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Gravitational wave detectors like the Einstein Telescope and LISA generate long multivariate time
series, which pose significant challenges in spectral density estimation due to the large number of
observations as well as the presence of correlated noise. Addressing both issues is crucial for accurately
interpreting the signals detected by these instruments. This paper presents an application of a variational
inference spectral density estimation method specifically tailored for dealing with correlated noise in the
data. It is flexible in that it does not rely on any specific parametric form for the multivariate spectral
density. We provide the multivariate Whittle likelihood in a form that is easy to evaluate as it depends on a
low-dimensional covariance matrix. To deal with very long time series, the method employs a blocked
Whittle likelihood approximation for stationary time series. It utilizes the Cholesky decomposition of the
inverse spectral density matrix to ensure a positive definite estimator. A discounted regularized horseshoe
prior is applied to the spline coefficients of each Cholesky factor, and the posterior distribution is computed
using a stochastic gradient variational Bayes approach. This method is particularly effective in addressing
correlated noise, a significant challenge in the analysis of multivariate data from colocated detectors. The
method is demonstrated by analyzing 2000 s of simulated Einstein Telescope noise, which shows its ability
to produce accurate spectral density estimates and quantify coherence between time series components.
This makes it a powerful tool for analyzing correlated noise in gravitational wave data.
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I. INTRODUCTION

The next-generation gravitational-wave (GW) detectors,
e.g., Einstein Telescope (ET) [1], Cosmic Explorer (CE)
[2], and Laser Interferometer Space Antenna (LISA) [3],
will usher in a transformative era of GW astronomy. The
increased sensitivity to GW will lead to a much higher GW
detection rate, improving our understanding of astrophysical
and cosmic phenomena, ranging from the dynamics of black
hole mergers to the nature of the early Universe [2,4–7].
However, multivariate time series analysis of future GW

detector data faces challenges in managing correlated
multivariate noise [8,9]. ET and LISA, which consist of
colocated interferometers, may experience correlated
noise in their data streams [10]. For ET, this correlated
noise can stem from seismic, Newtonian, and magnetic
sources [11–14], while LISA may encounter noise from
temperature variations and microthrusters [15,16].
Ignoring correlated noise in analyses of multivariate GW

data can lead to biased parameter estimates and incorrect

astrophysical conclusions (e.g., in analyzing the stochastic
GW background [17–19] and transient signals from events
such as binary black holemergers [20]). Recent studies have
shown the need for methods that can handle correlated noise
[10] but did not include a demonstration of Bayesian
methods capable of effectively doing so. Other work, [20]
did demonstrate the capability to estimate the physical para-
meters of a compact binary coalescence event in a detector
network with correlated noise. Their likelihood included the
multivariate spectral density, but they treated the spectral
density as fixed with a focus on estimating the parameters of
the binary chirp signal. While this is an important step
forward in the field, the authors of [20] made a number of
simplifying assumptions. First of all, they considered the
correlated noise to be in phase. Secondly, they considered
the detectors to be (almost) maximally correlated across the
entire frequency spectrum. So far, no Bayesian method has
been suggested to estimate multivariate spectral densities of
gravitational wave network data including correlated noise.
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In this work, we demonstrate a method which is able to
account for correlated noise as well as uncorrelated noise in
a simultaneous and consistent approach. Additionally, we
make no assumptions about the phase of the different noise
terms and model both real and imaginary cross terms.
While we demonstrate our method on a simplified noise
example, the method forms the basis for future work with
more complex noise scenarios, but this work shows the
effectiveness of the chosen approach. Additionally, our
proposed method allows for a flexible Bayesian approach
for matrix-valued spectral density estimation, in a non-
parametric way. Such a method is robust with respect to
deviations from certain parametric shapes such as power
laws in order to be able to capture all potential small- and
large-scale noise characteristics. Furthermore, the approach
must exhibit computational efficiency when applied to long
time series of GW observations, as in the case of ET and
LISA. Meier et al. [21] and Liu et al. [22] have developed
nonparametric Bayesian approaches to multivariate spectral
density estimation based on the Whittle likelihood and a
Bernstein-Hermitian positive semidefinite matrix-Gamma
process prior on the spectral density matrix and used an
adaptive Markov chain Monte Carlo (MCMC) algorithm to
sample from the posterior. Although theoretically attractive
with proven consistency properties and contraction rates,
MCMC methods require significant computation time due
to the complexity of sampling from high-dimensional
posterior distributions, making them impractical for long
time series of GW observations, where the computational
burden increases dramatically.
In this paper, a stochastic gradient variational Bayes

(SGVB) approach, as developed by Hu and Prado [23], is
proposed to estimate the multivariate power spectral
density (PSD) for correlated ET noise. As a development
within the broader framework of variational inference (VI),
SGVB optimizes a surrogate posterior distribution by
minimizing the Kullback-Leibler (KL) divergence from
the true posterior distribution [24–26]. This method trans-
forms complex posterior sampling into an optimization
problem, enhancing sampling efficiency and reducing
computational demands [27,28]. Recent advances in VI,
such as normalizing flows, have demonstrated its effective-
ness for pulsar timing-array datasets [29].
In this article, we demonstrate the usefulness and

flexibility of a SGVB approach to estimate the spectral
density matrix of the correlated residual noise from a
network of GW detectors. These residuals could, for
instance, be the remaining noise after subtracting individu-
ally resolved signals observed by ET or within global fit
approaches for LISA [30,31]. Here, the approach is
illustrated by using simulated ET noise and is also readily
applicable to estimate correlated LISA noise or correlated
LIGO–VIRGO–KAGRA (LVK) noise induced by mag-
netic noise such as from the Schumann resonances [17]. To
ease computational efforts of handling large time series, a

blocked Whittle likelihood approximation is introduced
and utilized instead of the traditional Whittle likelihood.
Advice is provided on choosing tuning parameters such as
the learning rate and number of basis functions in the
SGVB approach. Finally, as a by-product of this method,
the squared coherence is computed as a function of
frequency, quantifying the degree of intertemporal corre-
lation between components of the multivariate time series.
The article is structured as follows. Section II introduces

the stochastic gradient variational Bayes (SGVB) method
and defines the blocked Whittle likelihood. The efficiency
and accuracy of the SGVB approach are tested using
simulations in Sec. III. Section IV presents results of the
method applied to simulated ET datasets consisting of
varying levels of correlated noise. Lastly, the article
concludes with a summary of findings in Sec. V.

II. METHOD

A. Likelihood

Assume we are given a time series of gravitational wave
observations of length n from p channels. To set notation,
let Z ¼ ðZ1;…;ZnÞ⊺ ∈Rn×p be a p-dimensional station-
ary, mean-zero time series, sampled at time intervals
Δt ¼ 1=ð2fNyÞ, i.e., Zl ¼ ZðlΔtÞ∈Rp for l ¼ 1;…; n,
where fNy is the Nyquist frequency, for a total observation
time of T with a total of n ¼ T=Δt sampled values for
each of the p dimensions. The frequency resolution, Δf, is
given by

Δf ¼
1

nΔt
¼ 1

T
: ð1Þ

Let dk be the discrete Fourier transform (DFT) of Z
given by

dðfkÞ ¼ Δt

Xn
t¼1

Zt exp

�
−2πi

k
n
t

�
; ð2Þ

where fk ¼ kΔf ¼ k=ðnΔtÞ ¼ k=T for k ¼ 1;…; N, and
N ¼ n=2 if n is even, N ¼ ðn − 1Þ=2 if n is odd. For
stationary time series with absolutely summable autoco-
variances, i.e.,

P∞
h¼1 γlmðhÞ < ∞, the discrete Fourier

coefficients dðfkÞ are asymptotically independent and have
a complex Gaussian distribution with mean zero and
covariance matrix TSðfkÞ with the continuous two-sided
spectral density matrix,

SðfÞ ¼ 1

2fNy

X∞
l¼−∞

ΓðlΔtÞ exp ð−2πiflΔtÞ;

and the Fourier transform of the time-invariant autocovar-
iance function ΓðhÞ ¼ ðγlmðhÞÞ ¼ EðZtZ

⊺
tþhÞ that in turn

defines the Toeplitz covariance matrix of Z. This
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asymptotic Gaussian distribution is the basis of the multi-
variate Whittle likelihood approximation in the frequency
domain, expressed as

LðdjSÞ ∝
YN
k¼1

detðSðfkÞÞ−1

× exp

�
−
1

T
dðfkÞ�SðfkÞ−1dðfkÞ

�
; ð3Þ

where dðfkÞ� is the conjugate transpose of the dðfkÞ and
SðfkÞ is a p × p Hermitian positive semidefinite spectral
density matrix at each fk. Therefore, the unknown quantity
here is S, a matrix-valued function at each frequency with
the additional restriction that its value at each frequency is
Hermitian positive semidefinite. Note that when estimating
the spectral density matrix, it is important that the estimate
is again positive semidefinite at each fk so that the
quadratic form in the exponent of the Whittle likelihood
remains positive and thus defines a valid likelihood. In this
analysis, we use the two-sided spectral density, which
includes both positive and negative frequencies, allowing
for a full representation of the frequency spectrum.
However, for the purposes of this study, we only retain
the positive frequency components.
Given d, one method to estimate the multivariate spectral

density matrix S is Bayesian inference. In particular, having
a flexible Bayesian method instead of simply using a
frequentist Welch estimate is important when the ultimate
task is to simultaneously estimate the parameters of a GW
signal while properly taking the uncertainties of the
residual noise estimation into account. The Bayes’ theorem
is given by

pðSjdÞ ¼ LðdjSÞπðSÞ
ZðdÞ

∝ LðdjSÞπðSÞ; ð4Þ

where πðSÞ is the prior distribution and pðSjdÞ is the
posterior density of unknown S given d, and ZðdÞ is the
Bayesian evidence (see Thrane and Talbot [32] and
Christensen and Meyer [33] for discussions on GW
Bayesian inference).
In GW parameter estimation with large datasets, such as

those from ET and LISA, the computational burden
of directly applying the Whittle likelihood can be signifi-
cant. To mitigate this challenge, a “blocked” Whittle
likelihood is adopted. The time series is divided into Nb

equal-sized blocksZ ¼ ðZð1Þ;…;ZðNbÞÞ⊺ with each block a
p-dimensional time series of each of length n=Nb. The
discrete Fourier transform of each block is denoted by dðiÞ,
i ¼ 1;…; Nb. The stationarity assumption implies that the
statistical properties of each block, in particular, their
spectral densities, are the same. Making the further sim-
plifying assumption of independence among different

blocks, the likelihood then becomes the product of the
individual Whittle likelihoods for each block,

LbðdjSÞ ¼
YNb

i¼1

LðdðiÞjSÞ: ð5Þ

Assuming independence of the blocks ignores the corre-
lations that will be present between adjacent blocks, but the
correlations will vanish with increasing distance between
the blocks. This independence assumption is often made,
e.g., in the context of the block bootstrap for time series,
see Lahiri [34], or in the recent paper by Rosati and
Littenberg [35] on residual noise estimation within the
LISA global fit and Criswell et al. [36] on anisotropic LISA
Galactic foreground estimation. Note that as the length of
the blocked data is less than the original dataset, the
frequency resolution of the spectral density will become
coarser as the number of blocks Nb increases. In practice,
the number of blocks should be chosen to achieve a
required frequency resolution while also remaining com-
putationally tractable.

B. Parametrization of S

The prior defined by Hu and Prado [23] and Rosen and
Stoffer [37] models the components of the Cholesky
factorization of the inverse spectral density matrix via
smoothing splines (for details, refer to Hu and Prado [23]).
In their approach, the inverse of SðfkÞ can be represented as
SðfkÞ−1 ¼ T�

kD
−1
k Tk, where Dk is a diagonal matrix with

diagonal elements δ21k; δ
2
2k;…; δ2pk, and

Tk ¼

0
BBBBBBBBB@

1 0 0 � � � 0

−θðkÞ21 1 0 � � � 0

−θðkÞ31 −θðkÞ32 1 . .
. ..

.

..

. ..
. . .

. . .
.

0

−θðkÞp1 −θðkÞp2 � � � −θðkÞp;p−1 1

1
CCCCCCCCCA

ð6Þ

is a p × p complex unit lower triangular matrix. Thus, the
Whittle likelihood can be rewritten as the product of its p
components depending on θj, δj, for j ¼ 1;…; p,

LðdjSÞ ∝
Yp
j¼1

Ljðdjjθj; δj;d<jÞ; ð7Þ

where

Ljðdjjθj; δj;d<jÞ

∝
YN
k¼1

δ−2jk exp

�−jdjðfkÞ −Pj−1
l¼1 θ

ðkÞ
jl dlðfkÞj2

Tδ2jk

�
; ð8Þ
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and d<j denotes the data of channels preceding the jth
channel, the parameters θj, δj represent the set of θk and δk
for the jth component of the multivariate time series, θðkÞjl

represents the corresponding element in the matrix Tk for

any j > l, and θðkÞjl ¼ 1 when j ¼ l, djðfkÞ denotes the
Fourier coefficient of the jth component, and
dj ¼ ðdjðf1Þ;…; djðfNÞÞ⊺. Then logðδ2jkÞ and the real

and imaginary parts of θðkÞjl are modeled by Demmler-
Reinsch basis functions in terms ofM truncated smoothing
splines, given by

ℜðθðkÞjl Þ ¼ αjl;0 þ αjl;1fk þ
XM−1

s¼1

ψðfkÞαjl;sþ1; ð9Þ

ℑðθðkÞjl Þ ¼ βjl;0 þ βjl;1fk þ
XM−1

s¼1

ψðfkÞβjl;sþ1; ð10Þ

log δ2jk ¼ γj;0 þ γj;1fk þ
XM−1

s¼1

ψðfkÞγj;sþ1; ð11Þ

where ψðxÞ ¼ ffiffiffi
2

p
cosðsπxÞ, with s being an integer that

ranges from 1 to M − 1, represents the spline basis
function. The flexibility of the model can be adjusted by
choosing the number of basis splines M. Thus, a flexible
model for the spectral densities S ¼ SðνÞ depending on a
parameter vector ν that comprises all α, β, and γ parameters
is constructed. Following Hu and Prado [23], discounted
regularized horseshoe priors [38] are used for the α, β, and γ
spline coefficients. This prior is adept at handling varying
degrees of smoothness in the individual components of the
spectral density matrix while avoiding overfitting (for
details, refer to [23,38]). Thus, in line with Eq. (7), the
subvector of the parameter vector ν that contains all
parameters for component j is denoted as νj. This allows
us to decompose the posterior into the product of p
posteriors for each individual component, given by

pðνjdÞ ¼
Yp
j¼1

pjðνjjdj;d<jÞ: ð12Þ

This prescription would enable the application of the
SGVB approach to each pjðνjjdj;d<jÞin parallel. Here,
however, we apply the SGVB algorithm to the whole
parameter vector ν even though Sec. II C details the more
general application to each νj.

C. Stochastic gradient variational Bayes

This section provides a brief review of SGVB, along
with discussions on how to tune the learning rate and the
number of basis splines.

1. Variational inference review

The fundamental concept of variational inference (VI) is to
approximate the posterior distribution pðνjdÞ by using a
surrogate distribution from a family of variational distribu-
tions Q ¼ fqϕðνÞ;ϕ∈Φg, which depends on a parameter
vectorϕwithin a parameter spaceΦ. Typically, thevariational
family is selected for its simplicity and computational
tractability. A product of normal distributions with mean
μji and variance σ2ji, i ¼ 1;…; dimðνjÞ, is utilized for each
vector νj. The goal of the variational approach is to identify
the parameters ϕj ¼ ðμj; ξjÞwith ξji ¼ log σ2ji for i ¼ 1;…;
dimðνjÞ, that minimize the reverse Kullback-Leibler (KL)
divergence between the variational family and the true
posterior distribution, denoted as dKLðqϕj

jjpjÞ, i.e.,

ϕ�
j ¼ argminϕj

dKLðqϕj
jjpjÞ

¼ argminϕj

Z
log

qϕj
ðνjÞ

pjðνjjdj;d<jÞ
qϕj

ðνjÞdνj: ð13Þ

The optimization algorithm employed in this work uses a
SGVB approach, as described by Kingma and Welling
[28], Xu et al. [39], Domke [40].

2. Choice of the number of basis functions

The variation of parameters (log δ2jk;ℜðθðkÞj· Þ;ℑðθðkÞj· Þ)
across frequencies fk is modeled using M truncated
smoothing splines. Choosing an appropriate M is crucial:
a lowM may cause underfitting, while a highM can lead to
overfitting and increased computational complexity due to
the higher dimensionality of ϕj. To address overfitting
concerns, a horseshoe prior on the coefficients acts as a
regularization mechanism, effectively reducing the risk of
overfitting [38].
The likelihood function [Eq. (8)] measures the consis-

tency of the data with the spectral density, parametrized by

ðlog δ2jk;ℜðθðkÞj· Þ;ℑðθðkÞj· ÞÞ. We use the likelihood at the
maximum likelihood estimate (MLE) to choose M. The
likelihood at the MLE tends to increase with M, reflecting
an improvement in model fit as the model complexity
increases. When M is sufficiently large, the likelihood
tends to stabilize or increase steadily. We chose M to
prevent underfitting by conservatively selecting a slightly
larger M than the point where the likelihood stabilizes.

3. Optimization of the learning rate

The KL minimizer ϕ�
j [Eq. (13)] is equivalent to the

maximizer of the evidence lower bound (ELBO) between
qϕj

and pðνj;dj;d<jÞ, i.e.,

ELBOðqϕj
; pjðνjjdj;d<jÞÞ

¼ Eνj∼qϕj ðνjÞ½logpjðνj;dj;d<jÞ − logqϕj
ðνjÞ�: ð14Þ
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The SGVB algorithm is used to approximate ϕ�
j , and it

consists of the next two steps:
(1) Maximize logpðνj;dj;d<jÞ with respect to νj, i.e.,

ν̂j ¼ argmaxνj logpðνj;dj;d<jÞ, and set μ̂j ¼ ν̂j.
(2) Maximize the ELBO [Eq. (14)] with respect to

ξj for fixed μ̂j from the first step, i.e., ξ̂j ¼
argmaxξjEνj∼qμ̂j;ξj

½logpðνj;dj;d<jÞ − logqμ̂j;ξjðνÞ�.1
The approximation for ϕ�

j is ϕ̂j ¼ ðμ̂j; ξ̂jÞ. This is equiv-
alent to algorithm 1 in [23] up to and including phase 2. In
the three-phase VB approach by [23], ϕ̂ was used as an
initial point for the optimization in the fine-tuning phase 3
to get ϕ�. The numerical study in [23] demonstrated that ϕ̂
was already close to the maximum, and the optimization
criterion did not markedly improve during the phase 3
stage. Therefore, we omitted phase 3 for the simulation
studies and ET data. However, the fine-tuning stage can be
added if needed.
The performance of each maximizer depends on the

learning rate; if the learning rate is too small or too large,
the optimization algorithm may get stuck at a local
maximum or take too long to find the global maximum.
Thus, choosing the optimal learning rate is crucial.
Recently, [41] proposed automated techniques for the
blackbox VB in which the learning rate is adaptively
decreased. The reliability of the stochastic optimization
methods for VB due to substantial hand-tuning parameters
to apply effectively were discussed in literature [41,42].
While Hu and Prado [23] selected a specific but arbitrary

value for the learning rate, this study proposes a method to
select the optimal learning rate and automate the selection
procedure.
Let τ1 and τ2 be the learning rates associated with

gradient ascent methods at the first and second step,
respectively. As τ2 has a broad range of plausible values,
it is unnecessary to deviate from the default settings
proposed by Hu and Prado [23]. Let Φτ1 ¼ ðϕ̂1;…; ϕ̂pÞ
be the result after performing the two-step SGVB algorithm
with τ1. Given the default setting for τ2, an appropriate τ1 is
obtained by maximizing the ELBO,

τ�1 ¼ argmaxτ1Eν∼qΦτ1
ðνÞ½logpðν;dÞ − log qΦτ1

ðνÞ�: ð15Þ

This optimization is carried out over a continuous para-
meter space using the Python package HyperOpt [43] and the
tree-structured Parzen estimator (TPE) algorithm [44].
From our preliminary study, the optimal learning rates
obtained by fixing τ2 coincide with those obtained
when optimizing τ1 and τ2 jointly. The maximum number
of iterations for the optimization procedure is set to
10 000.

D. Squared coherence

To quantify the frequency-dependent relationship
between the channels of the multivariate ET time series,
we employ the squared coherence, widely used in many
fields [e.g., [45,46] ]. Squared coherence, CxyðfkÞ, is a
normalized measure of association between two time series
at frequency fk, ranging from 0 (no correlation) to 1
(perfect correlation). For two components of a multivariate
time series, it is defined as

CxyðfkÞ ¼
jSxyðfkÞj2

SxxðfkÞSyyðfkÞ
; ð16Þ

where SxyðfkÞ is the cross-spectral density between
components x and y, and SxxðfkÞ, SyyðfkÞ are the spectral
densities of components x and y, respectively, at frequency
fk ðx; y ¼ 1; 2;…; p; x ≠ yÞ, for x; y ¼ 1; 2;…; p, with
x ≠ y.

III. SIMULATION STUDY

In order to test the efficiency and accuracy of SGVB, 500
independent realizations of a bivariate time series are
generated from a vector autoregressive model of order 2
[VAR(2)] and a vector moving-average model of order 1
[VMA(1)], using three different sample sizes n ¼
256; 512; 1024 [refer to Liu et al. [Sec. IV.2, [22] ] for
the definitions of the VAR(2) and VMA(1) models]. The
spectral densities are estimated using both the SGVB
method and Liu et al.’s [22] vectorized nonparametrically
corrected method (VNPC), an MCMC-based approach that
samples from the exact posterior distribution without a
variational approximation.2

In order to avoid underfitting in SGVB, an appropriate
number of basis functions is determined for each dataset
using the method discussed in Sec. II C. Figure 1 shows the
log MLE (normalized for comparison between datasets)
plotted against the number of basis functions.M ¼ 30 is set
as the log MLE enters a steady ascent phase and before any
perturbations appear, thereby avoiding both underfitting
across the three different dataset sizes. When n ¼ 256, a
rapid increase of the log-likelihood is observed asM > 50,
indicating overfitting. As shown in Eqs. (9)–(11), the
number of parameters is 4ðM þ 2Þ for a bivariate time
series, which exceeds the number of data points.
Given an estimated spectral density matrix Ŝ and the true

spectral density matrix S0, the accuracy of PSD estimates
can be assessed using the L2 error. The L2 error provides a
quantitative measure of the discrepancy between Ŝ and S0,
encapsulating the overall difference between the estimated
and true spectral density matrices across the frequency

1qμ̂j;ξj is the variational distribution qϕj
with ϕj ¼ ðμ̂j; ξjÞ.

2For the VNPC analyses, we use the software and settings
provided by Liu et al. [22], specific for the VAR(2) and VMA(1)
models.
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range. A smaller L2 error indicates that Ŝ closely approx-
imates S0, while a larger L2 error reflects greater deviation.
The L2 error can be approximated as

kŜ − S0kL2
≈
�
1

N

XN
k¼1

kŜ0ðfkÞ − S0ðfkÞk2
�1=2

; ð17Þ

where k · k denotes the Frobenius norm, which for a
complex p × p matrix A is defined by

kAk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i;j

jaijj2
s

: ð18Þ

Figure 2 displays the L2 error distributions from both the
SGVB and VNPC methods across the different sample
sizes. The L2 errors are calculated by using the estimated
spectral densities and the true spectral densities of the VAR
(2) simulations (top panel) and the VMA(1) simulations
(bottom panel), respectively.
Figure 3 displays the speedup factor of the SGVB

compared to the VNPC method. Additionally, Table I
presents the simulation study’s median L2 errors, pointwise
coverage, and median width of pointwise 90% credible
regions, as well as the median computation time (in
seconds).3

Figure 2 reveals that as the sample size increases, both
methods achieve lower median L2 errors, and the median L2

errors are similar between the two methods. Additionally,
Fig. 3 shows the median speedup factor for SGVB becomes

increasingly pronounced, ultimately surpassing VNPC by
more than 50 times, as n is increased. Notably, when
n ¼ 1024, SGVB’s accuracy is only marginally lower than
VNPC’s, yet it reduces median computation time by a factor
of approximately 50. The simulation study provides empiri-
cal evidence for the consistency of the SGVB approach,
demonstrating that as sample size grows, the posterior
distributions contracts around the true spectral density,
following the same trend as the VNPC approach.
However, it does so at a fraction of the computation time.
Finally, Table I illustrates that, even though VNPC

method consistently outperforms SGVB across all sample
sizes in terms of pointwise coverage, typically achieving
83%–90% coverage compared to SGVB’s 61%–66%,
SGVB generally produces narrower credible regions. The
limited coverage and narrow credible intervals observed
from the SGVB results can be attributed to the mean field
approximation [26] which assumes independent components
ignoring correlations between parameters, and using the KL
divergence as distance measure. The combined effects tend
to underestimate the marginal variances of the target dis-
tribution [27,47]. To address these limitations, researchers
have explored more flexible surrogate distributions and a
broader range of divergence measures in variational infer-
ence [26,48–51].

FIG. 3. Violin plots of the speed up gained by using SGVB
compared to VNPC from 500 realizations for VAR(2) and VMA
(1) models, for different data lengths n. The SGVB method uses
optimized values for M and τ1.

FIG. 1. The relationship between the number of basis functions
(M) and the log-normalized likelihood at the MLE for VAR(2)
and VMA(1) models (solid and dotted lines respectively) with
different data lengths n ¼ 256 (blue), n ¼ 512 (green), and n ¼
1024 (orange). A fixed learning rate of 0.002 was used across all
cases.

FIG. 2. Violin plots of VNPC and SGVB L2 errors from 500
realizations for VAR(2) and VMA(1) models, for different data
lengths n. The SGVB method uses optimized values for
M and τ1.

3Pointwise coverage is defined as the proportion of times the
true spectral density value at each frequency is captured within
the confidence interval across different realizations of the data.
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Additionally, studies have investigated model misspeci-
fication and developed assessment methods for approxi-
mation inference [52–55]. While more sophisticated
frameworks yield improved posterior approximations, they
often demand greater computational resources. In this
work, we prioritize computational efficiency while main-
taining an acceptable level of accuracy.

IV. APPLICATION TO ET NOISE

A. Data generation

Three independent realizations of Gaussian noise were
synthesized (one for each of the XYZ channels), each
spanning 2000 s, spectrally shaped to match the design
sensitivity of the ET xylophone configuration [56,57].4 The
noise was sampled at a frequency of 2048 Hz, resulting in a

multivariate time series comprising 4096 k data points per
channel. In the rest of the paper, we refer to this colored
Gaussian noise as ET noise.
Following Janssens et al. [10], nonidentical correlated

noise in the X, Y, and Z channels is simulated by injecting
colored Gaussian noise characterized by frequency-domain
Gaussian peaks. The power spectral density is given by

SGP
n ðf; μ; AÞ ¼

�
Affiffiffiffiffiffi
2π

p exp

�
−
1

2
ðf − μÞ2

��
2

; ð19Þ

where A represents the amplitude, and μ the frequency peak
location.
Gaussian noise is injected at specific frequencies in each

channel as follows:

X∶ SGP
n ðμ ¼ 10 Hz; A ¼ 4 × 10−24Þ; SGP

n ðμ ¼ 50 Hz; A ¼ 2 × 10−24Þ;
Y∶ SGP

n ðμ ¼ 10 Hz; A ¼ 4 × 10−24Þ; SGP
n ðμ ¼ 90 Hz; A ¼ 1.5 × 10−24Þ;

Z∶ SGP
n ðμ ¼ 50 Hz; A ¼ 2 × 10−24Þ; SGP

n ðμ ¼ 90 Hz; A ¼ 1.5 × 10−24Þ:

To introduce correlated noise between channel pairs, we
utilize identical Gaussian peaks at matching frequencies
across the paired channels. In contrast, for uncorrelated

noise scenarios, independent Gaussian peaks are simulated
for each channel, ensuring that there is no cross-channel
correlation.
As stated in Janssens et al. [10], this dataset is inherently

simplified due to the distinct nature of the correlated noise
terms, which are highly differentiable. Nevertheless, it
serves as a valuable initial demonstration of our approach.
Future work aims to investigate more realistic and complex
noise scenarios, such as the presence of correlated magnetic
Janssens et al. [13,14] and/or Newtonian noise [11,12] as

TABLE I. Comparison of median L2 errors, empirical pointwise coverage, median width of pointwise 90% credible intervals, and
median computation time (in seconds) with their respective MAD (median absolute deviation) for 500 simulations using VNPC and
SGVB methods across different sample sizes (n ¼ 256, 512, and 1024) for both VAR(2) and VMA(1) models.

n ¼ 256 n ¼ 512 n ¼ 1024

VNPC SGVB VNPC SGVB VNPC SGVB

VAR(2) L2 error 0.12� 0.02 0.12� 0.02 0.10� 0.02 0.09� 0.02 0.08� 0.01 0.06� 0.01
Pointwise coverage 0.87� 0.06 0.62� 0.11 0.85� 0.06 0.66� 0.10 0.84� 0.06 0.67� 0.07
S11 CI width 0.09� 0.01 0.06� 0.01 0.06� 0.01 0.04� 0.01 0.04� 0.00 0.03� 0.00
ℜS12 CI width 0.09� 0.01 0.06� 0.01 0.07� 0.01 0.04� 0.01 0.05� 0.00 0.03� 0.00
ℑS12 CI width 0.07� 0.01 0.04� 0.01 0.06� 0.01 0.04� 0.01 0.04� 0.00 0.03� 0.00
S22 CI width 0.13� 0.01 0.07� 0.01 0.09� 0.01 0.05� 0.01 0.07� 0.01 0.04� 0.00
Time [s] 5.4 K� 0.6 K 280� 30 9.4 K� 1.3 K 300� 30 18.4 K� 2.3 K 350� 30

VMA(1) L2 error 0.10� 0.03 0.13� 0.03 0.07� 0.02 0.10� 0.02 0.06� 0.01 0.07� 0.01
Pointwise coverage 0.92� 0.07 0.64� 0.10 0.92� 0.08 0.63� 0.09 0.87� 0.10 0.67� 0.10
S11 CI width 0.12� 0.02 0.09� 0.02 0.08� 0.01 0.07� 0.01 0.06� 0.01 0.05� 0.01
ℜS12 CI width 0.08� 0.01 0.06� 0.01 0.05� 0.01 0.04� 0.01 0.04� 0.00 0.03� 0.00
ℑS12 CI width 0.07� 0.01 0.04� 0.01 0.06� 0.01 0.03� 0.00 0.03� 0.00 0.03� 0.00
S22 CI width 0.17� 0.03 0.18� 0.04 0.12� 0.02 0.13� 0.02 0.08� 0.01 0.10� 0.01
Time [s] 4.2 K� 0.3 K 180� 30 6.9 K� 0.5 K 190� 30 12.6 K� 1.0 K 220� 40

4Note that the sensitivity curve used here is the previously
called “ET-D” sensitivity curve. We choose this curve rather than
the updated version presented by Branchesi et al. [58], to allow a
direct comparison with previous work [10]. The small difference
between PSD curves will have no impact on the key conclusions
of the applicability of the work presented in this paper.
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well as (multiple) GW signals. However, this is considered
beyond the scope of this work where we want to lay the
foundation for the estimation framework.

B. Data analysis

Three analyses are performed to estimate the power
spectral density (PSD) and the corresponding squared
coherences under the following different noise conditions,
(1) Case A: ET noise with correlated Gaussian peaks,
(2) Case B: ET noise with uncorrelated Gaussian peaks,
(3) Case C: ET noise with uncorrelated Gaussian peaks,

assuming independence between channels.
The data are divided into 125 equal blocks, each

consisting of 16 384 frequency points and a maximum
frequency of 1024 Hz for the blocked Whittle likelihood
estimation [Eq. (5)]. Each Whittle likelihood block uses
identical basis function expressions defined in Sec. II B for
the spectral density matrix.
Figure 4 displays the log maximum likelihood estimates

(MLE) across a range of M for each case. As the log MLE
stabilizes around M ∼ 400, we set M ¼ 450. Using the
methodology discussed in Sec. II, the PSDs for each case
are estimated and plotted in Figs. 5 and 6. For each case, the
diagonal subplots represent the spectral densities for X, Y,
and Z channels. Since the off-diagonal elements of the PSD
matrix at each frequency are complex numbers, with the
elements above the diagonal being the conjugates of those
below, we plot the real part of the off-diagonal elements in
the upper subplot and the imaginary part in the lower
subplot. Additionally, the squared coherences are plotted
for the cases in Fig. 7. The plot shows the squared
coherences estimation between any pair of channels for
case A and case B.
In all three cases, prominent spectral peaks are observed

at the specific frequencies in each channel, consistent with
the injected Gaussian noise peaks. This demonstrates the

ability of our proposed method to accurately capture and
identify these peaks. We note that our PSD estimates
exhibit oscillatory features around the Gaussian peaks;
this is most likely linked to the relatively loud and sharp
Gaussian peak features. This highlights one of the potential
weaknesses of the SGVB method: its potential difficulty in
fitting very sharp features. For more realistic data sets
including correlated noise from magnetic and/or
Newtonian noise origin, this will most likely form less
of an issue due to the smooth, power-law-like behavior of
such noise sources Janssens et al. [14], Janssens et al. [10–
12]. However, this could form an issue with actual detector
data which is contaminated with a large amount of
instrumental spectral noise lines. Future work will aim
to investigate the capabilities of the SGVB method and its
efficiency in deal with such complexity using real GW data
and whether precleaning steps should be undertaken.
However, the dramatic speedup of PSD estimation using
the SGVB remains an extremely potent benefit for next
generation GW detectors. Without faster novel noise
estimates techniques, such as the one proposed in this
work, the resulting science will very likely be limited by
available computation time.
In case A, where correlated noise is intentionally

introduced, substantial coherence between channel pairs
is observed at their shared peak frequencies (see the top
panel of Fig. 7). Specifically, high coherence is evident
between channels X and Yat 10 Hz, X and Z at 50 Hz, and
Y and Z at 90 Hz. The median estimates for the squared
coherence aligns with the true coherence, demonstrating
that our estimate accurately reflects the underlying corre-
lated noise structure. This alignment validates the effective-
ness of our spectral analysis in capturing interchannel
relationships.
Case B, which considers ET noise data with nominally

uncorrelated noise, reveals minor fluctuations in the off-
diagonal subplots representing the real and imaginary parts
of the estimated spectral densities, despite the absence of
deliberately injected correlations. These fluctuations mani-
fest as small coherence values (median Cxy < 0.008) that
fluctuate around the true zero coherence in the correspond-
ing squared coherence plots of Fig. 7 (visible as they are
plotted on a log scale). Notably, the median squared
coherence fluctuations are lower than those expected from
uncorrelated white noise data, which scale as approxi-
mately the inverse of the number of data segments used to
average over. In this case, i.e., 1=Nb ¼ 0.008. The squared
coherence estimates based on the SGVB method are
below this estimate and hence are consistent with zero
coherence.
In case C, where the three channels are assumed

independent, the model assumes zero cross spectrum
(the XY, YZ, XZ components) in the PSD estimates.
Consequently, the squared coherence between any pair
of channels is uniformly zero across all frequencies, which

FIG. 4. Relationship between the number of basis functions
(M) and the normalized log maximum likelihood estimate (MLE)
for different scenarios of Einstein Telescope noise analysis. Case
A (blue line) represents correlated noise, while Cases B and C
(green line) represent uncorrelated noise scenarios.
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is consistent with theoretical expectations for uncorrelated
channels, providing a baseline to assess the degree of
correlation in the other cases. Comparing cases B and C
highlights an important feature about the effectiveness of
our SGVB model. As one would expect, a model with less
complexity (case C) typically yields a more accurate
estimate compared to a more complex model (case B).
More concretely, the average root mean square deviation

(RMSD)5 over the frequency band 5 to 128 Hz is 9.773 ×
10−50 for case B and 9.725 × 10−50 for case C. The
difference between both different scenarios is relatively

FIG. 5. Case A PSD. The plot shows the periodogram (gray), the PSD estimates (colored, with 90% credible interval shaded), and the
true PSD (black curve in the diagonals). The upper triangle subplots show the real parts of the off-diagonal elements of the spectral
density matrix, while the lower triangle subplots show the imaginary parts of the off-diagonal elements.

5The average RMSD is calculated as the mean of the square
root of the mean squared differences between the estimated
median PSD and the true PSD across the frequency band for X, Y,
and Z channels.
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small, case C’s RMSD is about 0.5% lower than that of case
B, showcasing the huge potential and flexibility of the
SGVB approach in estimating detector noise whether
correlated noise is present or not.
To evaluate the accuracy of the estimated spectral density

matrices, we whiten the Fourier-transformed data for cases
A, B, and C using the estimated PSD and test the real and
imaginary whitened data for multivariate normality [59].

The whitening process was performed for each data seg-
ment and at every frequency fk, using the transformation,

dw
i ðfkÞ ¼ S−1=2ðfkÞdiðfkÞ; ð20Þ

where dw
i ðfkÞ represents the whitened Fourier-transformed

data for the ith segment at frequency fk, and S−1=2ðfkÞ is
the inverse square root of the estimated PSD matrix at fk.

FIG. 6. Cases B and C PSDs. The plot shows the periodogram (gray), the PSD estimates (colored, with 90% credible interval shaded),
and the true PSD (black curve in the diagonals). The upper triangle subplots show the real parts of the off-diagonal elements of the
spectral density matrix, while the lower triangle subplots show the imaginary parts of the off-diagonal elements.

JIANAN LIU et al. PHYS. REV. D 111, 062003 (2025)

062003-10



Here, i ¼ 1; 2;…; 125 denotes the index of the data
segments.
Table II summarizes the number of segments passing the

normality test at a 5% significance level. As expected, with
a 5% significance threshold, false positives occur in 5% of
tests under the null hypothesis. The results align with these
expectations, supporting the validity of the PSD estimation.

V. CONCLUSIONS

Recent work has pointed out the importance of taking
into account correlated interferometer network noise when
estimating the parameters of gravitational wave signals
observed by ground-based detectors such as ET or space-
based detectors such as LISA [8–10]. However, so far, no
Bayesian statistical methodology has been suggested to
estimate the multivariate noise spectral density of a detector
network. Such a method will be important, in particular,
when estimating residual noise in a joint on-source esti-
mation or global fit approach. It can form a building block
for global fit models such as GLASS [30] and Erebor [31]
that are cyclically conditioning on resolved signals and
noise spectral density estimates. In this study, we propose a
computationally efficient variational Bayesian approach for
estimating the spectral density of multivariate time series. It
is important to note that this technique does not assume any
restrictive parametric form of the spectral density, allowing
it to adapt to any shape of the PSD. To handle the large
length of GW network measurements, we use a blocked
Whittle likelihood. We provide a hyperparameter optimi-
zation method and guidelines to tune the settings of the
method. Simulation studies presented for VAR(2) and
VMA(1) demonstrate that our approach achieves accuracy
comparable to MCMC while significantly reducing

computation time, although with potentially narrower
credible intervals.
The application of our method to simulated ET noise

data revealed its ability to accurately identify and character-
ize spectral features across different noise scenarios. In the
correlated noise case, our approach successfully detected
the injected Gaussian peaks and quantified the coherence
between channels at specific frequencies.
These findings have significant implications for GW data

analysis. The ability to efficiently and accurately estimate
spectral densities and interchannel correlations is crucial for
optimizing detection algorithms and understanding noise
characteristics in GW detectors. Our method’s computa-
tional efficiency makes it particularly suitable for analyzing
large-scale datasets expected from next-generation detec-
tors such as ET and LISA. While this paper presented an
investigation into the accuracy and efficiency of the SGVB
approach to a noise-only scenario, it only lays the founda-
tion for future investigations of on-source modeling in the
presence of multiple and potentially overlapping signals.
Many aspects remain to be explored: the best way to
combine signal parameter estimation methods with the
SGVB approach for simultaneous PSD estimation, the
impact of data gaps and instrumental glitches, and strat-
egies for their mitigation.
Future work could explore the application of this method

to real GW detector data and its extension to simulta-
neously analyzing a stochastic GW background signal.
Jointly analyzing the six channels of two detector networks
such as TianQin and LISA could provide a more flexible
alternative to cross-correlation detection [60]. Further
investigations could examine the implications of these
spectral characteristics on GW detection sensitivity and
methods to mitigate correlated noise effects in ET or LISA.
Extending the analysis to longer time series or different ET
configurations could provide insights into the stability and
generalizability of these spectral features. Additionally,
investigating the method’s performance on GPUs could
further validate its scalability, robustness and versatility.
In conclusion, the variational Bayes approach offers a

promising tool for spectral density estimation in GW data
analysis, combining accuracy with computational effi-
ciency. This method has the potential to enhance our
ability to characterize detector noise and ultimately
improve GW detection capabilities.

FIG. 7. Squared coherence estimation for any pair of channels
in cases A (top) and B (bottom). The solid curves represent the
median estimated squared coherences, while the shaded areas
indicate the corresponding 90% credible interval. The black solid
line is the true squared coherence, and the black dashed line is the
expected coherence from uncorrelated white noise data.

TABLE II. Number of whitened data segments passing the
normality test for real and imaginary parts after whitening, for
each case and across all 125 segments.

ℜðdw
i Þ ℑðdw

i Þ
Case A 118 121
Case B 119 119
Case C 119 119
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Software used: Python [61], TensorFlow Probability [62,63]
NumPy [64], SciPy [65], PANDAS [66], Matplotlib [67], Jupyter

Book [68]. Documentation and examples of the software can
be found at [69,70].
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