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Abstract

Felix Klein emphasized the intrinsic connection between symmetry groups and geometries in his Erlangen
Program. Perhaps motivated by Klein, Gleason ([5]) posed a very general conjecture on topologizing sym-
metry groups that he regarded as fundamental for a general study of geometries. Gleason in fact proved his
conjecture in a very special case. The purpose of this paper is to show that Gleason’s general conjecture is
false as originally stated and that it is true only under very strong hypotheses. Along the way new general
results in descriptive set theory are proved about a class of functions that behave like but are distinct from
functions of Baire class 1.
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1 Introduction

Felix Klein emphasized the intrinsic connection between symmetry groups and geometries in his Erlangen
Program. Perhaps motivated by Klein, Gleason ([5]) posed a very general conjecture on topologizing sym-
metry groups that he regarded as fundamental for a general study of geometries. Gleason in fact proved his
conjecture in a very special case. The purpose of this paper is to show that Gleason’s general conjecture is
false as originally stated and that it is true only under very strong hypotheses. Along the way new general
results in descriptive set theory are proved about a class of functions that behave like but are distinct from
functions of Baire class 1.

Paraphrasing Gleason, we ask: if G is an abstract group of homeomorphisms of a topological space M,
under what circumstances can G be given a topology such that the pair (G, M) is a topological transforma-
tion group? That is, when can G be given a (reasonable) topological group topology such that the mapping
(g,m) — g(m), G x M — M, is continuous? Gleason gives a plausibility argument relating this question
to very general geometries. Define a (topological) geometry as a topological space in which certain lines
(subsets homeomorphic to R) are distinguished. Let G be the group of automorphisms of a geometry M,
i.e., the group of homeomorphisms of M that induce a permutation of the lines of M. It is reasonable to
assume that M is homogeneous, i.e., that G acts transitively on M. It is also reasonable to assume some
local uniqueness for lines which in turn implies that G is not “too big”. Gleason’s hope was that every
topological geometry of finite dimension that satisfies some weak geometrical axioms must be the homoge-
neous space of some Lie group. In this context Gleason defined a frame for the action of G on M to be a
an element (mq,...,my) € M™ such that the mapping g — (g(m1),...,g9(my)), G — M™, is an injection.
In this paper such a frame will be called a finite frame and n will be called the size of the finite frame. It is
convenient to define a countably infinite frame to be an element (mq,ma,...) € M" such that the mapping
g~ (g(m1),g(ms),...), G = MY, is an injection. Guided by this very general geometric model, Gleason
considered the following axioms:

Axiom 1.
M is a Polish space and G is a group of homeomorphisms of M that acts transitively on M;

Axiom 2(a).
There is a finite frame (mq,...,my,) € M™ for the action of G on M such that

{(g(ma),...,g(mn),9(a)) | g € G} € M"*!

is an analytic set for each ¢ € M.

Gleason’s Conjecture.
If G and M satisfy Axiom 1 and Axiom 2(a), then G can be given a Polish group topology such that the
pair (G, M) is a topological transformation group.

The assumption in Axiom 1 that M is a Polish space and that G is a group of homeomorphisms of G
is a very mild condition. The assumption that G acts transitively on M is a very restrictive and powerful
assumption. The existence of a finite frame for the action of G on M in Axiom 2(a) corresponds to the
assumption that lines are locally unique and that G is not too big. The analyticity condition in Axiom 2(a)
is a smoothness assumption and is somewhat problematic in that it does not correspond to any obvious
geometric assumption. However, Gleason pointed out that some assumption like Axiom 2(a) is needed.



Specifically, if M = C? — {(0,0)} and G is the group of nonzero quaternion matrices, then there is even a
simply transitive action of G by homeomorphisms on M that violates Axiom 2(a) and such that there is no
way that G can be made into a Polish group such that (G, M) is a topological transformation group.

Gleason ([5]) proved his conjecture in the very special case of size one frames, i.e., Gleason proved
his conjecture if G acts simply transitively on M. However, in this case notice that the analytic set
{(g(m),g(q)) | g € G} € M? is the graph of a function on M for each ¢ € M. Therefore the mapping
(9(m),9(q)) — g(m), {(g(m),g9(q)) | g € G} — M, is a continuous bijection and therefore a Borel isomor-
phism by [13], Theorem 4.2. Hence, {(g(m), g(q)) | g € G} is actually a Borel set and not merely an analytic
set. On the other hand, if Gleason’s conjecture is true, then the mapping g — (g(m1),...,g(my),9(q))),
G +— M"™l is a continuous injection for each ¢ € M. Hence, Lusin-Souslin’s theorem implies that
{(g(m1),...,9(mn),9(q)) | g € G} € M™*! is in fact a Borel set. This suggests that Axiom 2(a) should be
replaced by the stronger

Axiom 2(b).
There is a finite frame (mq,...,my,) € M™ for the action of G on M such that

{(g(m1),....g(mn), g(q)) | g € G} € M

is a Borel set for each ¢ € M.

However, Axiom 2(b) still will not be sufficient to guarantee that the conclusion of Gleason’s Conjecture
is true. This situation will be further clarified in Section 2, where it will be shown that there is a G and an M
that satisfy Axiom 1 and Axiom 2(a) such that {(g(m1),...,9(mx),9(q)) | g € G} is a K, for every q € M,
but there will be no way to make G into a Polish group let alone have (G, M) be a Polish transformation
group. Notice that in this counterexample the G-orbit of any frame is also a K, since the continuous image
of any K, is again a K,. This example suggest a further strengthening of Axiom 2(b).

Axiom 2(c).
There is a finite frame F' = (mq,...,m,) € M™ for the action of G on M such that the G-orbit of the frame

{(g(m1),...,9(my)) | g€ G} C M"

isa Ggin M™ and
{(g(m1),...,9(mn),9(q)) | g € G} C M"*
is a Borel subset of M™+! for each g € M.

Axiom 2(c) is consistent with the size one frame case proved by Gleason since in that simply transitive
case the G-orbit of a frame, i.e., a single point, is M itself, trivially a G subset of M. We also consider two
weaker variants of this axiom. To motivate the next axiom note that there exist transitive Polish transfor-
mation groups (G, M) with no finite frame but with a countably infinite frame. For example, take M to be
the unit sphere of a separable infinite dimensional complex Hilbert space H and let G be the full unitary
group of H. Any orthonormal basis is then a frame for the action of G on M.

Axiom 2(d).
There is a countably infinite frame F = (mq,ma,...) € MY for the action of G on M such that the G-orbit
of the frame

{(g(m1),g(m2),...) | g € G} € M"



is a Gg-subset of MN and
{(g(m1),g(ma)...,9(q)) | g€ G} € M" x M

is a Borel set for each ¢ € M.
and

Axiom 2(e).
There is a dense sequence {m}¢>1 in M such that the G-orbit {(g(m1), g(mz),...) C MY is a Gs-subset of
MY and

{(g(m1),9(m2) ..., 9(a)) | g€ G} S M" x M

is a Borel set for each ¢ € M.

Of course if {mg}e>1 is dense in M, then (mq,mq,...) is a countably infinite frame for G. It will be
proved that Axiom 2(c¢) implies Axiom 2(e) which in turn implies Axiom 2(d). The purpose of this paper
is to prove that the conclusion of Gleason’s conjecture is indeed true if Axiom 1 and Axiom 2(c¢) or Axiom
2(d) or Axiom 2(e) hold.

An example is given in Section 2 plausibly showing that the G5 condition in the axioms is needed. A
new general result in descriptive set theory is given in Section 3. Gleason’s results for the simply transitive
case (frames of size one) are recalled and generalized for the convenience of the reader in Section 4. The
relations among Axiom 2(c), Axiom 2(d) and Axiom 2(e) are proved in Section 5 together with the proof of
the general conjecture that Axiom 1 and Axiom 2(e) imply that G can be made into a Polish group so that
(G, M) is a topological transformation group. An application of this general result is given in Section 6.



2 A Counterexample

The purpose of this section is to show that Axiom 1 and Axiom 2(b) can hold even though the conclusion
to Gleason’s Conjecture is false.

Lemma 1 .

Let K C R be an uncountable compact set whose elements are linearly independent over Q. Such a K exists.
Let H be the additive subgroup of (R, +) algebraically generated by K. Then H is o-compact and there is no
algebraic isomorphism of H with any Polish group.

Proof:

Von Neumann [17] proved that there is a injection f : (0, +00) — R whose range consists of numbers that
are algebraically independent over Q. A simple inspection of von Neumann’s construction shows that f is a
Borel mapping. Thus the range of f is an uncountable Borel set and therefore contains a compact perfect
set. Thus such a K exists. It is simple to check that H is o-compact. As an abstract group H = ®pecgZx.
Suppose that G is a Polish group and ¢ : G — H is an algebraic isomorphism. Then Lemma 2 and Theorem
1 of Dudley [3] imply that ¢ is continuous if H is given the discrete topology. In particular eq = ¢~ *(ez)
is open and therefore G is a discrete Polish group. This implies that G is countable, a contradiction, since
G is algebraically isomorphic to H, an uncountable group. [J

Proposition 2 .

There exist a o-compact subgroup G of a Polish group K and a Polish space M such that (G, M) is a
transitive topological transformation group with a frame of every size n > 2 such that there is no algebraic
isomorphism of G with any Polish group.

Proof:

Notice that under the assumptions of the proposition if there is a frame of size n for the action of G on
M, then there is a frame of size n + 1 for the action of G on M by merely adding any element of M as the
n + 1-st entry to the original frame. It therefore suffices to prove the proposition to show the existence of a
frame of size 2.

Let A be the exponentiation of the additive subgroup H of the reals given in Lemma 1, so that A is
a subgroup of the multiplicative group of positive reals. There is no algebraic isomorphism of A with any
Polish group since A is algebraically and topologically isomorphic to H. Let B be the additive group of the
reals and let G = B x A be the natural semidirect product. G is a o-compact subgroup of the classical ax +b
group, a Polish group. If M is the real numbers, then (G, M) is a transitive topological transformation group
and (1,—1) € M? is a frame for (G, M). Suppose that L is a Polish group and ¢ : L — G is an algebraic
isomorphism. It is simple to check that A is maximal abelian in G. A = ¢ ~1(A) is maximal abelian in L
and therefore is closed in L and is itself a Polish group. This is a contradiction since ¢|Ar : A — A is an
algebraic isomorphism of A with a Polish group Ay. O

Though unrelated to the other results of this section, it should be noted that the elements of a frame
for a transitive group action are not at all analogous to a basis for a vector space, even after extraneous
elements of the frame are omitted. This is the case even for finite groups. For example, let G be the
symmetric group on a set of size six X = {1,2,3,4,5,6}. 0 # S C X, let Gg = {g € G | g(s) =
sforall s € S} and let M = G/G{123), a transitive G-space. Choose g1, g2 and g3 € G such that
916'{1,2,3}9f1 = Gse) 92G12395 = G124y and 93G{1,2,3}9§1 = G125 Then (Gii2,3y,91G1,2,3))
and (G{1’273},ggG{1’273},g3G{1’273}) are two frames for the action of G on M of different sizes that cannot
be reduced in size by omitting judiciously chosen elements.



3 A Descriptive Set Theory Result

We start with a trivial observation. If X and Y are Polish spaces, ¢ : X +— Y is continuous, V C Y is open,
U C X is open, and U N~ 1(V) # 0, then U N ~1(V) is a nonempty open subset of X and therefore is
nonmeager in X. What about the converse? That is, suppose that X and Y are Polish spaces and ¢ : X — Y
satisfies the property that if V C Y is open and if U C X is open and if U N =1 (V) # 0, then U Np~1(V)
is nonmeager in X. Does this imply that ¢ satisfies some sort of nontrivial continuity property? In general,
the answer is no. For example, let X = R, Y = {0, 1}, B C R a Bernstein set ([16], pp. 32 — 33) and let
¢ = XB, the characteristic function of B. The construction of B = x3'(1) shows that B¢ = x3'(0) is also
a Bernstein set, i.e., neither B nor B¢ contains a compact perfect set. If A C R is an uncountable analytic
set, then ¢|A cannot be continuous. This follows since A contains a compact perfect set K. If x € K N B,
then every relative neighborhood of x in K contains a compact perfect set and therefore contains of point
of B¢, showing that yp|K cannot be continuous. So some a priori weak smoothness assumption is needed
on ¢ to in order to conclude that ¢ has some sort of reasonable continuity property.

Before proceeding further, we set up some notation and recall some very general results about Baire
category. Let X be a topological space, A C X, and M(A) the union of all open sets V' C X such that
V' N A is meager in X. Then M(A) is open in X and ANclx(M(A)) is meager in X ([11], p. 201). Define
D(A) = M(A)¢, a closed subset of X, and define ID(A) = Int(D(A)), an open subset of X. D(A) is the
set of points in X at which A is not locally of the first category in X and ID(A) is the interior of the set of
points in X at which A is not locally of the first category in X. The following lemma consists of well known
results that are left as an exercise for the reader and most of which can be extracted from Kuratowski [12].

Lemma 3 .

Let X be a topological space and A, B, A,,, A, C X. Then:

(1) if AC B, then M(B) C M(A) and therefore D(A) C D(B);

(2) M(AUB) = M(A)N M(B) and therefore D(AU B) = D(A) UD(B);
(3) clx(A)¢ C M(A) and therefore D(A) C clx(A);

(4) ID(A) = X - el (M(A);

(5) if U C X is open, then D(U) — U is meager;
(6) D(A) =0 if and only if A is meager;

(7) A— D(A) is meager and D(A — D(A)) = 0);
(8) A—ID(A) is meager and D(A — ID(A)) = 0;
(9) D(A) — D(B) C D(A - B);

(10) D(mLAL) C mLD(AL);

(11) U,D(A,) € D(U,A,);

(12) if U C X s open, then UND(A) =UnNDU N A);

(15) D(D(A)) = D(A);

(1) D(A) = el (1D(4);

(15) ID(A) = Int(clx (ID(A)));

(16) ID(A) = 0 if and only if A is meager;

(17) D(Up>14,) —Un>1D(Ay) is nowhere dense;

(18) if A is nonmeager, then ANID(A) is nonempty;

(19) if A C U, where U is open and A is nonmeager, then U N ID(A) # 0;

Lemma 4 Let X be a topological space and let A C X be any set. Then A C D(A) if and only if the
following property holds: whenever U C X is open and U N A # 0, then U N A is nonmeager in X.



Proof:

Suppose A C D(A) and let U C X be open such that UN A # ). Let x € UN A. Then z € D(A) and
hence x ¢ M(A). Since U is an open neighborhood of x, it follows that U N A is nonmeager.

Conversely, suppose whenever U C X is open and U N A # (), then U N A is nonmeager. Let x € A be
arbitrary. If U is any open neighborhood of x, we have that x € U N A # 0, and hence U N A is nonmeager
by hypothesis. This implies x ¢ M(A), i.e. x € D(A). So AC D(A). O

Corollary 5 .

Let X and 'Y be topological spaces and let p : X — Y. Then the following are equivalent:

(1) o=X(V) € D(p=1(V)) for every open V CY;

(2) if V.CY is open, U C X is open and UN =1 (V) #0, then U N~ 1(V) is nonmeager in X.

Recall that if X be a topological space, then a set A C X is said to be a set with the Baire property in
X if there exists an open set U C X such that A A U is meager in X. Let BP(X) be the collection subsets
of X with the Baire property. BP(X) is the smallest o-algebra of subsets of X generated by the open sets
and the first category sets and therefore contains the Borel subsets of X. It is a nontrivial fact that if X is
a Polish space then BP(X) contains the analytic subsets of X. Again, the following lemma consists of well

known facts that are left as an exercise for the reader or can be gleaned from various places in Kuratowski
[12].

Lemma 6 .

Let X be a topological space and let A C X. Then the following statements are equivalent:
(0) Ae BP(X);

(1) A=GUM, where G is a G5 and M is meager in X;

(2) A=F — M, where F is an F, and M 1is meager in X ;

(3) A= (U — B)UC, where U is open and B and C are meager in X ;

(4) A= (F — B)UC, where F is closed and B and C are meager in X ;

(5) there is a set M meager in X such that A — M is both open and closed relative to M¢;
(6) D(A) N D(A€) is nowhere dense in X and therefore every nonempty open set contains a point at which
either A or A° is of the first category in X;

(7) D(A) — A is meager in X ;

(8) AN D(A) is meager in X;

(9) AN ID(A) is meager in X.

Corollary 7 (Gleason).
Let X be a Baire space and let A, B € BP(X). Then ID(A)NID(B) # 0 = AN B # 0.

Proof:

Suppose that AN B = @ and that the open set ID(A)NID(B) # (. But then an elementary computation
shows that @ £ ID(A)NID(B) C (ID(A) —A)UA)N(IDB)—B)UB)C (ID(A) —A)U{ID(B)- B)
is meager by Lemma 6, (9). But ID(A) N I1D(B) is not meager since X is a Baire space, a contradiction.
Hence, ANB # (. O

Theorem 8 .

Let X be a topological space, let (Y,d) be a metric space and let p : X — Y be a function that satisfies:
(1) ¢=1(B) € BP(X) for every ball BC Y ; and

(2) o=H (V) C D(p=1(V)) if V C Y is open.

Then the set of points of continuity of v is comeager in X.



Proof:

Fix n > 1. We will show that there is an open dense set U,, in X for which ¢ has oscillation less than or
equal to 1/n at each point in U,.

For each z € X, let V,, C Y be the open ball of d-radius 1/2n about ¢(z). Let U, = ID(p"1(V},)),
and set U, = UxeX U,. U, is open in X and we claim that U, is dense in Y. To see this, let W C X
be any nonempty open set and choose z € W. Then x € ¢~ (V) C D(p=1(V)), so W N D(p~1(V,)) is
nonempty and relatively open in D(¢~1(V,,)). Since U, is dense in D(¢~1(V,,)) by Lemma 3 (14), it follows
that W N U, is nonempty. Thus W N U, is nonempty and U, is dense as required.

Next we show that ¢ has oscillation less than or equal to 1/n at w for every w € U,,. To accomplish
this, we will first show that if V' C Y is open and x € ID(¢~1(V)), then ¢(z) € cly(V). If not then
there is some open neighborhood V' of ¢(x) which misses V. Since z € ¢~ }(V') C D(¢~1(V")), we
have ID(p=1(V)) N D(e=1 (V")) # 0. But ID(p~1 (V")) is dense in D(p~1(V’)) by Lemma 3 (14), so in
fact ID(¢=1(V))NID(e= Y (V")) # 0. Since ¢~ 1(V) and ¢~(V') have the Baire property, it follows from
Corollary 7 that ¢ =*(V)Ne =1 (V') # (). This contradicts our assumption that V misses V', so ¢(z) € cly (V).

Now suppose w € U,. Let z € X be such that w € U,. It follows from the above paragraph that for
every ¢ € U, we have p(x) € cly(V}), where V, is the ball of radius 1/2n about ¢(z). So d(p(w), p(z)) <
d(p(w), p(2)) + d(p(z),o(2)) < 1/2n+1/2n = 1/n. Since w was arbitrary, ¢ has oscillation less than or
equal to 1/n at every point in U,.

Set U =(),,>1 Un. Then U is a countable intersection of dense open sets in X and ¢ has oscillation 0 at
every point in U. So ¢ is continuous on a comeager set. [

Though Gleason did not formulate Theorem 8, a glance at [5] shows that he had most of the technology
in hand to prove it. A word of caution perhaps is in order for readers of [5]: the notation D(A) used here
is consistent with that defined in Kuratowski [12], whereas Gleason’s notation of D(A) coincides with the
ID(A) used here in spite of the fact that he refers to Kuratowski [12] for the properties of his D(A).

The conclusion of Theorem 8 is reminiscent of a property of Baire class 1 functions (a theorem of Baire,
[10], Theorem 24.14). However, in general, there is no connection between the functions that satisfy the
hypotheses of Theorem 8 and functions of Baire class 1. For example, the function ¢ = d¢ is a Baire class 1
function, but p=*((1/2,3/2)) = {0} is certainly meager in R and therefore does not satisfy the hypotheses
of Theorem 8. On the other hand, let B = {(x,y) | y > 0} UQ and let ¢ = x g, the characteristic function of
B. Then ¢ is Borel measurable and hence is in BP(R?) and if U C R is open, then ¢! (U) is either empty
or contains a nonempty open subset of R? and therefore is second category. But ¢ is not a Baire class 1
function since ¢ ~1((—1/2,1/2)) N R is the set of irrational numbers, which is not an F,.



4 A Strengthening of Gleason’s Results

Most, but not all, of the results given in this section are due to Gleason in less general form. They are given
here because of their importance in what follows and for the convenience of the reader since Gleason’s paper
is somewhat obscure. The statements of the results are more general than Gleason’s statements and the
proofs are somewhat different.

We start with a result on descriptive set theory. It illustrates the power of a transitive group assumption.

Proposition 9 (Gleason).

Let X be a Polish space, Y a separable metric space, G a group that acts as a group of homeomorphisms on
X and Y and that is transitive on X and let ¢ : X — Y be BP(X)-measurable and G-equivariant. Then ¢
18 continuous.

Proof:

Let U C X and V C Y be open and satisfy UNyp =1 (V) # 0. Let z € UNg~ (V) so (x,¢(z)) e Ux V. If
z' € X choose g € G such that g(x) = z’. Then (2/, o(z")) = (9(z), ¢(g(x)) = (9(x), g(¢(x))) € g(U) x g(V).
Therefore graph(y) C Ugea(g(U) x g(V)). Since graph(yp)) € X x Y is separable metrizable and there-
fore Lindelof there exists a sequence {gn}tn>1 € G such that graph(y) C U,>1(gn(U) X gn(V)). Let
X, ={r € X | (z,0() € gu(U) x gn(V)} = go(U N p=1(V)). Since U,>1X,, = X, some X,, is sec-
ond category and therefore U N p~1(V) is nonmeager in X. Corollary 5 plus Theorem 8 imply that the set
of points of continuity of ¢ in X is residual in X and therefore nonempty. Since G is transitive and ¢ is
G-equivariant, ¢ is continuous everywhere. [

Gleason did not point out the following corollary (c.f. [4]).

Corollary 10 .

Let X be a Polish space, x € X, and G a Polish group that acts as an abstract transitive group of homeomor-
phisms of X such that g — g(z), G — X, is continuous. Let G, ={x € X | g-x =z}, a closed subgroup of
G. Then the natural G-equivariant mapping ¢ : gG, — g(x), G/G, — X, is a homeomorphism and (G, X)
is a topological transformation group that is naturally homeomorphic to the topological transformation group

(G,G/Gy).

Proof:

The quotient space G/G, is a Polish space by a theorem of Hausdorff [7] and the natural G-equivariant
mapping ¢ : ¢G, — g(x), G/G, — X is a continuous bijection. G acts transitively on both X and G/G,
and ¢! : X = G/G, is a G-equivariant Borel mapping by Lusin-Souslin’s theorem. Proposition 9 now
implies that ¢! is continuous and therefore ¢ is a homeomorphism. [J

Corollary 11 (Gleason,).

Let G be an abstract group and also a Polish space such that, for each fized g € G, the mapping h — gh,
G — G, is continuous and for each fixred h € G, the mapping g — gh, G — G, is BP(G)-measurable. Then
G is a Polish group.

Proof:

Fix hg € G and let p(g) = ghoy, a BP(G)-measurable mapping. Left translations are continuous by
assumption and therefore homeomorphisms since they are invertible. Left translations also act transitively
on G. Proposition 9 implies that ¢ is continuous since k¢(g) = ¢(kg) for all k, g € G. Therefore both left and
right translations of G are continuous. The corollary now follows from a well known result of Montgomery
[14]. O



Corollary 12 .

Let G be an abstract group and also a Polish space such that, for each fized g € G, the mapping h — hg,
G — G, is continuous and for each fivred h € G, the mapping g — hg, G — G, is BP(G)-measurable. Then
G is a Polish group.

Proof:
Let G* be the group whose underlying set is G with the topology of G but with the multiplication
a * b =ba. Then G* is a Polish group and this corollary follows by applying Corollary 12 to G*. [J

Corollary 13 (Gleason).
Let G and M satisfy Aziom 1 and Aziom 2(a) for a frame of size one. Then the conclusion to Gleason’s
Conjecture is true.

Proof:

G acts simply transitively on M since n = 1. Fix my € M and topologize G by requiring that the
bijection g — g(mg), G — M, be a homeomorphism. G is then an abstract group and a Polish space.
h, — h if and only if h,(mg) — h(mo) which implies that gh,(mg) = g(hn(mo)) — g(h(mo)) = gh(mo)
which in turn implies that gh,, — gh for each g € G, i.e., the mapping h — gh, G — G, is continuous for
each g € G.

On the other hand, fix h € G. The graph of the mapping g — gh, G — G, is homeomorphic to
{(g(mo),g(h(mo))) | g € G}, an analytic set. From this it easily follows that the mapping g — gh, G — G,
is BP(G)-measurable. The present corollary now follows from Corollary 12. O

10



5 The General Case

We first start with some basic properties of analytic frames.

Lemma 14 .

Let M be a Polish space, G an abstract group of homeomorphisms of M, I and J nonempty finite or countably
infinite disjoint index sets, (p;)icr a frame for G acting on M and (¢;)jes a tuple of elements of M. Let A =
{(9(pi))ier 19 € G}, C(r) = {(9(pi))icr & (9(r)) | g € G} (r € M) and B = {(g(p:))ic1 ®(9(¢;))jes | 9 € G}
and suppose that C(r) is an analytic set for every r € M. Then A is analytic set and B is an analytic set
Borel isomorphic to A. If A is a Borel set, then B is a Borel set. If A is a Gs-set, then B is a Gg-set
homeomorphic to A.

Proof:

A is an analytic set since it is the continuous image of any C(r). If jo € J then Cj, = {(9(p:))icr &
(9(4j0)) | 9 € G} & [Ije ;1 M is an analytic subset of M7 and therefore B = Nje;C,, is an analytic
set since the intersection of a sequence of analytic sets is analytic. The natural projection of B onto A is a
continuous bijection since (p;);er is a frame for G acting on M and therefore is a Borel isomorphism by [13],
Theorem 4.2. We are now done in the analytic and Borel cases.

Finally, suppose A is a Gs5. Let ¢ : A B be given by ¢ : (9(pi))ier — (9(pi))ic1®(9(q;)) e, the inverse
of projection of B onto A and therefore a Borel mapping. Then A is a Polish space, B is a separable metric
space and ¢ is a G-equivariant mapping. Proposition 9 implies that ¢ is continuous. Since we have already
noted that the natural projection of B onto A, viz. ¢!, is continuous, we have that ¢ is a homeomorphism.
Hence, B is a Gy since it is a Polish space. O

Corollary 15 .
If Aziom 2(c) holds, then Aziom 2(d) holds and Aziom 2(d) holds if and only if Aziom 2(e) holds.

Proof:

Call a frame F' a Gs-frame if its orbit under G is a Gs-set. Any augmentation of a finite or countably
infinite Gs-frame for the action of G on M by a finite or countably infinite number of elements of M is again
a Ggs-frame for the action of G on M by Lemma 14. O

Theorem 16 .
Let G and M satisfy Aziom 1 and Aziom 2(c) or Aziom 2(d) or Aziom 2(e). Then the conclusion of
Gleason’s Conjecture is true.

Proof:

Corollary 15 implies that it suffices to give the proof under the assumption that Axiom 2(e) holds.

Suppose that {me}¢>1 is a dense sequence in M such that O = {(g(m1),g(ma2),...) | g € G} C MN is
a Gs subset of MY and that {(g(m1),g(m2),...,9(q)) | g € G} € MY x M is a Borel subset of MY x M
set for each ¢ € M. The natural diagonal action of G on MY is an abstract group of homeomorphisms of
MY, If F = (mq,ma,...) € MY is the frame and Q = (q1,¢2,-..) € O, then, with obvious notation, the set
{(g(F),9(Q)) | g € G} C O x 0O is a Borel set by Lemma 14. O is a Polish space since it is a Gs-subset of a
Polish space and G acts as a simply transitive group of homeomorphisms of O. Then the pair G and O satisfy
Axiom 1 and Axiom 2(a). Therefore the pair (G, 0) can be made into a Polish topological transformation
group by Corollary 13.

If © € M choose h € G such that © = h(m;). Now the mapping g — gh — gh(F) — gh(m1) = g(z) is
continuous for every x € M and G-equivariant. Corollary 10 now implies that the pair (G, M) is a transitive
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Polish topological transformation group. [J

The next simple general result implies that the topology on G determined by Theorem 16 is unique.

Proposition 17 .

Let M be a Polish space and let G be an abstract group of homeomorphisms of M. If T, and To are two
Polish group topologies on G such that both ((G,T1), M) and ((G,T2), M) are topological transformation
groups, then T1 = T5.

Proof:

Let F be a frame whose coordinates are dense in M. The mapping G +— G- F C MY, g+ g - F, is a
bijection. Hence, the mappings (G,Ty) — G- F, g— g- F (£ =1, 2) are Borel isomorphisms since they are
continuous. Therefore, the group isomorphism (G, T7) — (G, T2), g — g, is a Borel mapping and therefore
a topological isomorphism. [J

The counterexample given in Section 2 strongly suggests that the sufficient G5 G-orbit of a frame condition
in the axioms cited in Theorem 16 cannot be omitted. Unfortunately this condition is not necessary, as the
following proposition demonstrates.

Proposition 18 .

There exist a Polish group G and a Polish space X such that (G, X) is a transitive topological transformation
group with a frame such that the following property holds: the orbit G - x is not a Gs set in X™ for every
frame x € X™ (n € NU {c0}).

Proof:

Let X be the reals, let A be the multiplicative group of positive rationals with the discrete topology,
let B be the additive group of the reals and let G = B x A, the natural semidirect product of B and A.
(G, X) is a transitive topological transformation group and (1,—1) is a frame for G in X2. Let n € N and
let x € X™ be a frame for G. Then z # 0 € X™. Suppose that G - = is a G5 subset of X™. Then G-z is a
Polish space and the mapping g — gx is a homeomorphism by Corollary 10. It follows that A -z is a Gs in
X™ since A closed in G implies A -z is closed in G- x. But A-z = {qx | ¢ € Q, ¢ > 0} is therefore a G
in {gz | ¢ € R, ¢ > 0}, a contradiction since the positive rationals are not a Gs-subset of the positive reals. .

Recall the following theorem of Becker-Kechris.

Theorem 19 ([2] Theorem 5.1.5) .

Let G be a Polish group, let X be a Polish G-space, and let E C X be a G-invariant Borel set. There exists
a Polish topology finer than the original topology of X (and thus having the same Borel structure) in which
E is now open and the action of G on X 1is still continuous.

The following proposition shows in a rather strong manner that the assumption that G is a Polish group
cannot be omitted from the Becker-Kechris Theorem 19.

Theorem 20 .

There exists a separable metrizable topological group G, a Polish G-space X and a G-invariant K,-subset
E C X such that there is no finer Polish topology on X which makes E a G5 and such that the action of G
on E is still continuous.
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Proof:

Let G be as in Proposition 2, let M = R and let X = M?2. G is a separable metrizable K, group and
the pair (G, M) is a topological transformation group. The orbit of any frame for G in M™ and therefore in
X"isa K,. (1,-1) € X is a frame for G, E = G- (1,—1) C X is a K, G acts simply transitively on F
and G - (z,q) C X2 is K, for every =, ¢ € X. Suppose that there is a finer Polish topology on X that makes
E into a Gs and such that the action of G on X is still continuous. This new topology and the original
topology on X generate the same Borel sets and therefore G - (z,q) is still a Borel set for every z, ¢ € X.
Then the hypotheses of Corollary 13 are satisfied and the abstract group G can be made into a Polish group
such that the pair (G, X) is a Polish topological transformation group. But G cannot be given any Polish
group topology by Proposition 2, a contradiction. [J
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6 A Corollary on Lie Groups and Manifolds

The following corollary is obviously motivated by Gleason [5], Corollary 2, who gave a terse indication of its
proof. Perhaps this is the result desired by Gleason.

Corollary 21 .

Let G and M satisfy Aziom 1 and Aziom 2(c). In addition assume that M is of finite dimension and
the G-orbit G - F is locally connected at one point. Then (G, M) can be made into a Polish topological
transformation group such that G is a Lie group and M is a manifold homeomorphic with a quotient group

of G.

Proof:

(G, M) can be made into a Polish topological transformation group by Theorem 16. M™ is of finite
dimension ([9], Theorem III 4, The Product Theorem, p. 33) and therefore the G-orbit G - FF C M™ is of
finite dimension ([9], Theorem III 1, p. 26). Since G-orbit is locally connected at one point, it is locally
connected since G acts transitively on the orbit. Therefore G is a finite dimensional locally connected Polish
group since it is homeomorphic to the G-orbit G - F. If U is a connected open subset of G, then U is a
connected, locally connected complete metrizable space and therefore U is arcwise connected ([8], Theorem
3-17). Hence, G is a finite dimensional locally arcwise connected Polish group and therefore is a Polish
Lie group ([6], Theorem 7.2). Finally, if z € M and G, is the G-stability group at z, then G, is a closed
subgroup of G, G/G, is a manifold ([18], Theorem 3.58) and M is homeomorphic to G/G, by Corollary 10.
d

As a final comment, Gleason proved the following corollary.

Corollary 22 (Gleason [5], Corollary 3).

Let G be a topological group acting continuously and effectively on a complete separable metric space M. Let
T be an analytic subgroup of G (that is, a subgroup which is the continuous image of the set of irrational
numbers) which is simply transitive on M. Then T is closed.

As Gleason notes in his proof, we have G = G, T, where G, is the stability group at z € M, a closed
subgroup of G, and G, NT = {e}. Therefore Proposition 5 and Corollary 6 of [1] provide more general
results, at least in the case for which (G, M) is a Polish transformation group. The proofs of this proposition
and corollary appear to have nothing in common with the techniques employed by Gleason.

14



References

[1]

[10]
[11]
[12]
[13]

[14]

[15]

[16]

[17]

18]

Alexandru G. Atim and Robert R. Kallman, The infinite unitary and related groups are algebraically
determined Polish groups, Topology and its Applications, volume 159, issue 12, 1 August 2012, pp. 2831
— 2840, http://dx.doi.org/10.1016/j.topol.2012.04.018.

Howard Becker and Alexander S. Kechris, The Descriptive Set Theory of Polish Group Actions, London
Mathematical Society Lecture Note Series 232, Cambridge Univerity Press, New York, New York, 1996.

Richard M. Dudley, Continuity of homomorphisms, Duke Mathematical Journal, 1961, pp. 587 — 594.

Edward G. Effros, Transformation groups and C*-algebras, Annals of Mathematics, Series 2, volume
81, number 1, January 1965, pp. 38 — 55.

Andrew M. Gleason, On groups of homeomorphisms, pp. 39 — 44, Algebraical and Topological Founda-
tions of Geometry, Proceedings of a Colloquium held in Utrecht, August 1959, edited by Hans Freuden-
thal, Pergamon Press, New York, 1962.

Andrew M. Gleason and Richard S. Palais, On a class of transformation groups, American Journal of
Mathematics, volume 79, 1957, pp. 631 — 648.

Felix Hausdorff, Uber innere Abbildungen, Fundamenta Mathematicae, volume 23, 1934, pp. 279 — 291.
John G. Hocking and Gail S. Young, Topology, Addison-Wesley, Reading, Massachusetts, 1961.

Witold Hurewicz and Henry Wallman, Dimension Theory, revised edition, Princeton University Press,
Princeton, New Jersey, 1948.

Alexander S. Kechris, Classical Descriptive Set Theory, Springer-Verlag, New York, 1995.
John L. Kelley, General Topology, D. van Nostrand Company, Princeton, New Jersey, 1955.
Kazimierz Kuratowski, Topology, volume I, Academic Press, New York, 1966.

George W. Mackey, Borel structure in groups and their duals, Transactions of the American Mathemat-
ical Society, volume 85, number 1, May, 1957, pp. 134 — 165.

Deane Montgomery, Continuity in topological groups, Bulletin of the American Mathematical Society,
volume 42, December 1936, pp. 879 — 882.

Deane Montgomery and Leo Zippin, Topological Transformation Groups, John Wiley & Sons, New
York, 1955, ISBN 0-88275-109-7.

John C. Oxtoby, Measure and Category, second edition, Springer-Verlag, New York, 1980, ISBN 0-387-
90508-1.

John von Neumann, Ein System algebraisch unabhéngiger Zahlen, Mathematische Annalen, volume 99,
1928, pp. 134 — 141.

Frank W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Springer-Verlag, New York,
1983, ISBN 0-387-90894-3.

15



