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Abstract
The Numerical INJection Analysis (NINJA) project is a collaborative effort
between members of the numerical relativity and gravitational-wave data
analysis communities. The purpose of NINJA is to study the sensitivity
of existing gravitational-wave search algorithms using numerically generated
waveforms and to foster closer collaboration between the numerical relativity
and data analysis communities. We describe the results of the first NINJA
analysis which focused on gravitational waveforms from binary black hole
coalescence. Ten numerical relativity groups contributed numerical data which
were used to generate a set of gravitational-wave signals. These signals were
injected into a simulated data set, designed to mimic the response of the initial
LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data
using search and parameter-estimation pipelines. Matched filter algorithms,
un-modelled-burst searches and Bayesian parameter estimation and model-
selection algorithms were applied to the data. We report the efficiency of
these search methods in detecting the numerical waveforms and measuring
their parameters. We describe preliminary comparisons between the different
search methods and suggest improvements for future NINJA analyses.

PACS numbers: 04.25.D−, 04.30.−w, 04.30.Tv, 04.80.Nn

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Binary systems of compact objects, i.e., black holes and neutron stars, are among the most
important objects for testing general relativity and studying its astrophysical implications
[1]. The general solution of the binary problem in Newtonian gravity is given by the
Keplerian orbits. In general relativity, the Keplerian orbits for a bound system decay
due to the emission of gravitational radiation, leading eventually to the merger of the two
compact objects and to a single final remnant [2–4]. The decay of the orbits is due to
the emission of gravitational waves and these waves carry important information about
the dynamics of the binary system. In particular, the waves produced during the merger
phase contain important non-perturbative general relativistic effects potentially observable by
gravitational-wave detectors. Gravitational waves could be detectable by the current generation
of gravitational wave detectors such as LIGO and Virgo [5, 6], and detection is very likely
with future generations of these detectors.

Two important advances have occurred in recent years that have brought us closer to the
goal of observing and interpreting gravitational waves from coalescing compact objects.
The first is the successful construction and operation of a worldwide network of large
interferometric gravitational-wave detectors; these include the three LIGO detectors in the
United States, Virgo in Italy, TAMA in Japan [7] and the GEO600 detector in Germany [8].
The TAMA detector was the first interferometric detector to achieve its design goals, and it
collected science data between 1999 and 2003 [7]. The LIGO detectors started observations
in 2002 [9]. From 2005 to 2007 these detectors operated at design sensitivity collecting more
than a year of coincident data from the three LIGO detectors; these observations are referred to
as the ‘fifth science run’ (S5) [10]. The Virgo detector is also close to achieving its design goals
and collected 6 months of data coincident with the last 6 months of the LIGO S5 run (referred
to as VSR1) [11]. The GEO600 detector has been operating since 2002 in coincidence with the
LIGO instruments [8]. The two 4 km LIGO detectors are currently being upgraded to improve
their sensitivity by a factor of 2–3 (enhanced LIGO [205]) and will resume observations in
2009. Upgrades to the Virgo detectors to yield comparable sensitivity to enhanced LIGO
are proceeding on a similar schedule. During this time, the GEO600 and the LIGO Hanford
2 km detector continue to make best-effort observations (called ‘astro-watch’) to capture any
possible strong events, such as a galactic supernova. Following the enhanced LIGO and
Virgo observations, the advanced LIGO [206] and Virgo [207] upgrades will improve detector
sensitivities by a factor of ∼10 above the initial LIGO detectors; these upgrades are expected to
be complete by 2014. There are also plans to build a second-generation cryogenic detector in
Japan known as LCGT [12]. Searching data from these detectors for weak gravitational wave
signals over a vast parameter space is a challenging task. The gravitational-wave community
has invested significant resources in this effort. A number of searches on S5/VSR1 data for
un-modelled bursts and binary coalescence are in progress and many results, including those
from previous science runs, have already been reported [13–23].

The second important advance has been the impressive success of numerical relativity in
simulating the merger phase of binary black hole (BBH) coalescence. The first breakthroughs
occurred in 2005 with simulations by Pretorius [24], closely followed by the independent
Goddard and Brownsville (now at RIT) results [25, 26]. Since then, a number of numerical
relativity groups around the world have successfully evolved various configurations starting
from the inspiral phase all the way through the merger to the final remnant black hole (for recent
overviews on the field, see e.g. [27–29]). This has led to important new physical insights in
BBH mergers. These include the prediction of large recoil velocities produced by asymmetric
emission of gravitational radiation during the merger process [30–48] and the prediction of
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the parameters of the remnant Kerr hole for a wide class of initial states [32, 49–61]. Since the
inspiral, merger and coalescence of black holes are also among the most important targets of
gravitational-wave detectors, we expect that the detailed information provided by numerical
simulations can be used to increase the reach and to quantify the efficacy of data analysis
pipelines. Indeed the driving motivation of research on numerical simulations of black-hole
binaries over the last few decades has been their use in gravitational-wave observations.

Thus far, most searches for gravitational waves from BBH mergers have relied on post-
Newtonian results, which are valid when the black holes are sufficiently far apart. Within
its range of validity, post-Newtonian theory provides a convenient analytic description of the
expected signals produced by binary systems. The numerical relativity results, on the other
hand, have not yet been synthesized into an analytic model for the merger phase covering a
broad range of parameters, i.e., a wide range of mass ratios, spins and if necessary, eccentricity;
there has been, however, significant progress for the non-spinning case [51, 62–72]. Similarly,
despite significant progress, there is not yet a complete detailed description over the full
parameter space of how post-Newtonian and numerical simulations are to be matched with
each other. On the data analysis side, many pipelines, especially those that rely on a detailed
model for the signal waveform, have made a number of choices based on post-Newtonian
results, and it is important to verify that these choices are sufficiently robust. More generally,
it is necessary to quantify the performance of these data analysis pipelines for both detection
and parameter estimation. This is critical for setting astrophysical upper limits in case no
detection has been made, for following up interesting detection candidates, and of course
for interpreting direct detections. Work on this to date has primarily used post-Newtonian
waveforms. Numerical relativity now provides an important avenue for extending this to the
merger phase.

There are significant challenges to be overcome before numerical relativity results can be
fully exploited in data-analysis pipelines. The Numerical INJection Analysis (NINJA) project
was started in the spring of 2008 with the aim of addressing these challenges and fostering close
collaboration between numerical relativists and data analysts. Participation in NINJA is open to
all scientists interested in numerical simulations and gravitational-wave data analysis. NINJA
is the first project of its kind that attempts to form a close working collaboration between the
numerical relativity and data analysis communities. Several decisions were made that restrict
the scope of the results reported here: we consider only BBH simulations and have not used
results from supernova simulations or simulations containing neutron stars; the waveform data
come purely from numerical simulations and we do not attempt to extend numerical data using
post-Newtonian waveforms; the NINJA data set is constructed using Gaussian noise to model
the response of the initial LIGO and Virgo detectors—no attempt has been made to include
non-Gaussian noise transients found in real detector data. The comparisons and conclusions
reported here are thus necessarily limited, and in many cases are only the first steps towards
fully understanding the sensitivity of data-analysis pipelines to black-hole signals. Further
studies are needed regarding the accuracy and comparison of numerical waveforms, and of
how systematic errors in these waveforms can affect parameter estimation. Some analyses of
numerical waveforms with regard to gravitational-wave detection have already been performed
[64, 72–74], accuracy standards have been developed for use of numerical waveforms in data
analysis [209] and a detailed comparison of some of the waveforms used in the NINJA project
was performed in the related Samurai project [75]. We expect that subsequent NINJA analyses
will build on these results to address these issues.

Despite the limited scope of the first NINJA project, we are able to draw the following
broad conclusions from this work. Our first conclusion is that the current data analysis
pipelines used to search LIGO, Virgo and GEO600 data for black hole coalescence are able
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to detect numerical waveforms injected into the NINJA data set at the expected sensitivities.
Indeed, several of these pipelines are able to detect signals that lie outside the parameter space
that they target. This is a non-trivial statement since most detectability estimates to date for
these sources have relied on post-Newtonian waveforms, which are valid only when the black
holes are sufficiently far apart. For many of these pipelines, this is the first time they have
been tested against numerical waveforms. It should be noted, however, that the NINJA data
set does not contain non-stationary noise transients so more work is needed to understand
how detection performance is affected by the noise artefacts seen in real gravitational-wave
detector data. Our second conclusion is that significant work is required to understand and
improve the measurement of signal parameters. For instance, among the pipelines used in
this first NINJA analysis only the Markov-chain Monte Carlo algorithm attempted to estimate
the spins of the individual black holes, and the estimation of the component masses by the
detection pipelines is poor in most cases. Improvement in this area will be crucial for bridging
the gap between gravitational wave observations and astrophysics. NINJA has proven to be
extremely valuable at framing the questions that need to be answered.

This paper is organized as follows: in the following section, we describe the contributed
numerical waveforms and in section 3 describe the construction of the simulated gravitational-
wave detector data used in the NINJA analyses. Descriptions of the search methods and
results are given in section 4. The results are grouped by search method into search pipelines
using modelled waveforms (section 4.1), search pipelines using un-modelled waveforms
(section 4.2) a comparison of inspiral–burst–ringdown results (section 4.3) and Bayesian
pipelines (section 4.4). We conclude with a discussion of our results and future directions for
NINJA in section 5.

2. Numerical waveforms

The NINJA project has studied BBH coalescence waveforms submitted by ten individuals
and teams. Participation in NINJA was open to anyone and the only restrictions were that
each contribution (i) was a numerical solution of the full Einstein equations, (ii) consisted of
only two waveforms, or up to five waveforms if they were part of a one-parameter family.
No restrictions were placed on the accuracy of each waveform. All contributions followed
the format specified in [76]. The waveforms are plotted in figures 1 and 2. The contributed
waveforms cover a variety of physical and numerical parameters. Most simulations model
low-eccentricity inspiral, the mass ratio q = m1/m2 ranges from 1 to 4, and the simulations
cover a range of spin configurations. The initial angular frequency of the � = m = 2 mode
ranges from 0.033/M to 0.203/M (where M denotes the sum of the initial black-hole masses).
This initial angular frequency marks where contributors consider the waveform sufficiently
clean to represent the physical system (e.g. this will be chosen after initial unphysical radiation
content, often referred to as ‘junk radiation’ in numerical relativity, is radiated away). The
length of the waveforms varies between a few 100M to over 4000M. The contributions naturally
differ in accuracy, both regarding how well they capture the black-hole dynamics and in the
extraction of the gravitational-wave signal. Table 1 lists a few key parameters that distinguish
the waveforms and introduces the following tags for the different contributions and codes:
BAM HHB [77–81] and BAM FAU [60, 77, 78, 81] are contributions using the BAM code,
CCATIE is the AEI/LSU code [34, 43, 52, 82, 83], Hahndol is the Goddard Space Flight
Center’s code [84, 85], LazEv is the RIT code [25, 46, 86], Lean is Ulrich Sperhake’s code
[56, 87, 88], MayaKranc is the Georgia Tech/Penn State code [57, 74], PU stands for the
Princeton University code [24, 62, 89, 90], SpEC for the Cornell/Caltech collaboration code
[66, 91–93], and UIUC stands for the University of Illinois at Urbana-Champaign team [94].
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Figure 1. Summary of all submitted numerical waveforms: r/M Re(h22) The x-axis shows time in
units of M and the y-axis shows the real part of the (�, m) = (2, 2) component of the dimensionless
wave strain rh = rh+ − irh×. The top panels show the complete waveforms: the top-left panel
includes waveforms that last more than about 700M , and the top-right panel includes waveforms
shorter than about 700M . The bottom panel shows an enlargement of the merger phase for all
waveforms.
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Figure 2. Distribution of power into different spherical harmonics. The solid line shows
(��,m|h�mr/M|2)1/2. A dashed line, if present, shows the same sum, but excluding the
(�, m) = (2, ±2) modes. The separation between the two lines gives the relative importance
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were supplied. The layout is as in figure 1: the top panels show the complete waveforms, whereas
the bottom panel shows an enlargement of the merger phase. The x-axis shows time in units of M.
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Table 1. Initial conditions for numerical waveforms. The columns list, in order from left to
right, the name of the contribution or code, the name of the run where appropriate, the mass ratio
q = m1/m2 where m1 � m2, the spins of the black holes in vector form (if only one spin is given,
both spins are equal), an estimate of the initial eccentricity of the orbit (the entry qc denotes cases
where quasi-circular inspiral, i.e. zero eccentricity is modelled, but a value of the eccentricity has
not been reported), the initial frequency of the (�, m) = (2, 2) mode (rounded to three digits), the
initial coordinate separation of either the black-hole punctures or the excision surfaces, and where
appropriate the method of eccentricity removal. All binaries start out in the xy-plane with initial
momenta tangent to the xy-plane. See the text for the identification of each contribution and a
description of the notation in the last column. The dimensionless spins of the BAM FAU run are
(−0.634,−0.223, 0.333) and (−0.517,−0.542, 0.034).

Eccentricity

Code Run q �Si/m2
i e ω22M D/M removal

BAM FAU [77, 78] [60] 1 See caption qc 0.06 9.58ŷ T-PN [55, 95]
BAM HHB [77, 78] S00 [79] 1 0 <0.002 0.045 12ŷ TR-PN [96]

S25 [80] 1 0.25ẑ ≈0.006 0.045 12ŷ T-PN [41]
S50 [80] 1 0.50ẑ ≈0.006 0.052 11ŷ T-PN [41]
S75 [80] 1 0.75ẑ ≈0.006 0.06 10ŷ T-PN [41]
S85 [80] 1 0.85ẑ ≈0.006 0.06 10ŷ T-PN [41]

CCATIE r0 [43] 1 0.6ẑ, −0.6ẑ qc 0.079 8x̂ TR-PN [96]
[34, 43, 82, 83]

r2 [43] 1 0.6ẑ, −0.3ẑ qc 0.078 8x̂ TR-PN [96]
r4 [43] 1 0.6ẑ, 0 qc 0.076 8x̂ TR-PN [96]
r6 [43] 1 0.6ẑ, 0.3ẑ qc 0.075 8x̂ TR-PN [96]
s6 [52] 1 0.6ẑ qc 0.074 8x̂ TR-PN [96]

Hahndol [84, 85] kick 3 0.2x̂, 0.022x̂ qc 0.078 8.007ŷ T-PN [97]
non 4 0 qc 0.070 8.470ŷ T-PN [97]

LazEv [25, 86] MH [46] 1 0.92ẑ qc 0.07 8.16x̂ T-PN [97, 98]
Lean [87] c 4 0 qc 0.05 10.93x̂ T-PN [77]

2 1 0.926ẑ qc 0.11 6.02x̂ T-PN [97]
MayaKranc [74] e0 [57] 1 0 qc 0.05 12x̂ TR-PN [96]

e02 [57] 1 0 0.2 0.05 15.26x̂ n/a
PU [24, 89] CP [62] 1 0.063ẑ qc 0.07 9.5x̂ T-ID [99]

T52W [90] 1 0 �0.5 0.07 n/a
SpEC [91] q = 1 1 0 5 × 10−5 0.033 15x̂ TR-it [92]

[66, 93]
UIUC [94] cp [94] 1 0 qc 0.194 4.790x̂ T-ID [99]

punc [94] 1 0 qc 0.203 4.369ŷ T-ID [100]

The codes listed above use different formulations of the Einstein equations, gauge
conditions, mesh structures, initial data and wave extraction methods; we will attempt to give
a unified presentation of common features first, and then list further details of the approaches
separately for each contribution. Full details of each code are given in the references.

The numerical codes follow either of two approaches to solving the Einstein equations: (1)
the generalized harmonic formulation, which was the basis of Pretorius’ initial breakthrough
simulation of coalescing black holes [24], or (2) the moving-puncture approach, following
[25, 26]. Both approaches result in canonical choices for the construction of initial data, the
evolution system for the Einstein equations and the treatment of the singularity inside the
black-hole horizons.
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2.1. Summary of the simulation algorithms

2.1.1. Initial data. Due to the presence of constraint equations, specifying initial data in
numerical relativity is far from trivial, for a general overview see e.g. [101]. All of the results
presented here make the simplifying assumption of conformal flatness for the spatial metric
of the initial slice, which leads to some spurious gravitational radiation in the initial data. All
contributions attempt to model non-eccentric inspiral, except for the two data sets PU–T52W
and MayaKranc–e02. However, the degree of ‘quasi-circularity’ varies, and in general one
should bear in mind that the definition of eccentricity for fully general-relativistic orbits is not
unique (see for example [56, 57]). The data set PU–T52W is notable for the fact that the BBH
was constructed via scalar field collapse. Specifically, the initial data consist of two, compact,
dense distributions of scalar field energy, separated by some distance and Lorentz boosted in
opposite directions orthogonal to the line between them. Upon subsequent evolution, each
scalar field pulse quickly collapses to form a black hole, with all remnant scalar field energy
radiating away from the domain on the order of the light-crossing time of the orbit. This is
the same timescale on which spurious gravitational radiation present in all current initial-data
sets leaves the domain of the inspiral, and hence for practical purposes this can be considered
a vacuum merger. All other runs start from vacuum initial data.

Most codes (BAM, CCATIE, Hahndol, LazEv, Lean, MayaKranc and the UIUC code)
adopt the ‘moving puncture’ approach, following [25, 26]. These codes use puncture
initial data [102–104] to model black holes, resulting in initial data that contain a separate
asymptotically flat end within each black hole. Constructing such initial data is mathematically
well understood [103, 105]. The codes CCATIE, LazEv, Lean and MayaKranc all use the
same pseudo-spectral solver for the Einstein constraint equations [106], and BAM uses a variant
thereof [78]. UIUC–punc initial data are generated via the LORENE [107] multi-domain spectral
libraries. The Hahndol code uses the second-order-accurate multi-grid solver AMRMG [108],
which is however tuned to give truncation errors typically much smaller than those produced
by the evolution code.

The generalized harmonic codes use conformal thin sandwich initial data [109]. PU-
CP and SpEC use quasi-equilibrium excision initial data where the interior of the black-hole
horizons has been excised from the numerical grid. The presence of black holes with desired
linear momenta and spins is enforced through the boundary conditions on the excision surfaces
and the numerical outer boundary during the solution of the initial-value equations [92, 99,
110, 111]. This ‘excision technique’ is based on the defining property of black holes—
the horizons act as causal membranes and information cannot escape from the inside. The
UIUC–cp simulation uses the same excised initial data, but fills the BH interior with ‘smooth
junk’, as described in [94], before evolving with the moving puncture technique.

All codes take input parameters that ultimately determine the individual black-hole
masses mi , spins �Si , momenta �Pi and coordinate separation D of the black holes (one should
however be aware that in the strong field regime of general relativity various subtleties are
associated with the definition of all of these quantities). In addition, the black-hole masses
and dimensionless spins slowly change during the inspiral, which requires additional caution
regarding the definition and accuracy of the values of mass, spin, etc. There are two common
methods to estimate the instantaneous individual black-hole masses. One is to calculate the
apparent-horizon mass, computed from the irreducible mass (given by the area of each hole’s
horizon) and the spin according to Christodoulou’s [112] relation m2

i = m2
i,irr + S2

i

/(
4m2

i,irr

)
.

The other, applicable only to puncture data, is to compute the Arnowitt–Deser–Misner (ADM)
mass [113] at each puncture, which corresponds to spatial infinity in a space that contains
only that black hole [104]. We generally use the total black-hole mass M = m1 + m2 to scale
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dimensionful quantities, although sometimes the total conserved energy (MADM) is used for
this purpose. Without loss of generality all codes chose the rest frame where �P 1 = − �P 2 and,
thus, the net linear momentum vanishes initially.

Those simulations that attempt to model non-eccentric inspiral use initial parameters
calculated by a number of different methods. Ideal initial parameters would produce tangential
motion consistent with circular orbits, and radial motion consistent with slow inspiral. The
various methods to choose initial parameters can be broadly characterized as those that attempt
to provide only tangential motion (so that initially the black holes have no radial momenta),
denoted by ‘T’ in the last column of table 1, and those that provide both tangential and radial
motion (denoted by ‘TR’). The procedures to estimate these parameters are based on properties
of the initial-data set (‘ID’), post-Newtonian methods (‘PN’) or an iterative procedure following
the results of several trial simulations (‘it’). In table 1, we indicate which of these variants
was used and provide a reference to the specific algorithm; for the post-Newtonian methods in
particular there are several variants. Note that the estimates of the resulting eccentricity range
from e ∼ 5 × 10−5 (for the SpEC contribution) up to e ∼ 0.02.

The two data sets from the UIUC contribution actually compare two alternative sets of non-
spinning, equal-mass, quasi-circular initial data, with initial orbital frequency M� = 0.0824:
(i) puncture initial data with coordinate separation D/M = 4.369 and initial linear momentum
of each BH set according to [100], and (ii) Cook–Pfeiffer initial data with coordinate separation
D/M = 4.790 [99, 114] (measured from the centroids of the apparent horizons), filling the
BH interior with data that smoothly connect to the exterior as described in [94]. Both data
sets yield the same final spin | �SBH|/M2

BH = 0.68, but differ at the level of a few per cent in
radiated energy and angular momentum.

For the eccentric MayaKranc simulation (data set e02), the conservative, third-post-
Newtonian-order (3PN) expressions in [115] have been used to specify initial data. These
expressions require the specification of the eccentricity e and the mean motion n = 2π/Tr ,
where Tr is the radial (pericentre-to-pericentre) orbital period. There are three PN
eccentricities, which are the same to 1PN order, and we chose et , which appears in the
PN Kepler equation, following [115]. The quantity n has been chosen as n = 0.01625/M

(Tr ∼ 387M) and e = 0.2. The binary separation, D/M = 15.264, was determined from
equation (23) in [115], and the tangential linear momentum, P/M = 0.0498, of each black hole
at apocentre was obtained from J = PD, where J is the total angular momentum computed
as a post-Newtonian expansion in n and e (equation (21) in [115]).

2.1.2. Evolution systems. There is a long history of casting the Einstein equations into
systems of partial differential equations, and in particular into the form of a well-posed initial
value problem. The process of writing the covariant Einstein equations in the form of three-
dimensional tensor quantities that evolve in time is commonly referred to as a 3+1 split. The
fundamental idea is to choose coordinates {xi, t} (i = 1, 2, 3) such that the spacetime metric
can be written in the form

ds2 = −(α2 − γijβ
iβj ) dt2 + 2γijβ

j dt dxi + γij dxi dxj , (1)

where γij is a positive-definite metric on the slices of constant time t, and the scalar function
α and vector field βi are commonly used to encode the freedom of coordinate choice. They
may in principle be freely specified, but in practice they are judiciously prescribed, usually
through further evolution equations.

The waveforms contributed to NINJA use versions of either of the two formulations for
which successful multi-orbit evolutions of black-hole binaries have been published so far: the
generalized harmonic and the BSSN/moving-puncture formulation of the Einstein equations.
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For overviews of writing the covariant Einstein equations as a time evolution problem, see e.g.
[116–118].

The generalized harmonic formulation (see e.g. [118]) writes the evolution equations in
manifestly hyperbolic form as a set of coupled wave equations for the space–time metric gμν .
The SpEC code uses this formulation in the first-order form [119], while the PU contribution
is based on a second-order version of the equations. Gauge conditions are enforced by
specification of gauge-source functions Hμ, either as a specified function of time, or through
evolution equations [24, 66, 93, 120].

All other codes use the first-order-in-time, second-order-in-space BSSN formulation of the
Einstein evolution equations [121–123] in combination with hyperbolic evolution equations
for the lapse and shift. The BSSN formulation consists of making a conformal decomposition
of the spatial metric, γij = ψ4γ̃ij , and all other variables, and the introduction of �̃i = ∂j γ̃

ij ,
which is treated as an independent variable. The moving-puncture treatment of the BSSN
system involves evolving not the conformal factor ψ but either φ = ln ψ (CCATIE), W = ψ−2

(BAM FAU, Hahndol [55, 124]), or χ = ψ−4 (used by all other BSSN codes); it also consists
of the gauge choices that we will summarize next.

All BSSN-based contributions evolve the lapse according to the 1+log slicing condition
[125],

(∂t − βi∂i)α = −2αK. (2)

The shift vector field βi is evolved according to some variant of the �̃-driver condition
[83, 85]). During the evolution these gauge conditions change the geometry of the ‘puncture
singularity’ and soften the singularity as discussed in [126–129].

The original �̃-driver condition introduced in [83] is

∂tβ
i = 3

4Bi, ∂tB
i = ∂t �̃

i − ηBi. (3)

The factor of 3/4 is chosen such that at large distances the propagation speed of the hyperbolic
equation (3) equals the coordinate speed of light [83], and the quantity η is a parameter with
the dimensions of the inverse of a mass and affects coordinate drifts: larger values of η lead
to a stronger initial growth of the apparent horizon, and thus to a magnification effect for the
black holes [77]. Variants of this condition [25, 26, 85, 130, 131] consist of replacing some
or all of the ∂t derivatives with ∂0 = ∂t − βi∂i . We will label these options with reference to
each of the three time derivatives in (3): ‘ttt’ denotes that ∂t is used for all three derivatives,
‘000’ denotes usage of ∂0. The properties of the different choices are studied in [85, 131],
and in [131] it is proven that the combination of the BSSN equations with the ‘1+log’ slicing
condition (2) and the ‘000’ shift choice yields a well-posed initial-value problem.

Small differences in the evolutions also originate in the choice of initial lapse (all
BSSN codes initialize the shift quantities βi and Bi to zero). We first define a Brill–
Lindquist-like conformal factor, ψBL = 1 + m1,p/2r1 + m2,p/2r2, where rA is the distance
to the A th puncture, and m1,p and m2,p parametrize the masses of the black holes,
although they are not in general equal to m1 and m2. The RIT contributions choose
α(t = 0) = 2

/(
1 + ψ4

BL

)
, as does the Hahndol-non contribution, while the Hahndol-kick

contribution uses an approximate α(t = 0) derived from the late-time ‘1+log’ Schwarzschild
slicing [127]. BAM HHB, MayaKranc and the UIUC group use α(t = 0) = ψ−2

BL , and BAM
FAU chooses α(t = 0) = [(ψBL − 1)/2 + 1]−4.

The generalized harmonic codes (PU and SpEC) employ black-hole excision, i.e., they
excise from the computational grid a region around the singularities inside each black
hole.
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2.1.3. Radiation extraction. All groups use one of two popular methods to estimate
the gravitational-wave signal at a finite distance from the source: the SpEC and CCATIE
contributions use the Zerilli–Moncrief/Sarbach–Tiglio perturbative formalism [132–134]
(with SpEC following a version restricted to a Minkowski background in standard coordinates
[135]), all other contributions use the Newman–Penrose curvature scalar ψ4. Both methods
are implemented in the CCATIE code and have been shown to give similar results [34, 43]).
Summaries and details on the implementations within particular codes can be found, for
instance in the references listed in table 1. Since the gravitational-wave signal can only
be defined unambiguously at null infinity, one typically considers several extraction radii
and performs some form of convergence test, although for the present purpose most groups
only report results for a single extraction radius. At finite radius both methods depend on
the coordinate gauge, and the Newman–Penrose method additionally requires the choice of
a tetrad, which is obtained by Gram–Schmidt orthonormalization of a tetrad of coordinate
vectors.

For this work, all waveforms have been contributed as spherical harmonic modes of spin-
weight −2 of the strain, according to the specification in [76]. Computation of the strain
from the Zerilli–Moncrief odd- and even-parity multipoles of the metric perturbation requires
one time integration [43, 133], in the Sarbach–Tiglio formalism the strain is algebraically
related to the invariants at leading order in the inverse radius [133, 136], and computation
of the strain from the Newman–Penrose curvature scalar ψ4 requires two time integrations.
Time integration requires the proper choice of integration constants, and may require further
‘cleaning procedures’ to get rid of artefacts resulting from the finite extraction radii. For
example, for the BAM HHB contribution unphysical linear drifts were removed by a variant
of the method described in [70], where higher order than linear polynomials were used to
remove unphysical drifts from higher modes to further improve the properties of the derived
strain. In the RIT contribution, the strain was computed by taking the Fourier transform of
ψ4, removing modes in a small region around ω = 0, then dividing by −ω2 and taking the
inverse Fourier transform.

2.1.4. Numerical methods and computational infrastructure. There are large overlaps
regarding the numerical methods in the present waveform contributions. With the exception
of the SpEC code, which uses a multi-domain pseudo-spectral method, all codes use finite-
difference methods to discretize the equations. With the exception of the PU contribution,
which uses a second-order-accurate implicit evolution scheme, all other codes use an explicit
algorithm based on method of lines: usually standard fourth-order-accurate Runge–Kutta
time stepping, except for the SpEC code which uses a fifth order Cash–Karp time stepper with
adaptive step size.

The moving-puncture/BSSN-based codes use standard centred finite differencing stencils;
however, the terms corresponding to the Lie-derivative with respect to the shift vector are off-
centred (up-winded) by one grid-point. The CCATIE, MayaKranc, LazEv and UIUC codes
use fourth-order-accurate stencils, the BAM code uses sixth-order stencils, the Hahndol code
uses sixth-order stencils combined with fifth-order up-winded stencils [137], and the Lean
code uses fourth order for equal-mass and sixth order for unequal-mass data sets. All of these
codes add standard fifth-order Kreiss–Oliger dissipation [138, 139] to the right-hand sides
of the evolution equations. The finite-difference orders described here apply to the bulk of
the computational domain. There are contributions at other orders in different parts of the
codes, which we will describe below. However, the finite-difference order in the bulk plays
the dominant role in defining the accuracy of the present simulations (and indeed the spatial
finite-differencing order seems to dominate over the order of time integration when sufficiently
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small time steps are used), and for that reason we list in table 3 the bulk spatial finite-difference
order.

All codes except the SpEC code use variants of Berger–Oliger mesh refinement. The
PU and Hahndol codes employ full adaptive mesh refinement, while the other codes use a
hierarchy of fixed refinement boxes which follow the motion of the black holes. Several of
the codes are based on the Cactus computational toolkit [140, 141] and the Carpet mesh-
refinement code [142, 143] (CCATIE, Lean, MayaKranc, LazEv, UIUC). The BAM HHB and
BAM FAU contributions both use the BAM mesh refinement code. The Hahndol code uses
the PARAMESH infrastructure [144] with a uniform time step; all other mesh refinement codes
use a time step that depends on the grid spacing, and for these codes time interpolation at
mesh-refinement boundaries introduces second-order errors.

For interpolation between meshes of different spacing, the groups that used fourth- or
higher-order methods all use fifth-order-accurate (CCATIE, UIUC, LazEv, Lean, MayaKranc
and Hahndol’s 4:1 ‘non’ data) or sixth-order-accurate (BAM and Hahndol’s 3:1 ‘kick’ data)
polynomial interpolation in space between different refinement levels so that all spatial
operations of the AMR method (i.e., restriction and prolongation) are sixth-order accurate
and the second derivatives of interpolated values are at least fourth-order accurate.

A proper numerical treatment of gravitational waves in asymptotically flat spacetimes
would include null infinity and not require boundary conditions at some finite distance from the
source. Most codes circumvent this problem in essentially heuristic ways. The PU code uses
spatial compactification combined with numerical dissipation, all BSSN codes use heuristic
outgoing wave boundary conditions (which will in general violate constraint preservation
and potentially well-posedness and will result in reflections of the outgoing radiation). The
SpEC code, in contrast, uses constraint-preserving outer boundary conditions which are nearly
transparent to outgoing gravitational radiation and gauge modes [145].

Note that several of the groups use the same apparent horizon finder code
(AHFINDERDIRECT) [146, 147] (Hahndol, UIUC, CCATIE, LazEv, MayaKranc, Lean).

2.2. Accuracy

Estimates on accuracy are reported for the BAM HHB and SpEC contributions. For the BAM
HHB simulations reasonably clean sixth-order convergence was observed, as reported in
[79, 80]. In the waveform r�4, extracted at Rex = 90M , the uncertainty due to numerical
errors and the use of finite extraction radii is estimated as 0.25 rad in the phase and less than 3%
in the amplitude of the l = 2,m = 2 mode. Modes up to l = 8 were calculated; the relative
phase uncertainty is the same for all of them (the absolute phase uncertainty is proportional
to m), but we estimate that the amplitude uncertainty increases to as much as 10% for the
highest modes. The SpEC contribution is the only one that extrapolates the gravitational wave
signal to infinite extraction radius (using third-order polynomial extrapolation [66]). Various
convergence tests indicate that the resulting extrapolated waveform is accurate to 0.02 rad in
phase and 0.5% in amplitude [66].

3. Construction of the NINJA data set

The data provided by the numerical relativity groups follow the format outlined in [76], which
is based on the mode decomposition of the gravitational radiation field at large distances from
the source. If we specify a gravitational waveform hμν in the transverse-traceless (TT) gauge,
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we only need the spatial components hij . We assume that we are sufficiently far away from
the source so that the 1/r piece dominates:

hij = Aij

M

r
+ O(r−2), (4)

where M is the total mass of the system, r is the distance from the source and Aij is a time-
dependent TT tensor. In the TT gauge, hij has two independent polarizations denoted by h+

and h× and the complex function h+ − ih× can be decomposed into modes using spin-weighted
spherical harmonics −2Y lm of weight −2:

h+ − ih× = M

r

∞∑
�=2

�∑
m=−�

H�m(t)−2Y �m(ι, φ). (5)

The expansion parameters Hlm are complex functions of the retarded time t − r , however
if we fix r to be the radius of the sphere at which we extract waves then Hlm are functions
of t only. The angles ι and φ are respectively the polar and azimuthal angles in a suitable
coordinate system centred on the source. This decomposition is directly applicable to non-
precessing binaries. Otherwise, a comparison of the waveforms requires a careful treatment
of mode-mixing effects due to rotations of the frame; see for instance [148]. The numerical
data contributed to NINJA are given in the form of an ASCII data file for each mode (�,m),
with accompanying meta-data describing the simulation [76]. Only modes that contribute
appreciably to the final waveform are included, at the discretion of the contributing group.
Each data file consists of three columns: time in units of the total mass, and the real and
imaginary parts of the mode coefficients H�m as a function of time. Note that the total mass
M scales both the time and the amplitude; thus the BBH waveforms for each simulation can
be scaled to an arbitrary value of the mass. (This is not true in the case of simulations which
include matter fields, but we do not consider such waveforms here.)

To model the signal seen by a gravitational-wave detector, we need to calculate the detector
strain h(t) from the above mode decomposition. To do this, we must choose particular values
of the total mass, orientation and distance from the detector. Given H�m, the total mass, the
distance to the source and the angles (ι, φ), we calculate h+,× using equation (5), and use the
detector response functions F+,× (see, for example [1]) to calculate the observed strain

h(t) = h+(t)F+(α, δ, ψ) + h×(t)F×(α, δ, ψ). (6)

Here (α, δ) are sky-angles in the detector frame, ψ is the polarization angle and the time t
is measured in seconds. In this analysis, we wish to simulate signals that might be observed
by the initial LIGO and Virgo detectors. There are three LIGO detectors: a 4 km detector
and a 2 km detector at the LIGO Hanford Observatory (called H1 and H2, respectively) and a
4 km detector at the LIGO Livingston Observatory (called L1). The Virgo detector is a 3 km
detector in Cascina, Italy (called V1). We used the same two-letter codes for the simulated
NINJA detectors. Since the location and alignment of the three observatories differ, we must
use the appropriate detector response and arrival time to compute the strain waveform h(t)

seen at each observatory. This ensures that the waveforms are coherent between the detectors
and simulate a true signal.

To model the detector noise, we generated independent Gaussian noise time series n(t),
sampled at 4096 Hz, for each detector. This sample rate was chosen to mimic that used in
LSC–Virgo searches and assures a tolerable loss in signal-to-noise ratio due to the discrete
time steps. Stationary white noise time series are generated and coloured by a number of
time-domain filters designed to mimic the design response of each of the LIGO and Virgo
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Figure 3. The NINJA data noise curves and the design spectra of the first generation LIGO and
Virgo detectors.

detectors. Figure 3 shows the one-sided amplitude spectral density
√

Sn(f ) of each time
detector’s time series, where Sn(f ) is defined by

〈ñ(f )ñ(f ′)〉 = 1
2Sn(|f |)δ(f − f ′), (7)

ñ(f ) denotes the Fourier transform of n(t) and angle brackets denote averaging over many
realizations of the noise. We see from figure 3 that the noise power spectrum of the NINJA data
set closely approximates the initial LIGO design sensitivity in the frequency range of interest
(30–103 Hz). There is a slight discrepancy with the Virgo design curve at low frequencies
(between approximately 20 and 150 Hz), which is an artefact of the Virgo noise generation
procedure. Narrow-band features such as the violin and mirror modes were removed from the
detector response used to compute the NINJA data, but were included in the calculation of the
Virgo design curve [208]. The 1/f tails of these narrow-band features are responsible for the
small discrepancy.

Having generated the simulated detector data, we then generated a population of simulated
signals using the numerical relativity data. This population was constructed to cover a broad
range of masses and signal amplitudes. We required that the starting frequency of the dominant
� = m = 2 mode of the signal was not more than 30 Hz, an appropriate threshold given the
sensitivity curve of the initial LIGO and Virgo detectors. This sets a minimum mass at
which each waveform can be injected, which is given in table 2. The minimum possible
injection mass is therefore 36M
. The maximum mass was chosen as 350M
. To get a good
sample of long injected waveforms, we systematically chose a lower range of masses for the
longer waveforms. No restrictions were placed on the other simulation parameters, i.e., the
spins, mass-ratios and eccentricities. We ensured that waveforms from all the participating
groups were equitably represented by generating approximately 12 signals from the waveforms
supplied by each group. The time interval between adjacent injected signals was chosen to be
a random number in the range 700 ± 100 s.
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Table 2. Characteristic duration, mass and frequencies of the waveforms summarized in table 1.
The columns �T100 and fi,100 give the duration and initial frequency of the waveform when scaled
to total mass M = 100M
. M30Hz is the total mass of the waveform when it is scaled so that the
initial frequency is 30 Hz (this sets the lowest mass at which each waveform can be injected into
the NINJA data).

Code Run q �T100 (s) fi,100 (Hz) M30Hz(M
)

BAM HHB S00 1 1.03 15 48
S25 1 1.15 15 48
S50 1 1.03 17 56
S75 1 0.81 19 65
S85 1 0.87 19 65

BAM FAU 1 0.54 19 65
CCATIE r0 1 0.34 26 85

r2 1 0.37 25 84
r4 1 0.40 25 82
r6 1 0.45 24 81
s6 1 0.59 24 80

Hahndol kick 3 0.25 25 84
non 4 0.32 23 75

LazEv MH 1 0.43 23 75
Lean c 4 0.92 16 54

2 1 0.20 36 118
MayaKranc e0 1 1.23 16 54

e02 1 0.74 16 54
PU CP 1 0.29 23 75

T52W 1 0.16 23 75
SpEC q = 1 1 1.96 11 36
UIUC cp 1 0.10 63 209

punc 1 0.10 66 219

Given these constraints, we generated the parameters of the signal population. The
logarithm of the distance to the binary was drawn from a uniform distribution ranging from
50 Mpc to 500 Mpc, and the source locations and orientations were drawn from an isotropic
distribution of angles. We then computed waveforms corresponding to this population and
at the appropriate sampling rate. We required that the optimal matched filter signal-to-noise
ratio of any injection be greater than five in at least one of the four simulated detectors. Any
waveform that did not satisfy this constraint was discarded from the population. Subject to
this condition, the distances of injected signals varied from 52 Mpc to 480 Mpc (median at
145 Mpc), the injected total mass range was 36M
 � M � 346M
 (median at 155M
), with
individual component masses in the range 11M
 � mi � 193M
.

Finally, the waveforms h(t) were added to the simulated detector noise n(t) to generate
the NINJA data set s(t) = n(t) + h(t). As described above, care was taken to ensure that
signals were coherently injected in the data streams from the four detectors. The software for
carrying out this procedure is freely available as part of the LSC Algorithm Library (LAL)
[149].

The data set used in this analysis consisted of a total of 126 signals injected in a total of
106 contiguous segments of noise each 1024 s long, thus spanning a duration of a little over
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Figure 4. The total mass and distance of the 126 NINJA injections. The grey scale encodes the
sum of the dimensionless spins of the black holes, | �S1/m2

1 + �S2/m2
2|.

Table 3. Some properties of the NR evolution codes. The columns list, for each contribution, the
employed evolution system, the numerical technique (FD-k stands for finite differences using kth
order stencils in the bulk), the time derivative and η choices for the �̃-driver shift, the approximate
location of the outer boundary, the radii used for wave extraction and the finest grid spacing. If
two numbers are given they correspond to the two runs of the respective code listed in table 1
(for BAM HBB, hmin = 0.019M applies to all runs with spin). For the SpEC run, rmax decreases
during the run and the waveform is extrapolated to rext = ∞ based on extraction at radii in the
given interval [66, 93].

Code System Technique Shift Mη rmax/M rext/M
hmin

0.001M

BAM HHB BSSN FD-6 000 2 773 90 56, 19
BAM FAU BSSN FD-6 000 2 436 50 16
CCATIE BSSN FD-4 000 1 819 160 20
Hahndol BSSN FD-4, 6 000 2 >1000 45 19, 13
LazEv BSSN FD-4 ttt 6 1281 40 3.1
Lean BSSN FD-4, 6 000 1.25,1 153.6, 256 60, 61 19, 13
MayaKranc BSSN FD-4 000 2 317.4 70 16, 19
PU GH FD-2 n/a n/a ∞ 50
SpEC GH Spectral n/a n/a 450 → 230 75–225 ∼3
UIUC BSSN FD-4 000 0.25 409.6 70 25

30 h. Figure 4 shows the mass, spin and distance of the waveforms contained in the NINJA
data set.

4. Data analysis results

Analysis of the NINJA data was open to all and nine groups submitted contributions using a
variety of analysis techniques. Participating groups were provided with the NINJA data set
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Table 4. The data-analysis contributions to the NINJA project. ‘CBC pipeline’ refers to the
LSC–Virgo Compact Binary Coalescence group’s analysis pipeline, described in section 4.1.

Group Analysis Section

AEI Phenomenological waveforms in CBC pipeline 4.1.3
Birmingham Bayesian model selection 4.4.2
Cardiff Post-Newtonian (PN) templates in CBC pipeline 4.1.1
Cardiff, Maryland EOBNR waveforms in CBC pipeline 4.1.3
Goddard Hilbert–Huang transform 4.2.2
Northwestern Markov-chain Monte Carlo 4.4.1
Syracuse Extended η PN templates in CBC pipeline 4.1.1
UMass, Urbino Q-pipeline analysis 4.2.1
UWM PN templates in CBC pipeline, Neyman–Pearson criteria 4.1.2
UWM, UMass, Urbino Ringdown analysis 4.1.4
UWM, UMass, Urbino Inspiral, merger, ringdown combined search 4.3

containing signals embedded in noise and the parameters of the injected signals. Analysts
were not given access to the raw numerical-relativity waveforms or noiseless injection data.

Methods used to analyse the NINJA data include: matched-filter based searches, un-
modelled waveform searches using excess-power techniques, and Bayesian model-selection
and parameter-estimation techniques. Where possible, the performance of different searches
is compared. The limited scope of the NINJA data set makes detailed comparisons difficult,
however. A list of the data-analysis contributions is shown in table 4.

In sections 4.1 and 4.2, we describe results of analyses using modelled (matched-filter)
and un-modelled waveforms, respectively. Comparisons between these analyses are given in
section 4.3 and section 4.4 presents the results of Bayesian model-selection and parameter-
estimation analyses.

4.1. Search pipelines using modelled waveforms

When the waveform of the target signal is known, matched filtering is the optimal search
technique for recovering signals buried in stationary noise [150, 151]. This section describes
the results of filtering the NINJA data with matched-filter-based analysis pipelines. Results are
given for waveforms that span only the inspiral signal, the ringdown alone, and the full inspiral,
merger and ringdown. Although the morphologies of these waveforms differ, the underlying
analysis techniques are similar in all cases. All the contributions in this section use a pipeline
developed by the LSC and Virgo Collaboration to search for gravitational waves from binary
neutron stars and black holes in a network of detectors [17, 152]. We first describe the features
of this pipeline common to all the contributed matched-filter analyses before presenting the
results of searching the NINJA data using different matched-filter templates.

The LSC–Virgo search pipeline performs a series of hierarchical operations in order to
search for real signals buried in the detector noise: given a desired search parameter space and
waveform model, a ‘bank’ of templates is created to cover the parameter space such that the
fractional loss in signal-to-noise ratio (SNR) between any signal and the nearest template is
less than a specified value (typically 3%). All the NINJA inspiral searches use a non-spinning
template bank parametrized by the two component masses of the binary [153–155]. It has been
found that inspiral searches for spinning binaries using waveforms which neglect the effect of
spin are reasonably effective in most cases [152, 156]. Ringdown searches use a two-parameter
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template bank parametrized by the frequency and quality factor of the signal constructed to
cover the desired range of mass and spin [157]. Data from each of the detectors are separately
match filtered against this bank of waveforms [157, 158] and a ‘trigger’ is produced whenever
the SNR exceeds the desired threshold. All the analyses used a threshold of 5.5. A test
is then performed which discards triggers that do not have coincident parameters in two or
more detectors (time and masses for inspiral searches, and time, mass and spin for ringdown
searches) [159, 160]. These coincident triggers provide the gravitational-wave candidates
for the ringdown analysis. The triggers are ranked by a detection statistic ρc constructed
from the SNRs of the N � 2 individual triggers in a coincidence by ρc = (∑N

i=1 ρ2
i

)1/2
.

Coincident inspiral triggers are subject to a second stage of filtering in which ‘signal-based
vetoes’ are also calculated, which aim to separate true signals from noise fluctuations. These
include the χ2 [161] and r2 [162] tests. Signal-based vetoes could also be employed for
ringdown searches, but at present they are not implemented in the pipeline. For each trigger,
we construct an effective SNR ρeff , which combines the matched-filter SNR and the value of
the χ2 signal-based veto [161]. Explicitly, the effective SNR is defined as [17, 152]

ρ2
eff = ρ2

/√(
χ2

DOF

) (
1 +

ρ2

250

)
, (8)

where DOF signifies the number of degrees of freedom in the χ2 test. For signals of moderate
SNR, which are a good match to the template waveform, the expected value of χ2 is unity
per degree of freedom and consequently the effective SNR is approximately equal to the
SNR. Non-stationarities in the data typically have large values of χ2 and consequently the
effective SNR is significantly lower than the SNR. A second test is then performed to discard
coincidences in which signal-based vetoes reduce the number of triggers to less than two.
These coincidences provide the candidate gravitational wave signals for the inspiral-based
pipelines and they are ranked by the combined effective SNR ρeff = (∑N

i=1 ρ2
eff i

)1/2
. To

evaluate the sensitivity of the analyses, we compare the list of gravitational-wave candidates
generated by filtering the NINJA data to the parameters of the inject numerical relativity
signals.

Six groups contributed matched-filter results to this analysis and the results can be roughly
divided into three categories based on the waveform templates used: (i) searches based on the
stationary-phase approximation to the inspiral signal, which are designed to capture various
stages of the inspiral, merger and ringdown, (ii) searches which use waveforms designed
to model the full inspiral–merger–ringdown signal and (iii) searches using ringdown-only
waveforms obtained from black-hole perturbation theory. Within these categories, different
parameter choices were made in order to investigate the ability of the pipeline to detect the
numerical relativity simulations. Each of these three approaches is described independently
in the following sections. A comparison between these results is given in section 4.3.

4.1.1. Stationary phase inspiral templates. The workhorse template of the LSC–Virgo search
pipeline is based on the stationary-phase approximation to the Fourier transform of the non-
spinning post-Newtonian inspiral [158, 163]. This waveform (referred to as SPA or TaylorF2)
has been used in the search for binary neutron stars [13–15, 17], sub-solar mass black holes
[13, 16, 17] and stellar mass black holes [13]. The TaylorF2 waveform is parametrized by
the binary’s component masses m1 and m2 (or equivalently the total mass M = m1 + m2

and the symmetric mass ratio η = m1m2/M
2) and an upper frequency cutoff fc. Amplitude

evolution is modelled to leading order and phase evolution is modelled to a specified post-
Newtonian order. In this section, we investigate the performance of TaylorF2-based searches
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Table 5. Results of inspiral searches using TaylorF2 templates. There were 126 injections
performed into the data. The table above shows the number of injections which were recovered from
the three simulated LIGO detectors (H1, H2 and L1) using various different waveform families,
termination frequencies fISCO, fERD and fWRD (as described in the text) and post-Newtonian
orders.

Analysis (1) (2) (3) (4) (5) (6)

Freq. cutoff ISCO ISCO ERD ERD WRD WRD
PN order 2 PN 2 PN 2 PN 3.5 PN 3.5 PN 3.5 PN
Total mass M
 2–35 20–90 20–90 20–90 20–90 20–90
η range 0.03–0.25 0.10–0.25 0.10–0.25 0.10–0.25 0.10–0.25 0.10–1
Found single (H1, H2, L1) 69, 66, 75 72, 43, 66 83, 51, 81 91, 56, 87 90, 55, 88 90, 56, 88
Found coincidence 49 59 79 82 82 84
Found second coincidence 48 59 77 81 81 81

on the three simulated LIGO detectors. Results which include the simulated Virgo detector
are described in the following section. Several analyses were performed which test the ability
of TaylorF2 waveforms to detect numerical relativity signals. The analyses differed in the
way the TaylorF2 waveforms or the template bank were constructed. The results of these
searches are summarized in table 5, each column giving the results from a different search
with a summary of the chosen parameters. We first describe the parameters varied between
these analyses and then present a more detailed discussion of the results.

All TaylorF2 NINJA analyses used restricted templates (i.e. the amplitude is calculated to
leading order), however, the phase was calculated to various different post-Newtonian orders
[164]. Phases were computed to either two [165, 166] or three point five post-Newtonian order
[167–169] since these are, respectively, the order currently used in LSC–Virgo searches [13]
and the highest order at which post-Newtonian corrections are known. After choosing a post-
Newtonian order, one chooses a region of mass-parameter space to cover with the template
bank. Figure 5 shows the boundaries of the template banks used in the analyses. One search
used the range used by the LSC–Virgo ‘low-mass’ search [13] (m1,m2 � 1M
,M � 35M
)

and all other searches used templates with total masses in the range 20M
 � M � 90M
.
These boundaries were chosen since there were no signals in the NINJA data with mass
smaller than 36M
 and there is little, if any, inspiral power in the sensitive band of the NINJA
data for signals with M � 100M
. The standard LSC–Virgo template bank generation
code [154] restricts template generation to signals with η � 0.25, since it is not possible to
invert M and η to obtain real-valued component masses for η > 0.25. All but one of the
searches enforced this constraint, with 0.03 � η � 0.25 for the low-mass CBC search and
0.1 � η � 0.25 for the other ‘physical-η’ searches. It is, however, possible to generate
TaylorF2 waveforms with ‘unphysical’ values of η > 0.25. In two separate studies using
Goddard and Pretorius waveforms [64], and Caltech–Cornell waveforms [72] it was observed
that match between numerical signals and TaylorF2 templates could be increased by relaxing
the condition η � 0.25. One NINJA contribution uses a template bank with 0.1 � η � 1.0 to
explore this.

Finally, it is necessary to specify a cutoff frequency at which to terminate the TaylorF2
waveform. In the LSC–Virgo analyses, this is chosen to be the innermost stable circular orbit
(ISCO) frequency for a test mass in a Schwarzschild spacetime

fISCO = c3

6
√

6πGM
. (9)
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Figure 5. Boundaries of the template banks used in inspiral searches as a function of total mass
M and symmetric mass ratio η. The crosses show the location of the injections in the NINJA data
set. The numbers in the legend correspond to entries in table 5. Bank 6 extends in a rectangle up
to η = 1.00, as indicated by the arrows. NP is the bank used in the Neyman–Pearson analysis
described in section 4.1.2.

This cutoff was chosen as the point beyond which the TaylorF2 waveforms diverge significantly
from the true evolution of the binary [164]. More recently, comparisons with numerical
relativity waveforms have shown that extending the waveforms up to higher frequencies
improves the sensitivity of TaylorF2 templates to higher mass signals [64, 72]. The NINJA
TaylorF2 analyses use templates terminated at the ISCO frequency and two additional cut-off
frequencies: the effective ringdown (ERD) frequency and a weighted ringdown ending (WRD)
frequency. The ERD frequency was obtained by comparing post-Newtonian models to the
Pretorius and Goddard waveforms [64]. The ERD almost coincides with the fundamental
quasi-normal mode frequency of the black hole formed by the merger of an equal-mass non-
spinning black-hole binary. The weighted ringdown ending (WRD) frequency lies between
ISCO and ERD, and was obtained by comparing TaylorF2 waveforms to the Caltech–Cornell
numerical signals [72].

The results of these searches are reported in table 5. The principal result is the number of
injected signals detected by the search. For simplicity, we define a detected signal as one for
which there is a candidate gravitational-wave signal observed within 50 ms of the coalescence
time of the injection, determined by the maximum gravitational-wave strain of the injected
signal. We do not impose any additional threshold on the measured SNR or effective SNR
of the candidate. For a single detector, this will lead to a small number of falsely identified
injections, but for coincidence results the false alarm rate is so low that we can be confident
that the triggers are associated with the injection. We now describe these results in the order
that they appear in table 5.

Search (1) used second-order post-Newtonian templates terminated at fISCO with a
maximum mass of M � 35M
. Despite the fact that no NINJA injections had a mass within
the range of this search, a significant number of signals were still recovered in coincidence both
before and after signal consistency tests. Although the templates are not a particularly good

21



Class. Quantum Grav. 26 (2009) 165008 B Aylott et al

Figure 6. Results from the extended template bank. Left: the template bank generated by the
LSC–Virgo search pipeline (circles) and the bank obtained by extending to η � 1.00 (crosses).
In this figure, the bank is parametrized by τ0 and τ3 which are related to the binary masses by
τ0 = 5M/(256ηv8

0) and τ3 = πM/(8ηv5
0), where v0 = (πMf0)

1/3 is a fiducial velocity parameter
corresponding to a fiducial frequency f0 = 40.0Hz. Right: the signal-to-noise (SNR) ratio at
which NINJA injections were recovered using the η � 0.25 bank (squares) and the η � 1 extended
bank (circles) in the Hanford detectors, given by ρ = (ρ2

H1 + ρ2
H2)

1/2. The SNR of the signal
recovered using the extended bank shows with significant (>10%) increases over the standard
bank for certain injections.

match to the injected signals, they are still similar enough to produce triggers at the time of the
injections. Search (2) changed the boundary of the template bank to 20M
 � M � 90M
,
but left all other parameters unchanged. The number of detected signals increases significantly
as more signals now lie within the mass range searched.

Search (3) extended the upper cutoff frequency of the waveforms to fERD. The number of
signals detected increased from 59 to 77, as expected since these waveforms can detect some
of the power contained in the late inspiral or early merger part of the signal [64, 72]. Search
(4) extends the post-Newtonian order to 3.5 PN, slightly increasing the number of detected
signals to 81. With the limited number of simulations performed in this first NINJA analysis,
it is difficult to draw a strong conclusion, although there does seem to be evidence that the
higher post-Newtonian order waveforms perform better, consistent with previous comparisons
of post-Newtonian and numerical relativity waveforms [64, 71, 72, 79, 170]. Search (5) uses
an upper-frequency cutoff of fWRD for the templates. The number of injections found in
coincidence for this search is the same as the search using 3.5 order templates with a cutoff
of fERD, although there are slight differences in the number of found injections at the single
detector level.

Search (6) extends the template bank of search (5) to unphysical values of the symmetric
mass ratio. Extending the bank to η � 1 increases the number of templates in the bank by
a factor of ∼2. The original and modified template banks are shown in figure 6. With the
extended template bank the number of injections found in coincidence remains the same as
search (5) after signal-based vetoes are applied. However, many of the injections are recovered
at a higher SNR, particular the low-mass signals, as shown in figure 6. Some injections show
a reduction in SNR; more work is needed to understand this effect.

Finally, we note that the majority of signals passed the χ2 signal-based veto with
the thresholds used in the LSC–Virgo pipeline. The last two lines of table 5 show the
number of recovered signals before and after these signal-based vetoes are performed. The
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Figure 7. Found and missed injections using TaylorF2 templates terminated at ERD, plotted as
a function of the injected effective distance in Hanford (left) and Livingston (right) and the total
mass of the injection. Since the LIGO observatories are not exactly aligned, the effective distance
of a signal can differ, depending on the sky location of the signal. The vertical bars mark the limits
of the template bank used in the search. For the lower masses, we see that the majority of the closer
injections are found in coincidence in all three of the detectors. There is then a band of injections
which are found only in two detectors—H1 and L1 and not the less sensitive H2 detector. For
higher masses, the results are less meaningful as the template bank was only taken to a total mass
of 90M
.

post-Newtonian templates and numerical relativity signals are similar enough that virtually all
of the injected signals survive the signal-based vetoes.

To illustrate the results of these analyses in more detail, figure 7 shows which signals
were detected and which were missed by the 3.5 order post-Newtonian TaylorF2 templates
terminated at fERD as a function of injected total mass and effective distance of the binary (a
measure of the amplitude of the signal in the detector), defined by [158]

Deff = d/

√
F 2

+ (1 + cos2 ι)2/4 + F 2× cos2 ι, (10)

where d is the luminosity distance of the binary.
One signal, with total mass of 110M
 and effective distance ∼200 Mpc, was missed while

others with similar parameters were found. This signal was one of the Princeton waveforms
(labelled PU–e0.5 in figure 1) for which the maximum amplitude occurs at the start of the
waveform rather than at coalescence33, rendering our simple coincidence test invalid. The
injection finding algorithm compares the peak time to the trigger time and, even though triggers
are found at the time of the simulation, there are no triggers within the 50 ms window used to
locate detected signals.

Figure 8 shows the accuracy with which the total mass and coalescence time of the binary
are recovered when using the 3.5 post-Newtonian order Taylor F2 templates. The total mass
fraction difference is computed as (Minjected − Mdetected)/Minjected. For lower mass signals,
the end time is recovered reasonably accurately, with accuracy decreasing for the high mass
systems. The total mass recovery is poor for the majority of signals, with good parameter
estimation for only a few of the lowest mass simulations.

33 That the maximum occurs at the start of the waveform is in part an ‘artefact’ of the double-time integration from
the Newman–Penrose scalar ψ4 to the metric perturbation h and in part a coordinate artefact. The two integration
constants were chosen to remove a constant and linear-in-time piece for h, however, there is still a non-negligible
quadratic component; we suspect this is purely gauge, though lacking a better understanding of this it was not removed
from the waveform.
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Figure 8. Parameter accuracy using TaylorF2 templates terminated at ERD. Left: accuracy with
which the total mass is recovered. The template bank covers the region 20M
 � M � 90M
,
hence the mass of injections with M > 90M
 is always underestimated. Even within the region
covered by the bank, the TaylorF2 templates systematically underestimate the mass of the injected
signals and the total mass is recovered accurately only for a few injections. The vast majority of
recoverd signals have an error of 40% or greater. Right: accuracy of determining the coalescence
time of the injections. The end time is not recovered accurately, the timing error can become as
large as 50 ms, the limits of the injection window.

4.1.2. Four-detector inspiral search. The inspiral analysis described in section 4.1.1
considered data from the three simulated LIGO detectors. We now extend the analysis
to include data from the simulated Virgo detector. In addition, we impose an alternative
criterion, based on the Neyman–Pearson formalism [151], to determine those injections which
were detected by the pipeline. In the previous section, an injection was classified as found
by the search if gravitational-wave candidate existed within 50 ms of the peak time of the
numerical data. Here, we consider a signal to be found is there is an associated candidate
whose significance exceeds a pre-determined threshold. Specifically, we require the candidate
to have a significance greater than any candidate arising due to noise alone. This allows us to
probe in more detail the effect of signal-based vetoes and the efficaciousness of the effective
SNR statistic in analysis of the NINJA data.

Data from all four simulated NINJA detectors were analysed using the CBC pipeline
as described in column 1 of table 5. In addition, a second analysis was performed with
the template bank extended to cover the region from 2M
 � M � 100M
, with all other
parameters unchanged. The search can therefore be thought of as the simplest extension of the
standard LSC–Virgo ‘low mass’ CBC search [13]. The boundary of the template bank used is
shown in figure 5.

In this analysis, we choose a detection statistic and claim that a gravitational-wave
candidate is present if the value of this statistic exceeds a pre-determined threshold. All
candidates are considered detections. The threshold is chosen so that the false alarm
probability—the probability that a noise event will be mistaken for a real signal—is tolerable.
The efficiency of this method depends on how close the chosen statistic is to the optimal
detection statistic. It is well known that the matched filter SNR is the optimal statistic for
known signals in a single detector if the noise is stationary [150, 151]. For a network of
detectors containing stationary noise, the optimal statistic is the coherent signal-to-noise ratio
ρcoherent [171]. At the time of this analysis, calculation of ρcoherent was not available in the CBC
pipeline, so we instead compute a combined SNR from the i detectors, ρc = (∑N

i=1 ρ2
i

)1/2
,
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Table 6. Number of injections found as determined by the Neyman–Pearson criteria for different
choices of detection statistic � and threshold �∗. The mass range of the template bank is shown
in the first row, all other parameters of the search are the same as those described in column 1 of
table 5.

Bank mass range 2M
 � M � 35M
 2M
 � M � 100M


Statistic Statistic Found Statistic Found
threshold injections threshold injections

ρfirst
c 9.18 73 9.8 91

ρsecond
c 9.18 69 9.8 93

ρsecond
eff 10.05 27 10.05 85

as a simple alternative. In the presence of non-Gaussian noise, the effective SNR, described
in section 4.1, has shown to be an effective detection statistic [17]. In this analysis, we also
consider the combined effective SNR ρeff = (∑N

i=1 ρ2
eff i

)1/2
.

We investigate three choices of detection statistic: (i) the combined matched filter SNR of
coincident candidates before signal-based vetoes are applied

(
ρfirst

c

)
, (ii) the combined matched

filter signal-to-noise ratio after the χ2 signal-based veto has been applied to coincidences(
ρsecond

c

)
and (iii) the combined effective SNR

(
ρsecond

eff

)
. This statistic is only available after

the second coincidence stage, since it is a function of matched filter SNR and the χ2 statistic
for a candidate. To set a threshold for each statistic we choose the highest value of that
statistic NINJA data containing only noise. To do this, we discard all triggers within 5 s of
an injected signal; the remaining triggers will be due to the simulated noise alone (we note
that this approach is not possible in real data where the locations of the signals are unknown).
This crude method of background estimation should provide us with consistent criteria for
elimination of spurious detections; we mark an injection as found only if it resulted in a trigger
with statistic higher then any background trigger found in the data.

Table 6 shows the threshold and the number of triggers found for each choice of statistic.
It is interesting to compare the results for the low-mass search when we threshold on ρsecond

c ,
rather than using a 50 ms time window to determine detected signals. When using the time-
window method, the number of injections found by the low-mass search is 51, but this increases
to 69 when using the threshold method. Since all the injected signals lie outside the boundary
of the low-mass bank, the coalescence time of the signals will be poorly estimated. This will
result in triggers outside the 50 ms window, which are nevertheless loud enough to lie above
the background.

Signal-based vetoes are applied at the second stage of the inspiral pipeline and are used to
compute ρeff . By comparing the number of triggers found before and after signal-based vetoes
are applied, we can evaluate their effect on the sensitivity of the search. Note that we observe
the same threshold for both ρfirst

c and ρsecond
c . However, the number of detected signals in the

low-mass search is reduced by 4 as the χ2 veto has removed triggers where the templates are
not a good match for the signals. More intriguing is a slight increase in the number of detected
signals after the χ2 veto in the bank with the extended mass range (from 91 to 93). Additional
investigations revealed that, despite having fewer triggers in each detector after the χ2 test has
been applied, the total number of coincident triggers actually increases. This is due to the fact
that the signal-based vetoes cause the time of the signal to be measured more accurately in the
detectors; more triggers therefore survive the coincidence test. We do not observe this in the
case of the low mass search.
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Finally, we turn our attention to the effective SNR statistic, defined in equation (8). Since
the NINJA detector noise is stationary and Gaussian, the expected value of χ2 is one per degree
of freedom. Therefore, we do not expect that the effective SNR will be useful in reducing
the significance of loud background triggers. This is borne out by the fact that the statistic
threshold actually increases slightly when using effective SNR. For the low mass search the
number of signals found by thresholding on ρeff is significantly less than when using the
combined SNR statistic. This is to be expected as the simulated signals do not match well with
the templates. Although the low mass templates produce candidates, these will have large
values of χ2 since signal and template do not match well. Thus, the effective SNR will be
smaller than the original SNR and fewer signals will be recovered above the threshold. This
effect is less significant for the second search with a larger mass range as the templates provide
a better match to the simulated signals. Since effective SNR has been a powerful statistic in
real detector data, this highlights the need for further NINJA studies using data containing
non-stationary noise transients.

4.1.3. Inspiral-merger-ringdown templates. The calculation of the full BBH coalescence
waveform accessible to ground-based detectors requires numerical methods. At the moment,
it is not possible to accurately model a coalescing binary over hundreds of orbits due to
the computational cost of evolutions. Furthermore, it is not necessary to model the entire
waveform, since post-Newtonian gives a valid description of the system when the black
holes are sufficiently separated. During their final orbits before merger the black holes’
velocities increase and the post-Newtonian expansion becomes less reliable. At this stage the
non-perturbative information contained in numerical simulations is required. A successful
approach has been to combine analytical and numerical results to obtain full waveform
templates. Two different families of such waveforms have been used to analyse the NINJA
data: the effective one body (EOB) [172–175] and phenomenological [63, 67] models.

By combining together results from post-Newtonian theory and perturbation theory, the
EOB model [172, 173] predicts the full inspiral, merger and ringdown waveform. More
recently, the non-spinning EOB model has been further improved by calibrating it to NR results,
achieving high overlaps without the need to maximize the intrinsic mass parameters of the
binary [62, 64, 65, 68–71]. The LSC Algorithm Library [149] contains two implementations
of the effective one-body template: one (called EOB) which only evolves the waveform to the
light-ring frequency

fLR = c3

3
√

3πGM
, (11)

and a second (called EOBNR) which implements the full EOB waveform described in [65].
This template which was constructed to match the NASA–Goddard BBH simulations with
mass ratios m1:m2 = 1:1, 3:2, 2:1 and 4:1, however LAL waveforms do not yet implement
higher harmonics of the signal. Both of these implementations were used to search for black
hole binary signals in NINJA data.

Another approach for constructing the full waveform is to ‘stitch’ together the results of
post-Newtonian and numerical relativity calculations. The model presented in [63, 67, 176]
consists of matching the post-Newtonian and numerical waveforms in an appropriate matching
regime (where both are sufficiently accurate) to obtain a ‘hybrid’ waveform. This hybrid is
then fit by a phenomenological model in the frequency domain determined entirely by the
physical parameters of the system. This procedure has been carried out for non-spinning
black holes and a two-dimensional template family of waveforms that attempts to model
the inspiral, merger and ringdown stages for non-spinning BBH has been obtained. Each
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Table 7. Results of the search for NINJA signals using IMR template banks. There were 126
injections performed into the analysed data. The signal-based vetoes have little influence in the
rejection of triggers, confirming their efficiency in separating inspiral-like signals from other kind
of glitches.

Template EOB EOBNR Phenom

Freq. cutoff Light ring Full waveform Full waveform
Filter start freq. 40 Hz 30 Hz 30 Hz
Component mass M
 10–60 15–160 20–80
Total mass M
 20–90 30–200 40–160
Minimal match 0.97 0.99 0.99
Found single (H1, H2, L1, V1) 91, 64, 82, – 97, 68, 92, 102 92, 61, 87, –
Found coincidence (LIGO, LV) 83, – 88, 106 81, –
Found second coincidence (LIGO, LV) 80, – 85, 102 80, –

waveform is parametrized by the physical parameters of the system, i.e., the masses m1 and
m2 of the black holes.

Since the EOBNR and phenomenological models provide complete waveforms, the search
was performed to higher masses (200M
 and 160M
, respectively) than for inspiral only
searches. In principle, the search could be extended to even higher masses, but technical issues
with the current waveform generation procedures prevent this. The minimum component
mass was also increased, in an effort to reduce the size of the template bank by limiting the
number of highly asymmetric signals. Finally, the template bank for all these searches was
constructed using the standard second-order post-Newtonian metric and hexagonal placement
algorithm [155]. At high masses, the parameter space metric for the full waveforms will differ
significantly from the standard second-order post-Newtonian metric. The current template
bank, however, is likely to suffice for detection purposes, although probably not for good
parameter estimation.

The parameters of the NINJA analyses using the EOB, EOBNR and phenomenological
waveforms are also given in table 7. Again, the primary result is the number of gravitational-
wave candidates found to be coincident with an injected signal. For the EOB model truncated
at the light ring, the parameters were chosen to match the TaylorF2 analyses described in
section 4.1.1; and therefore, it is unsurprising that the results are very similar to the
TaylorF2 search extended to ERD (the fourth column of table 5). The EOBNR results
show some improvement for detecting the numerical relativity signals over the usual post-
Newtonian or EOB waveforms. For the phenomenological waveforms, time windows
of 120 ms in single detector and 80 ms in coincidence have been used to associate
triggers WITH injections. These parameters differ from those employed in other searches
to compensate for a relatively large observed error in the estimation of the coalescence
time. By comparing the results with the standard post-Newtonian analyses presented in
section 4.1.1, we conclude that in the present case the phenomenological waveforms [63,
67] do not seem to provide a clear benefit over the usual post-Newtonian waveforms
extended to higher cutoff frequency and/or to unphysical regions of the parameter space
[64, 72]. For an extended description of the search with phenomenological waveforms
see [177]. In all cases, the signal-based vetoes have little influence in the rejection of
triggers, confirming their efficiency in separating inspiral-like signals from other kind of
glitches.
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(a) Search with EOBNR templates. (b) Search with phenomenological templates.

Figure 9. Found and missed injections for the EOBNR and phenomenological templates. The
figures shows found and missed injections as a function of the injected effective distance in
Hanford and the total mass. (a) Results for the EOBNR search and (b) results for the search with
phenomenological waveforms. The vertical bars mark the limits of the template bank used in the
search.

Figure 10. Parameter accuracy for EOBNR templates. Left: accuracy with which the total mass
is recovered. The template bank covers the region 30M
 � M � 200M
, hence the mass of
injections with M > 200M
 is always underestimated. Most of the injections with a total mass of
less than 200M
 were recovered with a mass accurate to a few tens of per cent, demonstrating that
the EOBNR templates are more faithful to the injected signal than the TaylorF2 templates shown in
figure 8. Higher mass injections are necessarily recovered with underestimated total mass, because
the template bank did not cover the entire simulation region. Right: accuracy of determining the
coalescence time of the injections. The end time for injections with a total mass of less than 200M

was typically recovered to within a few milliseconds. The end time for injections with a total mass
of above 200M
 (outside the range of the template bank) was typically recovered to within 10 or
20 ms.

Plots of found and missed injections for the searches are shown in figure 9. For the most
part, simulated signals in the mass range covered by the template banks are well recovered.
Some of the missed signals at lower distance correspond to waveforms from simulations of
spinning black holes. Since all searches make use of non-spinning waveforms this drop is
expected. Finally, we turn to parameter estimation. Figures 10 and 11 show the parameter
recovery accuracies for the EOBNR and phenomenological searches, respectively. In both
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Figure 11. Parameter accuracy for phenomenological templates. Left: accuracy with which the
total mass is recovered. The total mass is typically recovered within 20%, for signals within the
template space. For higher mass injections, there is an inevitable underestimation of the mass due
to the limited reach of the template bank. Right: accuracy of determining the coalescence time of
the injections. The timing plot shows the systematic offset discussed in the text.

cases, the accuracy of recovering the total mass of the simulations is greatly improved over
TaylorF2 waveforms shown in figure 8. This is likely related to the increased mass range
of the searches, as well as the use of full waveforms. The timing accuracy for EOBNR is
comparable with the TaylorF2 results, while for the phenomenological waveforms, the known
timing bias affects the results.

Both the EOBNR and phenomenological models will be improved in the future. Further
accurate EOBNR models have already appeared in the literature [65, 68–71] since the time
the EOBNR model used in this analysis was implemented, and extensions to include spin
and eccentricity are under development. There are a number of obvious improvements in the
phenomenological waveforms that can be made: calculating the parameter space metric for
the phenomenological waveforms would enable the use of an optimal template bank and allow
for improved coincidence algorithms. The construction of the phenomenological waveform
model can itself be significantly improved by extending the fitting to higher mass ratios and
spins, quantifying the error on the phenomenological parameters, matching to post-Newtonian
theory as early as possible and including higher order modes in the waveform. The results of
the NINJA analysis also demonstrate a clear need to improve accuracy in measuring the end
time of the signal. This is not straightforward, however, since there is no clear definition of the
time of merger for the phenomenological waveforms or the numerical signals [75]. Work on
the improvements to both the EOBNR and phenomenological searches are being made, and
will be applied in and guided by future NINJA projects.

4.1.4. Ringdown templates. As described in section 4.1, ringdown templates can be
computed using black-hole perturbation theory and so matched filtering can be used to search
for these signals. Ringdown templates are exponentially damped sinusoids parametrized by
the ringdown frequency f and quality factor Q. The LSC ringdown search pipeline [160] has
been used to filter the NINJA data against a bank of ringdown templates with frequencies
between 50 Hz and 2 kHz, and quality factors between 2 and 20. The bank had a maximum
mismatch of 3% and contained 583 templates. A lower frequency cutoff of 45 Hz was applied
when filtering the NINJA data generated with the LIGO noise curves and 35 Hz for data
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Figure 12. Distribution of injections found and missed by the ringdown pipeline. The left figure
shows the effective distance of the injected signal in the LIGO Hanford Observatory as a function
of the predicted ringdown frequency. The right figure shows the effective distance of the injected
signal in the LIGO Livingston Observatory as a function of the total initial mass of the signal. The
figures show signals found in triple coincidence (squares), in double coincidence either H1H2 or
H1L1 (circles) and missed (stars).

with the Virgo noise curve. The goals of these analyses were to ascertain the detectability of
the injected numerical waveforms using ringdown templates at single and coincident detector
levels and the accuracy with which the final black-hole parameters can be estimated. The
current searches use single-mode templates. The waveforms described in this paper are
known to contain higher order multipoles. The potential effects of ignoring these in the search
are discussed in [178] (see in particular figure 8 in there).

An injection is defined as found if a set of coincident triggers lies within 10 ms of the
peak time of the injection (as specified in the contributed numerical data). If more than one set
of coincident triggers satisfies this criterion, that with the largest value of

∑
i ρ

2
i is selected,

where ρi is the signal-to-noise ratio in the ith detector. Of the 126 injections made into the
three simulated LIGO detectors, 45 were found in triple coincidence, 24 in H1 and L1 (only),
and 7 in H1 and H2 (only). Figure 12 shows the distribution of found and missed injections
for this analysis. The frequency and quality of the dominant ringdown mode is computed via
the Echeverria formulae [179]:

f = 1

2π

c3

GM

[
1 − 0.63(1 − a)

3
10

]
, (12)

Q = 2(1 − a)−
9
20 . (13)

More recent and accurate fits for a variety of modes are listed in the appendices of [180]. The
final black hole mass M and spin a can be computed from the component masses and spins
of the numerical simulation, as described in [65, 181], respectively. See also [51, 182] for a
discussion and comparison of different numerical techniques to perform the necessary fits.

As expected, we see that in general, the closest injections (measured by effective distance
Deff), defined in equation (10), were found in triple coincidence, those with a large Livingston
effective distance were found in H1 and H2 only, while those with a large Hanford effective
distance were not found in H2, and the furthest injections were missed in at least two detectors.
The plots show that there are three missed injections which, given their frequencies and
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Figure 13. Accuracy of measuring the ringdown parameters. The left figure shows the detected
ringdown mass versus total injected mass for all found injections. The right figure shows the
difference between the time of injected waveform peak amplitude and the start time of the ringdown
as found by the search.

effective distances, we would have expected to find. However, all three of these are (non-
spinning) injections with mass ratio of 4:1, and thus the energy emitted in the ringdown is less
than would be emitted by a binary of the same total mass but with a mass ratio of 1 [51]. This
is not taken into account in the calculation of effective distance.

Equations (12) and (13) can be inverted to calculate M and a from the template parameters
f and Q of a given gravitational-wave candidate. Figure 13 shows the accuracy with which
the ringdown search measures the mass and peak time of the injected signals. Given that mass
is radiated during the ringdown phase (the exact amount depends on the initial mass ratio)
one would expect the measured mass to underestimate the mass of the signal, and hence the
data points would lie below the diagonal. However, the recovered frequency is systematically
underestimated due to the presence of the preceding inspiral, leading to an overestimation of
the mass. The peak time of the signal is measured with similar accuracies to the coalescence
time measured by the TaylorF2 templates described in section 4.1.1. The three data points with
a large time difference and masses lying in the range 80 and 110M
 are part of the PU T52W
non-spinning, equal mass group where the peak amplitude occurred early in the waveform
(i.e. prior to the merger).

4.2. Search pipelines to detect un-modelled waveforms

Several algorithms exist to detect gravitational wave transients with minimal assumptions on
their origin and waveform; these techniques are often referred to as burst searches. Burst
searches do not use templates and instead target excesses of power in the time–frequency
plane. The LSC and Virgo collaborations have developed several burst search algorithms
which use different transformations for the generation of time–frequency data maps. The
identification of coherent signatures across multiple detectors has proven to be very effective
at suppressing false alarms.

Since they do not assume a template and they target short transients burst searches are
suited for the detection of the merger phase of the coalescence. They have the potential to
probe a large parameter space, inclusive of spin and ellipticity, at no additional computational
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Figure 14. Distribution of injections found by the Q-pipeline (left) in the LIGO Hanford 4 km
detector, to be compared to the distribution for the EOBNR matched filtering search. The total
mass of the injected signal is shown on the x-axis and the optimal matched filer signal-to-noise
ratio of the injection is shown on the y-axis. Circles show found injections and crosses show
missed injections. At the single-detector level, with the same SNR threshold, Q-pipeline and the
EOBNR search have comparable performances.

cost. For this reason, the NINJA data were analysed by two burst algorithms: Q-pipeline and
HHT.

The Q-pipeline [183, 184] is one of the algorithms used to search for burst sources in
LIGO’s fifth science run [185]. It is a multi-resolution time–frequency search for statistically
significant excess signal energy, equivalent to a templated matched filter search for sinusoidal
Gaussians in whitened data. The template bank is constructed to cover a finite region in central
time, central frequency and quality factor such that the mismatch between any sinusoidal
Gaussian in this signal space and the nearest basis function does not exceed a maximum
mismatch of 20% in energy. For the purpose of the NINJA analysis, and to explore detectability
and parameter estimation, the Q-pipeline analysis was focused on the detection efficiency at
the single detector, for all four detectors, using a nominal SNR threshold comparable to that
used in the matched filter searches.

The Hilbert–Huang transform (HHT) [186, 187] is an adaptive algorithm that
decomposes the data into intrinsic mode functions (IMFs), each representing a unique
locally monochromatic frequency scale of the data. The original data are recovered by
constructing a sum over all IMFs. The Hilbert transform as applied to each IMF unveils
instantaneous frequencies and amplitudes as a function of time, thus providing high time–
frequency resolution to detected signals without the usual time–frequency uncertainty as
found in basis set methods like the Fourier transform.

In this section, we briefly describe how the algorithms were applied and highlight their
performance, while section 4.3 compares the performance of the burst searches to the matched
filtering algorithms.

4.2.1. Q-pipeline. The simulated LIGO and Virgo data streams were filtered by the Q-
pipeline [210] with the same configuration used in the LSC S5 burst analysis [185]. Data are
processed in 64 s analysis blocks with frequency range 48–2048 Hz and Q range 3.3–100.
The resulting triggers, once clustered, indicate a time–frequency interval and a significance
of the excess power in that time–frequency tile. This significance can be easily converted into
the signal-to-noise ratio of a matched filter with sine-Gaussian templates.

Figure 14 shows the distribution of found and missed injections in the H1 detector
as a function of the total mass and the matched filter SNR of the injected waveforms for
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Figure 15. Parameter measurement of signals using the Q-pipeline. The left plot shows the
measured frequency of the gravitational-wave candidate versus the injected ringdown frequency
fring computed by equation (12). The right plot shows the difference between Q-pipeline measured
frequency and fring, against the total mass of the injection. These plots show the algorithm
preferentially triggers on the portion of the signal that is in the most sensitive band of the detector
(50–200 Hz). This is consistent with the behaviour of the ringdown search; see figure 18 for an
event-by-event comparison.

Q-pipeline (left) and the EOBNR matched filtering search described in section 4.1.3, where
both detection thresholds are set at SNR = 5.5. At the single detector level, the two algorithms
have comparable performance. Figure 15 shows the central frequency of the most significant
tile reported by Q-pipeline versus the ringdown frequency computed from equation (12) and
the difference between these two frequencies as a function of mass. These results demonstrate
that the Q-pipeline preferentially detects the portion of the signal that is in the most sensitive
frequency band of the detector (50–200 Hz): the ringdown for higher masses, or the inspiral
for lower masses.

4.2.2. Hilbert–Huang transform. An automatic, two-stage HHT pipeline was applied to the
NINJA data to detect and characterize the injected signals. Since the HHT pipeline [188]
is a new development, its application to NINJA data was restricted to the simulated 4 km
LIGO detectors H1 and L1. The data were pre-whitened and a 1000 Hz low-pass zero-phase
finite impulse response filter was applied prior to use of the HHT. In the first detection stage,
the instantaneous amplitudes from each detector in turn are divided into blocks with similar
statistical properties according to the Bayesian block algorithm [189]. These blocks are then
scanned for excess power, with triggered blocks yielding start and end times, thus coincidences
between detectors, the maximum frequency and the signal-to-noise ratio (SNR) of the signal.
The second characterization stage computes the instantaneous frequencies, detailed time–
frequency–power maps and time–frequency–power cluster-enhanced maps for the region of
data containing the signal identified in the first stage. The overlap of the individual cluster-
enhanced maps is used to estimate the time lag between the signals in the detectors and to
construct a coherent addition of the two detector data streams used in a final characterization
of the signal.

The excellent resolution of the HHT in time and frequency was used to reject false events
due to overly short triggers, failed coincidences or mismatched time–frequency ranges [188].
We identified the latter as a powerful veto tool which could be used to improve the sensitivity
of gravitational-wave data analysis pipelines. We were ultimately able to identify 80 events
in coincidence, as shown in figure 16. Three of these candidate events were determined to
be false positives when the candidate events were compared to the list of injected signals.
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Figure 16. Distribution of found and missed injections for the Hilbert–Huang pipeline. The
left figure shows the results of the search on the simulated LIGO Hanford 4 km detector, and
the right figure shows the result for the simulated LIGO Livingston 4 km detector. Detected
signals are shown in black and missed signals in white, as functions of the injected matched filter
signal-to-noise ratio and total mass.

Figure 17. The cluster-enhanced time–frequency maps of the BAM HHB S00 signal injected with
a total mass of 69.8M
. H1 is shown in the left panel and L1 in the right panel. We clearly see
the burst part of the signal, thus the actual merger. The ringdown and inspiral may be obscured by
noise at low SNR.

Out of the 50 missed events, 39 have injected SNR < 10, five have injected SNR < 10 in
one detector and SNR > 10 in the other, and six had injected SNR > 10 in both detectors.
We therefore reason that most of the missed events are low SNR cases in which no blocks
were triggered. Most of the cluster-enhanced maps show the time–frequency evolution of the
signal with high precision (see figure 17 for one particular example). Time lag estimates and
coherent additions show strong potential and can be seen as proof of principle, but need further
refinement to work reliably in an automatic pipeline. SNR estimates are difficult since only
the burst region or diverse fragments of the signal are visible in our search. We refer to [190]
for further details of this analysis.

4.3. Comparison of inspiral-burst-ringdown results

In this section, we consider comparisons between several of the search pipelines described
in the preceding sections. The performance of a pipeline depends on many parameters, such
as the signal-to-noise thresholds, the trigger coincidence and coherence tests, signal-based
vetoes tests, allowed false alarm rates, etc. Search pipelines are tuned to suppress false alarms
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Table 8. Number of injections found with SNR � 5.5. This table takes into account for each
detector only signals with injected SNR � 5.5. If the same injection is found in more than one
detector or algorithm, it is counted as coincidence. The inspiral triggers are from the 2 PN TaylorF2
templates, terminated at fISCO (total mass in 20–90M
) and from the EOBNR waveforms. Note
that, in an actual search, different thresholds may be needed for different pipelines, depending on
the false alarm rate and the morphology of noise transients, so this is strictly a comparison between
search techniques on the limited NINJA data set, not of the performance of full pipelines on actual
data.

H1 H2 L1 V1 H1L1 H1H2L1 H1L1V1 H1H2L1V1

SNRinjected � 5.5 94 60 93 105 84 58 68 48
Q-pipeline (M) 88 55 85 92 77 51 57 40
Ringdown (R) 88 56 83 93 76 52 56 40

M-R AND 87 55 82 91 76 51 56 40
M-R OR 89 56 86 94 77 52 57 40

TaylorF2 (I) 85 43 82 – 75 43 – –
I-M-R AND 82 42 77 – 72 41 – –
I-M-R OR 91 57 88 – 80 55 – –

EOBNR (E) 90 56 88 100 79 54 64 45
E-M-R AND 86 53 81 88 75 49 56 39
E-M-R OR 92 58 91 104 81 56 65 47

while preserving detection efficiency and tuning decisions can dramatically affect the relative
performance of one pipeline versus another. Given the limited scope of the NINJA data set,
a comprehensive comparison of pipelines was not possible. However, to make a first-order
comparison between search pipelines applied to the NINJA data, disentangled from pipeline
tuning decisions, we compared the number of injections found in a single detector at a fixed
matched-filter signal-to-noise threshold.

Table 8 reports the number of injections found in single interferometers and in multi-
interferometer networks, using triggers from the Q-pipeline burst algorithm (which targets the
merger by match filtering to sine-Gaussian templates), matched filter to ringdown templates,
matched filter to inspiral templates and matched filter to non-spinning, full coalescence
EOBNR waveforms. For all algorithms the same nominal threshold of SNR � 5.5 was
imposed. In addition, the number of detected injections in AND (injections detected
simultaneously from multiple algorithms) and OR (injections detected by at least one
algorithm) in an inspiral–merger–ringdown analysis is reported.

The statistics of this sample is too small to make inferences on which pipeline performs
better in which parameter region; a more systematic study is needed. Furthermore, since the
NINJA data contain only Gaussian noise and signals and so this comparison does not take
into account noise transients which may cause false detections. Nevertheless, we have an
indication that all pipelines have comparable chances to find these injections. The differences
between pipelines are in the accuracy with which they can measure the parameters of the
signal.

Figure 18 compares the accuracy with the Q-pipeline and ringdown searches measure the
frequency of the signal and figure 19 compares the accuracy with these pipelines measure
the total mass of the injected signal. Both the ringdown and Q-pipeline searches report a
frequency not a mass, so to compare the injected and detected total masses we must calculate
a mass from the frequency of the candidate. There is no unique way to do this, and but we can
calculate the total mass under the assumption the algorithm is detecting a given portion of the
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Figure 18. Comparison of the frequencies measured by the Q-pipeline and ringdown searches.
The x-axis shows the difference between the central frequency reported by the Q-pipeline and the
frequency of the injected ringdown fring. The y-axis shows the difference between the frequency
measured by the ringdown search and the injected ringdown frequency.
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Figure 19. Comparison of the injected and recovered masses for the Q-pipeline and ringdown
searches. For both searches we start from the frequency reported by the algorithm and compute the
corresponding mass, using equation (14), assuming that the measured frequencies are fISCO, fLR
and fERD. Both algorithms measure a frequency somewhere between the light-ring and ringdown
frequencies.

waveform. Figure 19 shows the result of using the formulae for ISCO, light-ring and effective
ringdown frequencies to compute the total mass [64, 173]:

fISCO = c3

6
√

6πGM
, fLR = c3

3
√

3πGM
, fERD = 0.5967c3

2πGM
. (14)

Both burst and ringdown code preferentially detect the portion of the signal that is in the
detectors’ most sensitive band. Figure 19 shows that for both algorithms, at the lowest
injected masses this corresponds to fISCO, but as the injected mass increases, the algorithms
trigger between light ring and ringdown, as expected.

This comparison is more straightforward for matched filtering codes that use a template
with a given mass. Figure 20 shows the detected total mass against the injected total mass for
(i) 2.0 post-Newtonian order TaylorF2 templates terminated at fISCO, with templates in the

36



Class. Quantum Grav. 26 (2009) 165008 B Aylott et al

)Injected Mass (M 
50 100 150 200 250 300 350 400

)
D

et
ec

te
d 

M
as

s 
(M

 

10

20

30

40

50

60

70

80

)Injected Mass (M 
50 100 150 200 250 300 350 400

)
D

et
ec

te
d 

M
as

s 
(M

 

20
40
60
80

100
120
140
160
180
200
220

Figure 20. Comparison of the injected and recovered masses for the TaylorF2 and EOBNR
searches. The left plot shows the comparison for 2.0 order post-Newtonian TaylorF2 templates
terminated at fISCO and the right plot shows the comparison for EOBNR templates.

mass range 20–90M
 and (ii) EOBNR templates with masses in the range 30–200M
. The
TaylorF2 templates significantly underestimate the masses of the injected signals, due to the
fact that most of the injected signals lie outside the template bank. The EOBNR search, with
its larger mass range and inspiral–merger–ringdown waveforms, measures the masses of the
injected signals with better accuracy.

4.4. Bayesian pipelines

Bayesian inference [191] is a powerful means of extracting information from observational
data based on the calculation of posterior probabilities and probability density functions.
Computation of these quantities is expensive and so these algorithms are not typically used to
search for candidate events in detector data. They are, however, useful in the closer study of
candidates identified by the search pipelines described in sections 4.1 and 4.2. This section
describes the results of applying two different Bayesian inference algorithms to the NINJA
data. The first is designed to estimate the parameters of the signal assuming a gravitational
wave is present in the data. The second calculates the confidence in the presence of the signal,
quantified by the odds ratio between the signal and noise models of the data.

Both approaches require the calculation of the posterior probability-density function
(PDF) on the parameter space of the signal, given the data d, which is

p(�θ |d) = p(�θ)p(d|�θ)

p(d)

∝ p(�θ) exp

(
−2

∫ ∞

0

|d̃(f ) − h̃(f ; �θ)|2
Sn(f )

df

)
(15)

in the presence of Gaussian noise with power spectral density Sn(f ), where p(�θ) is the prior
probability density of the parameters �θ and h(�θ) is the model used to describe the signal [192].

A Markov-chain Monte Carlo approach [193] was used to coherently analyse data from
multiple detectors in order to evaluate the posterior PDFs. This technique stochastically
samples the parameter space in a search for the parameters that best match the observed data;
it does so by attempting a random jump from the current set of parameter values to a new
one, then deciding whether the jump should be taken by comparing the likelihood of the old
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and new locations in parameter space. In this way, one simultaneously searches for the set
of parameters that yield the best fit to the data, and determines the accuracy of the parameter
estimation.

Bayesian model selection, based on a different Monte Carlo technique known as nested
sampling [194], was employed as a tool to measure the confidence of a detection using
different waveform families. This approach requires the calculation of the marginal likelihood
of the signal and noise models, obtained by computing the integral of the posterior PDF∫

p(�θ)p(d|�θ) d�θ to find the total probability of the model. It was possible to calculate this
integral for the nine-parameter model of a non-spinning binary coalescence signal described
coherently in multiple interferometers. The ratio of likelihoods of the signal and noise models
is known as the ‘Bayes factor’ and is used to multiply prior odds, giving the posterior odds ratio
between the two models, taking into account the observational data; in turn, the value of this
Bayes factor corresponds to the level of confidence in the detection. As a straightforward by-
product of the nested-sampling algorithm, it is also possible to infer the maximum-likelihood
values of the parameters of the detected signals; this was used to obtain further information
on the ability of different waveform approximants to recover the source parameters.

4.4.1. Parameter estimation using Markov-chain Monte Carlo. A selection of injected
numerical signals were analysed with a Markov-chain Monte Carlo (MCMC) code
[195, 196]. The signal model was based on waveforms with phase evolution at 1.5 post-
Newtonian order and leading-order amplitude evolution. Parameter estimation was successful
on NINJA injections with relatively low total mass in which the inspiral contained a significant
fraction of the total signal-to-noise ratio. For high-mass injections, the algorithm attempted to
match the merger and ringdown portions of the injected signal to inspiral templates, resulting
in poor parameter estimation.

The post-Newtonian waveforms used in this analysis include the spin of the larger body
m1, allowing us to use the analytical simple-precession waveform [197]. The parameter space
thus consists of 12 independent parameters:

�θ = {M, η, α, δ, ψ, ι, d, aspin, κ, φc, αc, tc}, (16)

where M and η are the chirp mass and symmetric mass ratio, respectively; α (right ascension)
and δ (declination) identify the source position in the sky; the angles ψ and ι identify the
direction of the total angular momentum of the binary; d is the luminosity distance to the
source; 0 � aspin ≡ S1

/
m2

1 � 1 is the dimensionless spin magnitude; κ is the cosine of
the angle between the spin and the orbital angular momentum; and φc and αc are integration
phase constants that specify the gravitational-wave phase and the location of the spin vector
on the precession cone, respectively, at the time of coalescence tc.

The MCMC algorithm used for the NINJA analysis was optimized by including a variety
of features to efficiently sample the parameter space, such as parallel tempering [196]. This
MCMC implementation can be run on a data set from a single detector, or on data sets from
multiple detectors. In the latter case, a coherent search among all detectors significantly
improves the determination of source position and orientation [195, 196].

The MCMC code was run on a selection of injected signals in the NINJA data. It was
found that although the MCMC runs are clearly able to detect a signal whenever the inspiral
contains a sufficient signal-to-noise ratio (SNR), they were unable to correctly determine the
signal parameters for many injections. For the high masses typical of most NINJA injections,
the SNR is dominated by the merger and ringdown, so that the inspiral-only templates tried to
match the merger and ringdown portions of the injected waveform. Typically, it is found that
in such cases the time of coalescence is overestimated since the injected ringdown is matched
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Figure 21. Results of the MCMC analysis for one of the injected NINJA waveforms. The top
row shows the marginalized PDFs for M, η, aspin and d produced by a two-detector MCMC
analysis on an injected non-spinning equal-mass SpEC Cornell/Caltech waveform (true values
M = 15.6M
, η = 0.25, tc = 4.7223 s and aspin = 0). Middle row: the same PDFs (but with
aspin replaced by tc) for a three-detector run with constrained spin on the same injection. Bottom
row: two-dimensional PDFs for the sky position with the two-detector run on the left and the
three-detector MCMC run on the right; the 1σ , 2σ and 3σ probability areas are displayed in
different colours, as indicated in the top of each panel. Dashed lines denote the true values of
injected parameters.

to an inspiral; the chirp mass is underestimated since the merger/ringdown frequency is higher
than the inspiral frequency for a given mass, so that matching them to an inspiral requires the
mass to be lower; the mass ratio is underestimated, which allows the waveform to contain
more energy in the narrow frequency band corresponding to quasi-normal ringing; and the
spin rails against the upper prior of 1 since the innermost stable circular orbit frequency is
highest for an inspiral into a maximally spinning Kerr black hole. We tried to circumvent
the problem of matching to the merger and ringdown by introducing more-restrictive priors
on spin and/or η. These efforts still failed when the total masses were too high, but were
successful in the case of lower total masses and longer inspiral signals.

Figure 21 shows the PDFs produced by runs on an injected equal-mass non-spinning SpEC
Cornell/Caltech waveform with M = 15.6M
. This particular injection was chosen because
it had the lowest total mass, and SpEC waveforms typically have more inspiral cycles; runs on
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other injections show comparable results, with the general trend that the higher the total mass
(and, thus, the lower the relative fraction of the SNR contributed by the inspiral), the poorer
the parameter estimation becomes.

Data from two detectors, H1 and L1, were used to compute the PDFs shown in the top row
of figure 21. We used wide, flat priors for intrinsic parameters (e.g., M ∈ [2M
, 100M
], η ∈
[0.03, 0.25], aspin ∈ [0, 1]). We find that the values of the intrinsic parameters are not
determined very accurately. In particular, the spin rails against the upper bound of 1 while η

is underestimated, as expected. We find that the sky location is nevertheless constrained to
an arc of a ring containing the true value; the 2σ (∼95%) sky area of the ring shown in the
bottom left of figure 21 is ∼10000 square degrees.

In the middle row of figure 21, we plot the PDFs based on data from three detectors:
H1, L1 and V1. The spin parameter was constrained to its true value aspin = 0 for this run.
This had the effect of forcing the MCMC to match the inspiral only, significantly improving
the resolution of other parameters: for example, the PDF of η now rails against 0.25, which
is its true value. The chirp mass is still somewhat underestimated; a higher SNR may be
necessary to improve the mass determination. Promisingly, it was found that the sky location
is constrained to a smaller patch on the sky: the 2σ sky area in the bottom right of figure 21
is 6300 square degrees. In fact, the sky localization is even better when the spin parameter is
allowed us to vary, allowing the MCMC to use the SNR contributed by the ringdown; removing
the spin-parameter constraint reduces the 2σ sky area to 2750 square degrees. This ability to
determine the source position will be significant in any future searches for electromagnetic
counterparts of gravitational-wave triggers.

We hope that in the future it will be possible to test MCMC codes on numerical signals in
a lower mass range, where the inspiral portion would dominate the SNR, so that inspiral-only
templates are not at a significant disadvantage. Meanwhile, we have recently implemented
templates at 3.5 PN order in phase that include the spin for both members of the binary, thus
improving the accuracy of parameter estimation and increasing the range of applicability of
our code.

4.4.2. Bayesian model selection pipeline. The primary goal of this analysis was to investigate
the performance of different template families on the confidence of detection of the injections
contained in the NINJA data set. The approach to this problem used a method described in
[198, 199], which can be summarized as follows. Two hypotheses are under consideration—(i)
HN : the data {d̃k} are described by (Gaussian and stationary) noise only: d̃k = ñk , and (ii) HS :
the data {d̃k} are described by (Gaussian and stationary) noise {ñk} and a gravitational wave
signal

{
h̃

(a)
k (�θ)

}
, according to a given approximant a, where �θ represents the vector of the

(unknown) signal parameters: d̃k = ñk + h̃
(a)
k (�θ). The marginal likelihood of HS is calculated

by performing the integral

p({d̃k}|HS, a) =
∫

p(�θ)p({d̃k}|HS, a, �θ) d�θ. (17)

The ratio of probabilities or ‘odds ratio’ of the two models is

OSN,a = P(HS |{d̃k}, a)

P (HN |{d̃k})
=

[
P(HS)

P (HN)

] [
P({d̃k}|HS, a)

P ({d̃k}|HN)

]
= PB

(a)
SN , (18)

where P is the prior odds ratio and B
(a)
SN is the Bayes factor.
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Figure 22. The distribution of Bayes factors obtained by running the algorithm with TaylorF2
approximants on signal-free data sets. The pipeline was run coherently on the four detectors, and
the same was done for the results reported in this figure. The total number of trials is 2000 and the
highest value of the Bayes factor is log10 B = 2.77.

In this analysis, the model includes the response of all available simulated detectors (L1,
H1, H2 and V1) coherently, and the gravitational waveforms are calculated using function
in the LAL library [149]. For the gravitational waveform, two different approximants were
considered: the standard (2 PN) TaylorF2 waveform family, with inspiral truncated at fISCO,
and the phenomenological inspiral–merger–ringdown IMRPhenA templates described in [63].
In each case the waveforms were truncated at low frequency of 30 Hz.

The choice of priors in the analysis was as follows. For the TaylorF2 approximant, the
prior on �θ was uniform on chirp mass, symmetric mass ratio and distance, within the following
limits: time of coalescence in a window ±0.5 s around the actual tc of each injection, symmetric
mass ratio η in the range 0.01 � η � 0.25, chirp mass within the bounds set by η and the
total mass in the range 50M
 � M � 150M
, and distance 1 � D � 500 Mpc. The
parameters for orientation and position on the sky of the binary were allowed to vary over their
entire angular ranges. For the IMRPhenA approximant, the limits were identical on all the
parameters, with the exception of the total mass whose upper boundary was set to 475M
. We
also calculated the Bayes factors for data segments containing no signal in order to estimate
the background distribution of Bayes factors. Figure 22 shows the distribution of Bayes
factors (using TaylorF2 approximants) when running the analysis algorithm on portions of
data without injections: 2000 trials were carried out, with a maximum value of log10 B = 2.77.
If interpreted as a threshold value on the Bayes factors to decide whether a signal has been
detected or not, it corresponds to a false alarm of 0.05%. The distribution obtained with the
IMRPhenA approximant is very similar. In the analysis, a range of ‘detection thresholds’
on log10 B was considered, in order to explore how the two different approximants (and the
algorithm) respond to different numerical relativity injections.

Figure 23 and table 9 summarize the main results. The left panel of figure 23 shows the
value of the Bayes factor computed for the two approximants as a function of the coherent
four-detector signal-to-noise ratio at which the waveforms were injected. For all the injections,
IMRPhenA approximants return a Bayes factor which is (significantly) larger than TaylorF2
approximants. This is not surprising, as the TaylorF2 waveforms do not contain the merger and
ring-down portion of the coalescence and are truncated at fISCO. Figure 23 (right panel) shows
the number of injections that are recovered at a given Bayes factor (or above). Once more
the effectiveness of IMRPhenA approximants is striking compared to the TaylorF2 waveform
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Figure 23. Comparison of the Bayes factors for TaylorF2 and IMRPhenA approximants. Left:
the values of the Bayes factors obtained in the analysis of the NINJA data set as a function of
the optimal coherent (L1-H1-H2-V1) signal-to-noise ratio at which the signals were injected into
instrument noise. The solid dots and the open circles refer to the Bayes factors obtained by
using the IMRPhenA and TaylorF2 approximants, respectively. Right: the cumulative number of
injections recovered as a function of the Bayes factor. The thin solid line corresponds to the results
obtained by using the TaylorF2 approximant, whereas the thick solid line refers to the IMRPhenA
approximant. A threshold of log10 BSN = 3 has been used.

Table 9. The number of detections in the NINJA data with model-selection pipeline as a function
of the Bayes-factor threshold using TaylorF2 and IMRPhenA approximants. The total number of
injections was 126. See also figure 23.

Threshold
Number of detected

injections

(log10 B) TaylorF2 IMRPhenA

3 69 112
5 61 107

10 43 104
30 28 89

100 10 58

family. These results are broadly in agreement with the matched-filter analysis carried out
with inspiral–merger–ringdown waveforms described in section 4.1.3.

The nested-sampling algorithm used for model selection can also be used for parameter
estimation. In particular, one can generate in a straightforward way the maximum likelihood
estimate of the recovered parameters and have an indication of the statistical errors on such
values. For simplicity, in this analysis we identified the statistical errors (the error bars in
figures 24 and 25) with the region of parameter space in which the likelihood values were not
lower than a factor e with respect to the maximum likelihood. The results for chirp mass, total
mass and the two coordinates of the source in the sky—latitude and longitude—are shown in
figures 24 and 25; here, we restrict to only the IMRPhenA approximant and to all the signals
that yielded log10 B � 3. The results for the masses show a behaviour that is qualitatively
consistent with the results obtained using a matched-filtering analysis, see e.g. figures 10, 11
and 20. The total mass is (in most of the cases) systematically underestimated, although for 34
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Figure 24. Comparison of the recovered mass parameters for the IMRPhenA approximant. Left:
the recovered (maximum likelihood) values of the chirp mass as a function of the injected values.
Right: the recovered (maximum likelihood) values of the total mass as a function of the injected
values. The IMRPhenA approximant was used with a threshold of log10 BSN = 3.
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Figure 25. The recovered source-location parameters for the IMRPhenA approximant. Left:
the recovered (maximum likelihood) values of the source longitude as a function of the injected
values. Right: the recovered (maximum likelihood) values of the source latitude as a function of
the injected values. The IMRPhenA approximant was used with a threshold of log10 BSN = 3.

injections the recovered values were consistent with the injected total mass. These injections
correspond in all cases to waveforms with (near) zero eccentricity and in 21 (out of 34)
instances to non-spinning waveforms. We have also checked that the errors on the masses do
not show any significant correlation with the value of the Bayes factor at which the injections
were recovered or the injected signal-to-noise ratio. However, despite the systematic errors
on the physical parameters, the sky location is on average fairly well determined. This is most
likely due to the fact that there is enough information in the (source-location-dependent) time
of arrival of the signals at different instrument sites to recover meaningful information about
the position of the source in the celestial sphere. This is currently under careful investigation
and more details about this and other aspects of the analysis can be found in [200].
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5. Conclusion

The NINJA project was conceived as a first step towards a long-term collaboration between
numerical relativists and data analysts with the goal of using numerical waveforms to enhance
searches for gravitational waves. NINJA is unique in that it focused on running existing
gravitational-wave search algorithms on data containing waveforms obtained from numerical
simulations. Since this constitutes the first such analysis, the scope of the project was
deliberately kept somewhat modest: restrictions were placed on the number of waveforms
to be submitted by each numerical group, no attempt was made to include transient noise
sources in the data and only a limited number of simulated signals were produced for the data
analysis. This helped to encourage significant involvement from both the numerical relativity
and data analysis communities, with ten numerical relativity groups providing waveforms and
data-analysis contributions from nine different groups.

Communication between the data analysis and numerical communities has been smooth
and fluent during the course of the NINJA project. The format described in [76] provided a
good starting point from which to interchange data between the communities. As the project
was being developed, several improvements were made to the format, which we expect will
continue evolving as more experience is gained with a broader family of waveforms, including
those containing matter.

The limited number of signals in the NINJA data makes it dangerous to draw strong
conclusions from the comparison of different waveform families and different search methods.
Overall, it is clear that many of the data analysis methods were capable of detecting a significant
fraction of the simulated waveforms. This is immediately significant as several of the analyses
performed are routinely used in searches of the LIGO and Virgo data. However, since the
NINJA data set did not include the type of non-Gaussian transients seen in real gravitational-
wave detector data, it is difficult to translate the efficiencies observed here into statements
about LIGO or Virgo sensitivity.

NINJA has demonstrated that more work is required to measure the parameters of signals
in detector data. Parameter estimation is poor for most pipelines, and several methods tend to
associate a candidate event with that part of the waveform which lies in the most sensitive band
of the detector. For example, in a search with inspiral only templates, the ringdown of a high
mass black hole which occurs at around 100 Hz might be picked up. This will lead to poor
estimation of both the binary’s mass and coalescence time. Similarly, the un-modelled burst
searches will correctly identify the signal but, without knowing which part of the coalescence
it corresponds to, have difficulty providing accurate parameters. There is some evidence
that using full inspiral–merger–ringdown waveform templates alleviates this problem, as well
as evidence that estimation of the sky location of the signal is largely independent of the
mismatches between simulated and template waveforms. These are all issues which warrant
further investigation.

We hope that this work will provide a foundation for future analyses, and plans are
envisioned to continue and extend the NINJA project. Several suggestions have been
made to broaden this work and make it more systematic: in addition to expanding the
parameter space explored by numerical simulations, two crucial steps will be to construct
hybrid analytic-numerical waveforms (which will allow a lower range of masses to be
injected) and to consider data containing non-stationary noise. It would also be natural
to include other waveform families, such as supernovae or binary mergers comprising
one or two neutron stars. Subsequent NINJA projects could provide a noise-free data
set for tuning parameter estimation and measurement pipelines and release ‘training’
and ‘challenge’ data sets, as has proven successful in the Mock LISA Data Challenges
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[201, 202], in which the parameters of the waveforms are known and unknown to the analysts,
respectively. The numerical data sets may also be useful for efforts aimed at using the best-
available waveforms to explore and develop LISA data analysis approaches and in evaluating
parameter estimation accuracy for LISA. These efforts, as carried out by the Mock LISA
Data Challenge Task Force and the LISA Parameter Estimation Task Force, are summarized
in [203, 204].

However future analyses progress, it is clear that a significant amount remains to be
learned from collaborations between the numerical relativity and gravitational-wave data
analysis communities.
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Appendix. Glossary of terms

Term Meaning

ADM Arnowitt–Deser–Misner
ASCII American Standard Code for Information Interchange
BAM Bifunctional Adaptive Mesh code developed at University of Jena
BBH Binary black hole
BSSN Baumgarte–Shapiro–Shibata–Nakamura 3+1 formulation of

Einstein’s equations
CBC Compact binary coalescence
CCATIE AEI/LSU numerical relativity code
EOB Effective one body
EOBNR Effective-one-body waveforms calibrated to numerical data
ERD Effective ringdown
GH Generalized harmonic formulation of Einstein’s equations
Hahndol Numerical-relativity code developed at NASA-Goddard
HHT Hilbert–Huang transform
IMF Intrinsic mode functions
IMR Inspiral–merger–ringdown
ISCO Innermost stable circular orbit
L1, H1, H2, V1 LIGO Livingston 4 km, Hanford 4 km, Hanford 2 km

and Virgo 3 km gravitational-wave detectors
LAL LSC Algorithm Library
Lean Numerical-relativity code developed by Ulrich Sperhake
LazEv Brownsville/RIT numerical relativity code
LSC LIGO Scientific Collaboration
MayaKranc Numerical-relativity code developed at Penn State

using the Kranc code-generation package developed at AEI,
Southampton and Penn State

MCMC Markov-chain Monte Carlo
NINJA Numerical INJection Analysis
NR Numerical relativity
PDF Probability-density function
PN Post-Newtonian
PU Numerical-relativity code developed by Frans Pretorius
S5 Fifth LIGO science run
SNR Signal-to-noise ratio
SPA Stationary phase approximation
SpEC Spectral Einstein Code developed at Caltech and Cornell
TT Transverse-traceless
UIUC University of Illinois at Urbana-Champagn numerical

relativity code
VSR1 Virgo science run 1
WRD Weighted ringdown
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