopkins University.

Markov chain can be derived by lumping the MTF chain and derive numerous
characteristics of the tree chain, including spectral structure and stationary
distribution. Dobrow and Fill [5] treat rates of convergence to stationarity.
Other treatments of self-organizing trees include Bitner [2], who considers
various search rules, and Sleator and Tarjan [15], who introduce splay trees
and develop (non-probabilistic) amortized analysis of search cost. We also
note that there is a large literature on random search trees, much of which
is referenced in [11].

In most of the probability-based literature on self-organizing data struc-
tures it is assumed that records are requested independently of all other
requests. This assumption is often unrealistic. Requests may exhibit what
in the computer science literature is frequently called “locality of reference.”
That is, there is often dependence between successive record requests. Knuth
[9] cites computational experiments involving compiler symbol tables and
notes that typically “successive searches are not independent (small groups
of [records] tend to occur in bunches).”

Lam et al. [10] formally set up the Markovian model for self-organizing
linear search where the sequence of record requests is a Markov chain. Other
work along these lines includes [3], [13], [6], and [14].

In this paper we treat self-organizing binary search trees where the se-
quence of record requests is a Markov chain. We analyze several character-
istics of the tree chain for this Markov move-to-root (MMTR) model. We
are aware of no work to date which has considered self-organizing trees with
dependent structure for the sequence of requests.

This paper is organized as follows: In Section 2 we explain the move-
to-root rule, set up the Markovian model for requests, and establish some
preliminary results, including the fundamental connection between Markov
move-to-front (MMTF) for lists and MMTR for trees. In Section 3 we con-
sider specific models for the request chain and give corresponding formulas
for the stationary distribution of MMTR. In Section 4 we treat stationary
expected search cost. In Section 5 the eigenvalues and their multiplicities are
derived for the MMTR transition matrix.

PRELIMINARIES AND LUMPING
We will review background material briefly. For more details, see [4], [5].
Consider an ordered, indexed set of n records. For ease of notation and

exposition we identify the records with their indices and simply consider the
records [n] := {1, 2, . . . , n}.

A binary tree is a finite tree with at most two “children” for each node
and in which each child is distinguished as either a left or right child. By
defining an empty binary tree as a binary tree with no nodes we can give a
useful recursive definition: a binary tree is either empty or is a node with

left and right subtrees, each of which is a binary tree.
Consider a binary tree in which the nodes are labeled with elements of

some linearly ordered set. A binary search tree is a binary tree with the
property that for each node x, all the records in the left subtree of x are less
than the record stored at x, and all the records in the right subtree of x are
greater than the record stored at x.

Let Bn be the set of all labeled binary search trees on n nodes. In what
follows we use the term “tree” for binary search tree.

The move-to-root (MTR) operation is defined as a series of simple ex-
changes between nodes. A simple exchange (SE) for a requested record j
is best understood by examining Figure 1. The MTR operation performs a
sequence of simple exchanges until the requested record is moved to the root
of the tree.

Let σ ∈ Sn represent an ordered list of records, with σk denoting the
record at the kth position of σ. Let r1, . . . , rn be a sequence of probabilities
(weights) with the interpretation that record i is requested with long-run
frequency ri.

For T ∈ Bn, let x ∈ T be a node in T . We will sometimes abuse notation
and let x ∈ T also refer to the record stored at x; the meaning should be
clear from the context. If record j is stored at node x, then rx := rj.

Let R by the n × n transition matrix for the request chain. Thus R(i, j)
is the probability of accessing record j given that the previous request was
for record i. In the case of independent requests the rows of R are identical
and equal to (r1, . . . , rn). We will denote such a request matrix by RI and
refer to MMTR with such a request matrix as the i.i.d. case or as MTR.

For T ∈ Bn, let rt(T) denote the record stored at the root of T . Let Q
be the transition matrix for MMTR. Then for S, T ∈ Bn,

Q(S, T) =





R(rt(S), rt(T)), if T can be obtained from S
by a move-to-root operation

0, otherwise.

In all that follows we require that the R-chain be ergodic, which implies that
its stationary distribution is unique and strictly positive. Note that this does
not imply that the tree chain is ergodic.

For T ∈ Bn and i 6= j, we say that i is an ancestor of j in T , and write
i <T

a j, if j is an element of the subtree which has i as its root. A tree is
uniquely determined by its ancestry relations.

A key observation for analyzing MTR is Lemma 3.2 in [1], which we
reproduce, with a slight extension:

Lemma 0.1 Suppose record i has been requested at least once in a tree mod-
ified according to the MTR rule. If i < j, then i <a j if and only if the most

recent request for i has occurred since the most recent request (if any) for any
of i + 1, . . . , j. Similarly, if i > j, then i <a j if and only if the most recent
request for i has occurred since the most recent request for any of j, . . . , i−1.

Consider the operation of inserting records into an initially empty tree.
This defines a mapping t : Sn → Bn where for σ ∈ Sn, t(σ) is the tree
obtained by successively inserting records σ1, . . . , σn into an empty tree. Do-
brow and Fill [4] show that the MTR chain can be obtained by lumping the
MTF chain with respect to the mapping t. It is easy to modify their argu-
ment to show that the MMTR chain (for any R) can be obtained by lumping
the MMTF chain (for the same R). This gives

Theorem 1 Let Q denote the transition matrix for MMTR and P the tran-
sition matrix for MMTF. Let Π(T) denote the set of permutations that are
mapped to a given tree T by t. Then for S, T ∈ Bn and k ≥ 0,

Qk(S, T) =
∑

σ∈Π(T)

P k(π, σ) for all π ∈ Π(S). (1)

Corollary 0.1 Let Q∞ denote the stationary distribution for MMTR and
P∞ the stationary distribution for MMTF. Then for T ∈ Bn,

Q∞(T) =
∑

σ∈Π(T)

P∞(σ). (2)

MODELS AND STATIONARY DISTRIBUTION

Models
Throughout this paper we will consider two general models for the request

chain.
For a fixed probability distribution p = (p1, . . . , pn) on [n], with pi > 0

for all i, and a vector (c1, . . . , cn), where 0 ≤ ci < 1 for each i, define

RP (i, j) :=

{
ci, if i = j
(1 − ci)pj/(1 − pi), if i 6= j.

For i 6= j, RP (i, j) is a product of two functions, one depending only on i
and the other only on j. We will refer to MMTR with this request matrix
as the product case.

The case when ci = 0 for all i (and implicitly the more general RP) was
introduced in [14]. For 0 ≤ α < 1, taking ci = (1−α)pi +α gives the mixture
case

RM := (1 − α)RI + αIn,

where In is the n × n identity matrix and RI is the request matrix for the
i.i.d. case introduced in Section 2. Taking α = 0 gives the i.i.d. case.

A generalization of the mixture case which seems to capture locality of
reference reasonably well is a mixture of the i.i.d. chain and a birth-and-death
chain, that is,

RB := (1 − α)RI + αB, (3)

where B is a birth-and-death transition matrix. Unfortunately, MMTF with
this request matrix seems hard to analyze cleanly. We shall, however, treat
the extreme case when α = 1 in (3), that is the birth-and-death case RB = B.

For A ∈ {B, I, M, P}, let QA denote the transition matrix for MMTR
with request matrix RA. Let Q∞

A denote the corresponding stationary distri-
bution. Further, let PA and P∞

A denote the transition matrix and stationary
distribution for MMTF, respectively, when the request matrix is RA.

Stationary distribution
(a) Product case. Dobrow and Fill [4] give a tree-based description of

the stationary distribution for MTR which we record for completeness.

Theorem 2 For T ∈ Bn,

Q∞
I (T) =

∏

x∈T

(
rx∑

y∈Tx
ry

)
, (4)

where Tx is the subtree of T with root x.

There is a clear advantage in using Theorem 2, as opposed to the lumping
formula in Corollary 0.1, to compute the stationary distribution of MTR.
Indeed, (4) can be computed in linear time, while the number of summands
in (2) is exponentially large for many T .

More generally, consider MMTF when RP is the request matrix. For
σ ∈ Sn, a slight extension of the argument in [14] gives

P∞
P (σ) = rσ1

n∏

i=2

(
pσi∑n

j=i pσj

)
,

where r = (r1, . . . , rn) is the stationary distribution of RP . One can verify
that RP is reversible with

ri =
pi(1 − pi)

S(1 − ci)
,

where

S :=
n∑

i=1

pi(1 − pi)

1 − ci
. (5)

An obvious modification of the proof of Theorem 2 in [4] gives a tree-based
description of the corresponding stationary distribution for MMTR.

Theorem 3 For T ∈ Bn,

Q∞
P (T) = rrt(T)

∏

x∈T :
x 6=rt(T)

(
px∑

y∈Tx
py

)
.

(b) Birth-and-death case. For this case, write

RB(i, j) =





qi, if j = i − 1
1 − qi − pi, if j = i
pi, if j = i + 1
0, otherwise

for 1 ≤ i, j ≤ n, with q1 = pn = 0. Here the MMTR chain is not ergodic
on Bn. It follows from results in [6] that Q∞

B (T) > 0 if and only if there
exists σ ∈ Π(T) such that (σ2, . . . , σn) is an interleaving of the two sequences
(σ1 − 1, σ1 − 2, . . . , 1) and (σ1 + 1, σ1 + 2, . . . , n). If σ is such an interleaving
then the tree t(σ) is of the form shown in Figure 2. Thus the support of Q∞

B

are the n trees of this form. One sees easily that the tree chain is essentially
the request chain itself. If T i is the tree shown in Figure 2 with i at the root
then

Q∞
B (T i) = ri.

(c) General R. For completeness we conclude this section by giving an
expression for the stationary distribution of MMTR for general request ma-
trix R, using (2) and Theorem 2 in [6]. Before so doing we establish some
notation which will also be used in Section 5 to derive the eigenvalues of
MMTR.

For a vector σ of length at least m, let σ→m denote the m-element vector
consisting of the first m elements of σ. Notation such as yt→m is shorthand
for (yt1 , . . . , ytm). We write σ[m] to denote the unordered set {σ1, . . . , σm}.
Let R̃ be the transition matrix of the time-reversed request chain; that is,
R̃(x, y) := ryR(y, x)/rx. Let X̃ = (X̃k)k≥0 be a Markov chain with transition
matrix R̃. We use the notation Px(·) for conditional probability given that
X̃0 = x and Pr(·) for probability with respect to the X̃-chain started in its
stationary distribution r. Let C̃m be the first time at which X̃ has visited m
distinct states. Formally,

C̃m := inf{k ≥ 0 : |X̃[k]| = m}.

Theorem 4 For T ∈ Bn,

Q∞(T) =
∑

σ∈Π(T)

Pr[X̃C̃→n
= σ]. (6)

This has a straightforward probabilistic interpretation: For T ∈ Bn,
Q∞(T) is the probability of choosing n records by “Markov coupon-collecting”
so that the tree T is formed by inserting these records into an empty tree.
However, there does not appear to be a direct, tree-based formula for Q∞(T)
that would simplify computation.

STATIONARY EXPECTED SEARCH COST
Our main result in this section is Theorem 5, which gives an expression

for the stationary expected search cost (ESC) for MMTR with any request
matrix R. For a given subset A of the state space, let HA (respectively,
H+

A) be the first nonnegative (resp., positive) hitting time of A for the time-
reversal X̃ of the request chain.

Theorem 5

ESC = 1 +
∑

i,j : i<j

riPi[Hj < H+
{i,i+1,...,j−1}] +

∑

i,j : i>j

riPi[Hj < H+
{j+1,...,i−1,i}].

(7)

Proof The proof is similar to the approach taken by Lam et al. [10], who
derive a formula for stationary expected search cost for MMTF. For T ∈ Bn

and i ∈ [n], let depthT (i) denote the depth of record i in T , where the depth
of the root record is 1. Let 1(A) be the indicator of the event A. Let (T ∗, i∗)
be a random pair where T ∗ is a random tree distributed according to Q∞

and i∗ is the current (random) record requested, with

P [i∗ = i |T ∗ = T] = R(rt(T), i).

Stationary expected search cost is then given by

ESC := E[depthT ∗(i∗)] =
n∑

i=1

riE[depthT ∗(i∗) | i∗ = i].

But depthT (i) = 1 +
∑

j 6=i 1(j <T
a i) and thus

E[depthT ∗(i∗) | i∗ = i] = 1 +
∑

j : j 6=i

P [j <T ∗

a i | i∗ = i].

From Lemma 0.1,

E[depthT ∗(i∗) | i∗ = i]

= 1 +
∑

j : j 6=i

P [j <T ∗

a i | i∗ = i]

= 1 +
∑

j : i<j

Pi[Hj < H+
{i,i+1,...,j−1}] +

∑

j : i>j

Pi[Hj < H+
{j+1,...,i−1,i}],

and the result follows.

The following gives simple expressions for stationary expected search cost
for our two models.

Corollary 0.2 (a) In the product case,

ESCP = 1 +
2

S

∑

i,j : i<j

pipj

pi + · · ·+ pj
, (8)

where S =
∑n

i=1
pi(1−pi)

1−ci
is as defined at (5).

(b) For the birth-and-death case,

ESCB = 2 −
n∑

i=1

ri(1 − pi − qi). (9)

Proof (a) For fixed i < j, let

f(k) := Pk[Hj < H+
{i,...,j−1}].

Clearly, for k /∈ {i, . . . , j}

f(k) =
pj

pi + · · ·+ pj
,

and f(j) = 1. For k ∈ {i, . . . , j − 1}, we thus have

f(k) = R(k, j) +
∑

l /∈{i,...,j}
R(k, l)f(l)

=
(1 − ck)pj

1 − pk

+
∑

l /∈{i,...,j}

(1 − ck)plpj

(1 − pk)(pi + · · · + pj)

=
(1 − ck)pj

(1 − pk)(pi + · · · + pj)
.

In particular,

f(i) =
(1 − ci)pj

(1 − pi)(pi + · · · + pj)
.

Thus by Theorem 5,

ESCP = 1 +
∑

i,j : i<j

ri
(1 − ci)pj

(1 − pi)(pi + · · · + pj)
+

∑

i,j : i>j

ri
(1 − ci)pj

(1 − pi)(pj + · · · + pi)

= 1 +
2

S

∑

i,j : i<j

pipj

pi + · · ·+ pj

.

(b) For the birth-and-death case, for i < j

Pi[Hj < H+
{i,...,j−1}] =

{
RB(i, i + 1) = pi, if j = i + 1
0, otherwise,

while for i > j,

Pi[Hj < H+
{j+1,...,i}] =

{
RB(i, i − 1) = qi, if j = i − 1
0, otherwise.

Thus

ESCB = 1 +
n−1∑

i=1

ripi +
n∑

i=2

riqi

giving (9).

Remarks:
1. Note that

ESCP − 1 =
1

S
(ESCI − 1),

where
1

S
=

∑n
i=1 ri(1 − ci)∑n
i=1 pi(1 − pi)

. (10)

The righthand side of (10) is the ratio of chances (in stationarity) of obtaining
differing successive requests, with the numerator calculated under MMTR
and the denominator under MTR.

2. A natural question to ask is how MMTR fares with respect to sta-
tionary expected search cost in relation to the independent model. In the
product case,

ESCP





<
=
>





ESCI according as S





>
=
<





1.

In the mixture case,

S =
n∑

i=1

pi(1 − pi)

(1 − α)(1 − pi)
=

1

1 − α
≥ 1.

Thus
ESCM ≤ ESCI ,

with equality if and only if α = 0. For the case ci = 0, S =
∑n

i=1 pi(1−pi) < 1,
so ESCP > ESCI. The analogues of these results for self-organizing lists have
been noted by various authors.

EIGENVALUES
Phatarfod [12] derived the eigenvalues and their multiplicities for MTF.

Suppose for simplicity throughout this section that sums of distinct collec-
tions of weights ri are distinct. Then the eigenvalues of MTF are all the
partial sums of the weights, excluding those n cases where the summation
is over n − 1 weights. The multiplicity of each eigenvalue λA =

∑
j∈A rj

corresponding to a sum of |A| = m weights is the number of permutations
in Sn fixing exactly those points in A, namely, the number of derangements
(permutations with no fixed points) in Sn−m.

There is an interesting parallel between the spectral structure of MTR
and MTF. Dobrow and Fill [4] define the notions of unit gap and fixed point
of a tree and show (i) that the eigenvalues for MTR are the partial sums of
weights excluding sets which have unit gaps, and (ii) that the multiplicity of
the eigenvalue λA is the number of trees in Bn fixing exactly those points in
A.

For A ⊆ [n], write a1 < a2 < · · · < am for the elements of A. Define
a0 := 0 and am+1 := n + 1. Let

gi(A) := ai+1 − ai − 1, i = 0, . . . , m,

denote the number of integers in the interval (ai, ai+1). Then gi(A) is called
the i-th gap of A.

We say that a tree T ∈ Bn fixes a record j if there exists π ∈ Π(T) such
that πj = j and π maps {1, . . . , j − 1} to itself and {j + 1, . . . , n} to itself.

Phatarfod and Dyte [13] determined the eigenvalues and their multiplic-
ities for MMTF. For a matrix M and set A, let M(A) denote the principal
submatrix of M determined by the rows and columns identified by A. The
set of eigenvalues of MMTF is the set of all eigenvalues of all the principal
submatrices R(A) with |A| 6= 0, n − 1 of the request chain R. For A ⊆ [n],
the eigenvalue λi(A) corresponding to the ith eigenvalue of R(A) has multi-
plicity in P (the MMTF list transition matrix) equal to Dn−|A|, the number
of derangements (permutations with no fixed points) of n − |A| objects.

In light of these results the next theorem is not surprising.

Theorem 6 The set of eigenvalues for the MMTR transition matrix Q is
the set of all eigenvalues of all the principal submatrices R(A) of the request
matrix R, where A 6= ∅ has no gaps of size 1. For such A ⊆ [n], the eigenvalue
λi(A) corresponding to the ith eigenvalue of R(A) has multiplicity in Q equal
to αn(A), the number of trees which fix exactly those points in A.

For A ⊆ [n], the numbers αn(A) can be computed directly. As shown in
[4],

αn(A) =
|A|∏

i=0

αgi(A),

where

αj =
1

2



(
−1

2

)j

+
j∑

i=0

(
−1

2

)i

βj−i


 , j ≥ 0,

with βk =
(

2k
k

)
/(k + 1). An easy method to compute αj is to use the initial

values α0 = 1 and α1 = 0 together with the recurrence relation

2(j + 1)αj = (7j − 5)αj−1 + 2(2j − 1)αj−2, j ≥ 2.

For T ∈ Bn, recall that Π(T) is the set of permutations σ ∈ Sn such that
t(σ) = T . For m ∈ [n], let Πm(T) be the set of projections of the elements
of Π(T) onto their first m coordinates. For a vector v, let [v] denote the
unordered set formed by the elements of v.
Proof The proof follows the proof of part (a) of Theorem 4 in [6]. After
computing the trace of Qk, the result will follow by elementary linear algebra.
For π ∈ Sn, let

L(π) = max{i ∈ [n − 1] : πi > πi+1}.
By Theorem 1 and Theorem 1 in [6], for any π ∈ Π(T)

Qk(T, T) =
∑

σ∈Π(T)

P k(π, σ)

=
∑

σ∈Π(T)

1

rπ1

n∑

m=L(π−1σ)

Pr[X̃C̃→m
= σ→m, C̃m < k ≤ C̃m+1, X̃k = π1]

=
∑

σ∈Π(T)

1

rσ1

n∑

m=L(π−1σ)

Pr[X̃C̃→m
= σ→m, C̃m < k ≤ C̃m+1, X̃k = σ1]

=
∑

σ∈Π(T)

n∑

m=L(π−1σ)

Pσ1 [X̃C̃→m
= σ→m, C̃m < k ≤ C̃m+1, X̃k = σ1],

since π, σ ∈ Π(T) implies that π1 = rt(T) = σ1. Note that we are using the
convention that for m = 0,

Pσ1 [X̃C̃→m
= σ→m, C̃m < k ≤ C̃m+1, X̃k = σ1] =

{
1, if k = 0
0, otherwise.

Continuing,

Qk(T, T)

=
n∑

m=0

∑

σ→m∈Πm(T)

Pσ1 [X̃C̃→m
= σ→m, C̃m < k ≤ C̃m+1, X̃k = σ1]

× |{σ′ ∈ Π(T) : σ′
→m = σ→m, L(π−1σ′) ≤ m}|.

But it is not hard to see that

|{σ′ ∈ Π(T) : σ′
→m = σ→m, L(π−1σ′) ≤ m}| = 1

for any π ∈ Π(T) and σ→m ∈ Πm(T).
Thus, for T ∈ Bn,

Qk(T, T) =
n∑

m=0

∑

σ→m∈Πm(T)

Pσ1 [X̃C̃→m
= σ→m, C̃m < k ≤ C̃m+1, X̃k = σ1]

and so, for k ≥ 0,

tr(Qk) =
∑

T∈Bn

n∑

m=0

∑

σ→m∈Πm(T)

Pσ1 [X̃C̃→m
= σ→m, C̃m < k ≤ C̃m+1, X̃k = σ1].

For k ≥ 1,

tr(Qk) =
n∑

m=1

∑

σ→m

τn(σ→m)Pσ1 [X̃C̃→m
= σ→m, C̃m < k ≤ C̃m+1, X̃k = σ1],

where, as argued in the proof of Theorem 5 in Dobrow and Fill (1994a),

τn(σ→m) := |{T ∈ Bn : σ→m ∈ Πm(T)}|

depends only on the unordered set σ[m] and is in fact the number of trees
that fix at least the points in σ[m]. Continuing,

tr(Qk) =
n∑

m=1

∑

A∈([n]
m)

∑

x∈A

τn(A)Px[[X̃C̃→m
] = A, C̃m < k ≤ C̃m+1, X̃k = x]

=
n∑

m=1

∑

A∈([n]
m)

∑

x∈A

τn(A)Px[[X̃→k] = A, X̃k = x],

where the sum
∑

A∈([n]
m) is over all m-element subsets A of [n]. By inclusion-

exclusion, for x ∈ A we have

Px[[X̃→k] = A, X̃k = x] =
∑

B⊆A

(−1)|A|−|B|Px[[X̃→k] ⊆ B, X̃k = x]

=
∑

B⊆A

(−1)|A|−|B|1(x ∈ B)R̃k
(B)(x, x).

Therefore,

tr(Qk) =
n∑

m=1

∑

A∈([n]
m)

τn(A)
∑

B⊆A

(−1)|A|−|B| ∑

x∈B

R̃k
(B)(x, x)

=
n∑

m=1

∑

A∈([n]
m)

τn(A)
∑

B⊆A

(−1)|A|−|B|tr(R̃k
(B))

=
∑

∅6=B⊆[n]

tr(R̃k
(B))

∑

A⊇B

(−1)|A|−|B|τn(A)

=
∑

∅6=B⊆[n]

tr(R̃k
(B))αn(B), (11)

where the last equality follows from Möbius inversion.
For k = 0,

tr(Q0) = βn =
n∑

j=1

|{T ∈ Bn : rt(T) = j}|

=
∑

A:|A|=1

τn(A) =
∑

A6=∅
τn(A)

∑

∅6=B⊆A

(−1)|A|−|B||B|

=
∑

∅6=B⊆[n]

|B|
∑

A⊇B

(−1)|A|−|B|τn(A) =
∑

∅6=B⊆[n]

tr(R̃0
(B))αn(B)

Since tr(Rk
(B)) = tr(R̃k

(B)) the result follows.

ACKNOWLEDGEMENTS

This work is part of the author’s Ph.D. dissertation. I would like to thank
my Ph.D. advisor Prof. Jim Fill for his assistance. I am also grateful to Prof.
Eliane R. Rodrigues for making available a preprint of her paper.

REFERENCESReferences

[1] Allen, B. and Munro, I. (1978). Self-organizing binary search trees. J.
ACM 25 526–535.

[2] Bitner, J. R. (1979). Heuristics that dynamically organize data struc-
tures. SIAM J. Comp. 8 82–110.

[3] Chassaing, P. (1993). Optimality of move-to-front for self-organizing da-
ta structures with locality of reference. Ann. Appl. Prob. 3 1219–1240.

[4] Dobrow, R. P. and Fill, J. A. (1994a). On the Markov chain for the
move-to-root rule for binary search trees. Ann. Appl. Prob., to appear.

[5] Dobrow, R. P. and Fill, J. A. (1994b). Rates of convergence for a self-
organizing scheme for binary search trees. Ann. Appl. Prob., to appear.

[6] Dobrow, R. P. and Fill, J. A. (1994c). The move-to-front rule for
self-organizing lists with Markov dependent requests. Technical Report
#532, Department of Mathematical Sciences, The Johns Hopkins Uni-
versity.

[7] Fill, J. A. (1993). An exact formula for the move-to-front rule for self-
organizing lists. Technical Report #529, Department of Mathematical
Sciences, The Johns Hopkins University.

[8] Hendricks, W. J. (1989). Self-organizing Markov Chains. MITRE Corp.,
McLean, Va.

[9] Knuth, D. (1973). The Art of Computer Programming. Vol. III. Addison-
Wesley, Reading, Mass.

[10] Lam, K., Leung, M.-Y., and Siu, M.-K. (1984). Self-organizing files with
dependent accesses. J. Appl. Prob. 21 343–359.

[11] Mahmoud, H. M. (1992). Evolution of Random Search Trees. John Wiley
& Sons, Inc., New York.

[12] Phatarfod, R. M. (1991). On the matrix occurring in a linear search
problem. J. Appl. Prob. 28 336–346.

[13] Phatarfod, R. M. and Dyte, D. (1993). The linear search problem with
Markov dependent requests. Preprint.

[14] Rodrigues, E. R. (1994). The performance of the move-to-front scheme
under some particular forms of Markov requests. Preprint.

[15] Sleator, D. D. and Tarjan, R. E. (1985). Self-adjusting binary search
trees. J. ACM 32 652–686.

