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Abstract. We consider the descriptive complexity of some subsets of the

infinite permutation group S∞ which arise naturally from the classical series
rearrangement theorems of Riemann, Levy, and Steinitz. In particular, given

some fixed conditionally convergent series of vectors in Euclidean space Rd, we
study the set of permutations which make the series diverge, as well as the set

of permutations which make the series diverge properly. We show that both

collections are Σ0
3-complete in S∞, regardless of the particular choice of series.

1. Introduction

The goal of this paper is to establish the exact descriptive complexity of some
interesting subsets of the Polish group S∞ of permutations of ω, endowed with the
topology of pointwise convergence on ω, considered as a discrete set. Our methods
will involve a blending of the techniques of classical real analysis and geometry,
with the descriptive set theoretic notion of continuous reducibility between Polish
spaces.

First we recall Bernhard Riemann’s celebrated rearrangement theorem of 1876
[6], now a staple of every graduate course in real analysis, which states the following
remarkable fact (presented here as in [8]): given a conditionally convergent series of

real numbers

∞∑
k=0

ak, and two extended real numbers α, β ∈ [−∞,∞] with α ≤ β,

it is possible to find an infinite permutation π ∈ S∞ for which lim inf
n→∞

n∑
k=0

aπ(k) = α

and lim sup
n→∞

n∑
k=0

aπ(k) = β. In other words, by varying one’s choice of α and β, it

is possible to rearrange the terms of a conditionally convergent infinite series so
that the partial sums converge to any particular real number, or diverge to plus or
minus infinity, or even diverge properly.

Almost as famous as Riemann’s original theorem is the following d-dimensional
analogue:

Levy-Steinitz Theorem. Let

∞∑
k=0

vk be a conditionally convergent series of vectors

in Rd. Then there exists an affine subspace A ⊆ Rd (that is, a space of the form
A = v + M where v ∈ Rd and M ⊆ Rd is a linear subspace) such that whenever

a ∈ A, there is π ∈ S∞ with

∞∑
k=0

vπ(k) = a.

1
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The statement above implies that the set of all possible sums of rearrangements
of a conditionally convergent series of d-dimensional vectors is at least as rich as in
the 1-dimensional case. An incomplete proof was first given by Levy in 1905 [5],
and the complete proof was furnished by Steinitz in 1913 [9]. Steinitz’s proof, which
is the one more commonly seen today, relied on a particular geometric constant for
Euclidean spaces which is now commonly called the Steinitz constant. The proof is
nontrivial, and an excellent concise version of it may be found in the paper [7] by P.
Rosenthal. Our proofs will also rely heavily on the existence of a Steinitz constant.

The Levy-Steinitz theorem gives rise to a natural partition of S∞, into the set D

of all permutations π for which

∞∑
k=0

vπ(k) diverges (either properly or to ∞, where

∞ denotes the point at infinity in the one-point compactification of Rd), and the

complement set S∞\D of permutations π for which

∞∑
k=0

vπ(k) converges to some

vector in Rd. Both D and its complement are interesting nontrivial sets. For
instance, it is easy to observe, as we will do briefly in Section 4, that both D and
S∞\D are uncountable and dense in S∞, and also that D is a comeager set.

We wish to examine these collections from the vantage point of descriptive set
theory, or, loosely speaking, the study of the definable subsets of Polish spaces.
Definable here may refer to Borel, analytic, projective, or any other class of “well-
behaved” sets, which are typically closed under continuous preimages. Of course
the Borel sets may be stratified by their relative complexity into a Borel hierarchy
indexed by the countable ordinals, whose exact definition we will recall for the
reader in Section 2. It is an empirical phenomenon that a great bulk of those
Borel sets which present themselves in the everyday study of mathematics will fall
into the very bottom few levels of the Borel hierarchy. Thus there has been some
industry for descriptive set theorists in finding “natural” examples of Borel sets
which are “more complex” than usual. For some instances of such sets, the reader
may consult the well-known references [2] and Sections 23, 27, 33, and 37 of [4], or
the paper [1], which produces many examples in the field of ordinary differential
equations.

Our objective here will be to establish the exact descriptive complexity of our
set D and its complement. In classical terminology, we will show that D is Gδσ
but not Fσδ (and hence not Fσ, Gδ, open, nor closed). Using the more modern
notation, we prove:

Theorem 1. Let

∞∑
k=0

vk be any conditionally convergent series of vectors in Rd,

and let D ⊆ S∞ be the set of all permutations π for which

∞∑
k=0

vπ(k) diverges. Then

D is Σ0
3-complete.

Of course, it follows immediately that S∞\D is Π0
3-complete. Now, for π ∈ S∞,

say that the rearrangement

∞∑
k=0

vπ(k) diverges properly if the series diverges, but

does not diverge to infinity. Our methods also give the following result:
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Theorem 2. Let

∞∑
k=0

vk be any conditionally convergent series of vectors in Rd, and

let DP ⊆ S∞ be the set of all permutations π for which

∞∑
k=0

vπ(k) diverges properly.

Then DP is Σ0
3-complete.

It follows that the set S∞\DP of series rearrangements which either converge to
a vector in Rd, or which diverge to∞, is also a Π0

3-complete set in S∞. Notice that,
remarkably, none of the above statements depend on the nature of the particular

conditionally convergent series

∞∑
k=0

vk that we choose! Thus, we exhibit continuum-

many sets in S∞ which lie no lower on the Borel hierarchy than the third level.

2. Definitions and terminology

First we recall the definition of the Borel hierarchy. Given a Polish space X,
we let Σ0

1(X) be the family of all open subsets of X, and Π0
1(X) the family of all

closed subsets of X. We set ∆0
1(X) = Σ0

1(X) ∩Π0
1(X), so ∆0

1(X) consists of the
clopen sets in X. The rest of the family is defined recursively as follows: Suppose
for some countable ordinal β, we have defined the classes Σ0

α(X) and Π0
α(X) for

all α < β. Then we set

Σ0
β(X) = {

⋃
n∈ω An : An ∈ Π0

αn
for some αn < β},

Π0
β(X) = {Ac : A ∈ Σ0

β(X)}, and

∆0
β(X) = Σ0

β(X) ∩Π0
α(X).

It is well known that ∆0
β(X) ⊆ Σ0

β(X),Π0
β(X) ⊆∆0

β+1 for each β, and that the
inclusions are all proper.

Let X,Y be Polish spaces and A ⊆ X, B ⊆ Y . If there exists a continuous
function f : X → Y such that f−1(B) = A, then we say that A is Wadge reducible
or continuously reducible to B, and we write A ≤W B. Intuitively, we think that
A is “no more complex” than B.

Let Γ be any of the pointclasses Σ0
β , Π0

β , or ∆0
β . A standard inductive argument

through the hierarchy shows that Γ is closed under continuous preimages, i.e.,
whenever X and Y are Polish, A ⊆ X, B ∈ Γ(Y ), and A is continuously reducible
to B, then we have A ∈ Γ(X).

The above comment provides a useful tool for determining the complexity of a
set. We say that a subset B of a Polish space Y is Γ-hard if for every Polish space
X and every A ∈ Γ(X) we have A ≤W B. It follows from the above comments
that if B is Γ-hard, then Γ is a lower bound for the descriptive complexity of B.
If in addition we have B ∈ Γ(Y ), then we say that B is Γ-complete, and we have
determined its exact complexity in the Borel hierarchy.

The most common method for showing that a set B is Γ-hard is to find a set A
which is already known to be Γ-complete, and prove that A ≤W B by constructing
an explicit continuous reduction. This will be the method of our proof in Section
4, and we will make use of the following subset C of the Baire space ωω:

C = {x ∈ ωω : lim
n→∞

x(n) =∞}.
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Exercise 23.2 of [4] asks the reader to show that C is in fact Π0
3-complete. It

necessarily follows that the complement ωω\C is Σ0
3-complete. Our proof will con-

tinuously reduce this complement ωω\C, simultaneously, to both D and DP, and
thus establish the Σ0

3-hardness of the latter two sets.
We regard each nonnegative integer n as a von Neumann ordinal, i.e. we think of

each n as the set {0, ..., n− 1}. If a function π : n→ ω is injective, then we call π a
finite partial permutation. We use the notation dom(π) to refer to the map’s domain
n = {0, ..., n− 1} and ran(π) to refer to its range {π(0), ..., π(n− 1)}. If σ ∈ S∞ or
if σ is a finite partial permutation, then we say σ extends π if σ � dom(π) = π.

3. The Bounded Walk lemma

In this section we will develop the main technical lemma on which our proof is
built. An intuitive explanation for the Bounded Walk lemma is as follows: Consider
a conditionally convergent series as an abstract infinite collection (vk)k∈ω of vectors
in Rd from which we may build finite paths. Let α and β be two points in Rd.
Suppose we have already walked very close to α and we now wish to walk very
close to β. Then if all the remaining vectors to choose from are sufficiently small
(say less than ρ · 1

Cd
where ρ and Cd are some constants to be determined later),

and α and β are sufficiently far apart (say further than 3ρ), then it is possible to
build a finite path which (1) extends the path we have already walked; (2) uses up
all except arbitrarily small remaining vectors; (3) takes us arbitrarily close to β;
and (4) does not wander arbitrarily far from the straight-line path connecting α
and β. In addition we may (5) use up any particular vector we wish. (Note that
conditions (1) and (2) allow us to repeat this “bounded walk” process between as
many points as we like, as often as we like.)

Now we aim to establish such a lemma. Before we do so, we first recall the
following classical result as stated in [7], which is attributed to Steinitz, and which
asserts the existence of a very useful “bounded rearrangement constant” Cd in
Euclidean space, now referred to as the Steinitz constant:

Lemma 3 (Polygonal Confinement Theorem). Let d ≥ 1 be any integer. Then there
exists a constant Cd which satisfies the following statement: Whenever v0, v1, ..., vm
are vectors in Rd which sum to 0 and satisfy ||vi|| ≤ 1 for each i ≤ m, then there
is a finite permutation P ∈ Sm with the property that∣∣∣∣∣

∣∣∣∣∣v0 +

j∑
i=1

vP (i)

∣∣∣∣∣
∣∣∣∣∣ ≤ Cd

for every j.

The Polygonal Confinement Theorem is the basis for the remaining lemmas in
this section.

Lemma 4. Let α, v1, ..., vm be vectors in Rd which sum to β ∈ Rd, let ρ > 0,
and let Cd be as in the Polygonal Confinement Theorem. Further suppose we have
||vi|| ≤ ρ · 1

Cd
for each i ≤ m and ||β − α|| ≥ ρ. Then there is a finite permutation

P ∈ Sm with the property that
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∣∣∣∣∣
j∑
i=1

vP (i)

∣∣∣∣∣
∣∣∣∣∣ ≤ 2||β − α||

for every j.

Proof. Without loss of generality we may assume α = 0, for if not, replace α with
0 and β with β−α. We may also without loss of generality take ρ = Cd, for if not,

replace vi with vi ·
Cd
ρ

and β with β · Cd
ρ

. In this case we have ||vi|| ≤ 1 for each i

and ||β|| ≥ Cd.
Now let s be an integer sufficiently large so that ||β||s ≤ 1, and set vm+1 =

vm+2 = ... = vm+s = −β/s. Then α, v1, ..., vm, vm+1, ..., vm+s are a collection of
vectors which satisfy the hypotheses of the Polygonal Confinement Theorem, and
hence there exists a permutation P ′ ∈ Sm+s for which∣∣∣∣∣∣

∣∣∣∣∣∣α+

j′∑
i=1

vP ′(i)

∣∣∣∣∣∣
∣∣∣∣∣∣ =

∣∣∣∣∣∣
∣∣∣∣∣∣
j′∑
i=1

vP ′(i)

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ Cd

for every j′ ≤ m+s. Let P ∈ Sm be the unique permutation which arranges 1, ...,m
in the same order as P ′.

Now let j ≤ m be arbitrary. Let j′ ≥ j be the least integer for which {P (1), ..., P (j)} ⊆
{P ′(1), ..., P ′(j′)}. Note that since P and P ′ arrange 1, ..., j in the same order,
then for any i ≤ j′, we must have either (P ′)−1(i) ∈ {1, ..., j} or (P ′)−1(i) ∈
{m+ 1, ...,m+ s}. Let I = {i ≤ j′ : P−1(i) ∈ {m+ 1, ...,m+ s}}. Then we have:

∣∣∣∣∣
∣∣∣∣∣
j∑
i=1

vP (i)

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣∣
∣∣∣∣∣∣
j′∑
i=1

vP ′(i) −
∑
i∈I

vi

∣∣∣∣∣∣
∣∣∣∣∣∣

≤

∣∣∣∣∣∣
∣∣∣∣∣∣
j′∑
i=1

vP ′(j)

∣∣∣∣∣∣
∣∣∣∣∣∣+
∑
i∈I
||vi||

≤ Cd +
∑
i∈I

||β||
s

≤ ||β||+ s · ||β||
s

= 2||β||

as required. �

Lemma 5. Let σ be any finite partial permutation of ω, and let

∞∑
k=0

vk be a series

of vectors. If π ∈ S∞ is any permutation for which

∞∑
k=0

vπ(k) converges, then there

exists another permutation π′ ∈ S∞ for which
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(1) π′ extends σ, and

(2)

∞∑
k=0

vπ′(k) =

∞∑
k=0

vπ(k).

Proof. This may be accomplished by simply finding a finitely supported permuta-
tion τ ∈ S∞ for which τ ◦ π � dom(σ) = σ, and setting π′ = τ ◦ π. �

Lemma 6 (Bounded Walk Lemma). Let

∞∑
k=0

vk be a conditionally convergent se-

ries of vectors in Rd. Let ρ > 0 and ε > 0 be arbitrary and let Cd be as in the
Polygonal Confinement Theorem. Let n ∈ ω be arbitrary. Suppose π is a finite
partial permutation with dom(π) = J+1 ∈ ω and such that ||vk|| < ρ · 1

Cd
whenever

k /∈ ran(π). Further suppose that α ∈ Rd satisfies

∣∣∣∣∣
∣∣∣∣∣α−

J∑
k=0

vπ(k)

∣∣∣∣∣
∣∣∣∣∣ < ρ, and β ∈ Rd

satisfies ||β − α|| ≥ 3ρ, and

∞∑
k=0

vτ(k) = β for some τ ∈ S∞.

Then there exists a finite partial permutation σ with dom(σ) = I + 1 ∈ ω which
satisfies the following properties:

(1) σ extends π;

(2) ||vk|| < ε · 1
Cd

whenever k /∈ ran(σ);

(3)

∣∣∣∣∣
∣∣∣∣∣β −

I∑
k=0

vσ(k)

∣∣∣∣∣
∣∣∣∣∣ < ε;

(4)

∣∣∣∣∣
∣∣∣∣∣

i∑
k=J+1

vσ(k)

∣∣∣∣∣
∣∣∣∣∣ ≤ 6||β − α|| whenever J + 1 ≤ i ≤ I; and

(5) n ∈ ran(σ).

Proof. By applying Lemma 5, we may assume without loss of generality that the

permutation τ for which

∞∑
k=0

vτ(k) = β is also such that τ extends π. Choose I ∈ ω to

be so large that τ−1(n) ≤ I,

∣∣∣∣∣
∣∣∣∣∣β −

I∑
k=0

vτ(k)

∣∣∣∣∣
∣∣∣∣∣ < min(ρ, ε), and that ||vτ(k)|| < ε · 1

Cd

for all k > I.

Set α1 =

J∑
k=0

vτ(k) =

J∑
k=0

vπ(k) and set β1 =

I∑
k=0

vτ(k). Now notice that we have
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||β1 − α1|| = ||β − α− (β − β1) + (α− α1)||
≥ ||||β − α|| − ||β − β1|| − ||α− α1||||
≥ ||3ρ− ρ− ρ||
= ρ.

Moreover the images τ(J + 1), ..., τ(I) do not lie in the range of π, since τ is
a bijection extending π and dom(π) = {0, ..., J}. Hence vτ(J+1), ..., vτ(I) all have

length less than ρ · 1
Cd

by our hypothesis, and therefore we may apply Lemma 4 to

find a bijection P : {τ(J + 1), ..., τ(I)} → {τ(J + 1), ..., τ(I)} which satisfies

∣∣∣∣∣
∣∣∣∣∣

i∑
k=J+1

vP (τ(k)

∣∣∣∣∣
∣∣∣∣∣ ≤ 2||β1 − α1||

whenever J + 1 ≤ i ≤ I. If we define σ : I + 1 → ω by σ(k) = τ(k) for k ≤ J and
σ(k) = P (τ(k)) for J < k ≤ I, then σ is a finite partial permutation with domain
I + 1 which clearly satisfies (1) above.

Note that if k /∈ ran(σ), then k /∈ {σ(0), ..., σ(J), σ(J+1), ..., σ(I)} = {τ(0), ..., τ(J), P (τ(J+
1)), ..., P (τ(I)} = {τ(0), ..., τ(I)}. So τ−1(k) > I, and hence by our choice of I, we
have ||vk|| = ||vτ(τ−1(k))|| < ε · 1

Cd
. Thus (2) is also satisfied.

Since P is a bijection, we have

∣∣∣∣∣
∣∣∣∣∣β −

I∑
k=0

vσ(k)

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣β −

(
J∑
k=0

vτ(k) +

I∑
k=J+1

vP (τ(k)

)∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣
∣∣∣∣∣β −

I∑
k=0

vτ(k)

∣∣∣∣∣
∣∣∣∣∣ < ε,

so (3) is satisfied.
Lastly note that ||β1−α1|| ≤ ||β−β1||+ ||β−α||+ ||α−α1|| < ρ+ ||β−α||+ρ ≤

3||β − α|| by our hypothesis. Hence, we have

∣∣∣∣∣
∣∣∣∣∣

i∑
k=J+1

vσ(k)

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣

i∑
k=J+1

vP (τ(k))

∣∣∣∣∣
∣∣∣∣∣

≤ 2||β1 − α1||
≤ 6||β − α||

whenever J + 1 ≤ i ≤ I. So (4) is also satisfied. (5) holds simply because τ−1(n) ≤
I = dom(τ), and hence n ∈ ran(τ) = ran(σ). So the lemma is proved. �
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Remark. For simplicity, from now on when we apply the Bounded Walk lemma, we
will say that we use it to walk from α to β, where α and β are as in the statement
of the theorem.

4. Proof of Theorems 1 and 2

First let us make a few simple observations. We will describe our sets of interest
using logical notation, with the assumption in place that all quantified variables
range over ω. First notice that by Cauchy’s criterion for convergence, the following
equivalence holds:

π ∈ D ↔ ∃m ∀n ∃i ∃j

[
i, j ≥ n ∧

∣∣∣∣∣
∣∣∣∣∣
j∑
k=i

vπ(k)

∣∣∣∣∣
∣∣∣∣∣ ≥ 1

m

]
.

Since the latter predicate is an open condition in S∞, a count of quantifiers
verifies that D indeed lies in Σ0

3(S∞). Now fix any m ≥ 1, and consider the set Dm
defined by the following rule:

π ∈ Dm ↔ ∀n ∃i ∃j

[
i, j ≥ n ∧

∣∣∣∣∣
∣∣∣∣∣
j∑
k=i

vπ(k)

∣∣∣∣∣
∣∣∣∣∣ ≥ 1

m

]
.

Then Dm is a nonempty Π0
2 (Gδ)-subset of D which is invariant under multi-

plication by finitely supported permutations, and hence dense in S∞. This shows
that D is a comeager set. The complement S∞\D is also nonempty and invariant
under finitely supported permutations, and hence dense as well.

In fact, if we let T ⊆ S∞ be the set of all permutations whose only action is to
transpose (perhaps infinitely many) consecutive integers, then it is easy to see that
T is uncountable, and that both D and S\D are invariant under multiplication by
elements of T . Thus both sets are uncountable dense, i.e. in some sense they are
“large” nontrivial sets in S∞, as promised in the introduction. The reader may
consult [3] for similar observations about some other sets in S∞ which are closely
related to our D and DP.

Next define a set I ⊆ S∞ by the rule

π ∈ I ↔ ∃m ∀n ∃i

[
i ≥ n ∧

∣∣∣∣∣
∣∣∣∣∣
i∑

k=0

vπ(k)

∣∣∣∣∣
∣∣∣∣∣ ≤ m

]
.

Then I is a Σ0
3 set, which consists exactly of those permutations whose corre-

sponding series rearrangements

∞∑
k=0

vπ(k) do not diverge to infinity. Since DP =

D ∩ I, so too we have DP ∈ Σ0
3(S∞).

Proof of Theorems 1 and 2. In light of our comments above, it suffices to show
that D and DP are Σ0

3-hard. Recall that the set C = {x ∈ ωω : lim
n→∞

x(n) = ∞}
is known to be Σ0

3-complete. We will build a function f : ωω → S∞ that will be a
continuous reduction from ωω\C to both D and DP simultaneously. That is, both
of the following will hold:

x ∈ ωω\C ↔ f(x) ∈ D,



THE DESCRIPTIVE COMPLEXITY OF SERIES REARRANGEMENTS 9

x ∈ ωω\C ↔ f(x) ∈ DP.

Fix an arbitrary x ∈ ωω. Let v =
∑∞
k=0 vk. We will recursively construct a

sequence of integers (Jn)n∈ω and a sequence of finite partial permutations (πn)n∈ω,
each with domain {0, ..., Jn}, which satisfy the following seven conditions for each
n ≥ 0:

(I) πn extends πn−1;

(II) n ∈ {πn(0), ..., πn(Jn)};

(III) the definitions of πn(Jn−1 + 1), ..., πn(Jn) depend only on the values of x(n)
and x(n+ 1);

(IV)

∣∣∣∣∣
∣∣∣∣∣v −

Jn∑
k=0

vπn(k)

∣∣∣∣∣
∣∣∣∣∣ < 1

x(n+ 1) + 1
;

(V)

∣∣∣∣∣∣
∣∣∣∣∣∣

j∑
k=Jn−1+1

vπn(k)

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ 36 · 1

x(n) + 1
for every j ∈ {Jn−1 + 1, ..., Jn};

(VI) there exist i, j ∈ {Jn−1, ..., Jn} for which

∣∣∣∣∣
∣∣∣∣∣
j∑
k=i

vπn(k)

∣∣∣∣∣
∣∣∣∣∣ > 1

x(n)+1 ; and

(VII) ||vk|| < 1
x(n+1)+1 ·

1
Cd

for all k /∈ ran(πn).

After this construction is finished, we will let π be the unique permutation which
extends all the πn’s, and set f(x) = π. Conditions (I) and (II) will guarantee that
π is indeed a permutation, while (III) will guarantee that the map f is continuous.

Conditions (IV) and (V) will ensure that if x ∈ C, then

∞∑
k=0

vπ(k) will converge to

v, while condition (VI) will guarantee that if x /∈ C, then

∞∑
k=0

vπ(k) will diverge

properly. (Condition (VII) is just a technical requirement to facilitate our recursive
definition.)

We will now proceed with our construction. Here for the sake of convenience

our base case will be n = −1. Let J−1 ≥ 0 be so large that ||v −
J−1∑
k=0

vk|| < 1
x(0)+1 ,

and that ||vk|| < 1
x(0)+1 for all k > J−1. Let π−1 : J0 + 1→ J0 + 1 be the identity

permutation. Note that π−1 and J−1 trivially satisfy (IV) and (VII) above; this
will be enough to facilitate our induction.

Now we assume that Ji and πi are defined for all i < n, and satisfy at least (IV)
and (VII), and we proceed with the inductive step of defining Jn and πn. As we go
we will verify that Jn and πn in fact really do satisfy all of conditions (I)-(VII).

By the Levy-Steinitz theorem, the set of all points β ∈ Rn for which some

rearrangement of

∞∑
k=0

vk converges to β is an affine subspace of Rd; in particular,
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there is at least a line of possible points to which the rearrangements converge. So
we may choose some β ∈ Rd for which ||β − v|| = 3 · 1

x(n)+1 , and a permutation

τ ∈ S∞ for which

∞∑
k=0

vτ(k) converges to β. Now we will define πn and Jn by

applying the Bounded Walk lemma twice: first, we will use the lemma to “walk
out” to a point near β, and then we will use the lemma to “walk back in” to a point
near v.

To “walk out”: apply the Bounded Walk lemma to walk from v to β, extending
the finite partial permutation πn−1 and with ρ = ε = 1

x(n)+1 . Thus we obtain an

index I > Jn−1 and a finite partial permutation σ : I + 1 → I + 1 which satisfies
properties (1)–(5) of the lemma. In particular, condition (3) ensures that we have

∣∣∣∣∣∣
∣∣∣∣∣∣

I∑
k=Jn−1+1

vσ(k)

∣∣∣∣∣∣
∣∣∣∣∣∣ =

∣∣∣∣∣∣
∣∣∣∣∣∣β − v − β +

I∑
k=0

vσ(k) + v −
Jn−1∑
k=0

vσ(k)

∣∣∣∣∣∣
∣∣∣∣∣∣

≥ ||β − v|| −

∣∣∣∣∣
∣∣∣∣∣β −

I∑
k=0

vσ(k)

∣∣∣∣∣
∣∣∣∣∣−
∣∣∣∣∣∣
∣∣∣∣∣∣v −

Jn−1∑
k=0

vσ(k)

∣∣∣∣∣∣
∣∣∣∣∣∣

> 3 · 1

x(n) + 1
− 1

x(n) + 1
− 1

x(n) + 1

=
1

x(n) + 1

while condition (4) guarantees that

∣∣∣∣∣∣
∣∣∣∣∣∣

i∑
k=Jn−1+1

vσ(k)

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ 6 ||β − v|| = 18 · 1

x(n)+1

whenever J + 1 ≤ i ≤ I.
Next we “walk back in.” Apply the Bounded Walk lemma to walk from β to v,

extending the finite partial permutation σ, with ρ = 1
x(n)+1 and ε = 1

x(n+1)+1 . Then

we obtain an index Jn > I and a finite partial permutation πn : Jn + 1 → Jn + 1
which again satisfies properties (1)–(5). By the previous inequality, and applying
condition (4) for πn, we see that

∣∣∣∣∣∣
∣∣∣∣∣∣

i∑
k=Jn−1+1

vπn(k)

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤

∣∣∣∣∣∣
∣∣∣∣∣∣

I∑
k=Jn−1+1

vπn(k)

∣∣∣∣∣∣
∣∣∣∣∣∣+

∣∣∣∣∣
∣∣∣∣∣

i∑
k=I+1

vπn(k)

∣∣∣∣∣
∣∣∣∣∣

≤

∣∣∣∣∣∣
∣∣∣∣∣∣

I∑
k=Jn−1+1

vσ(k)

∣∣∣∣∣∣
∣∣∣∣∣∣+ 6 ||β − v||

≤ 18 · 1

x(n) + 1
+ 18 · 1

x(n) + 1

= 36 · 1

x(n) + 1
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whenever I+1 ≤ i ≤ Jn. Thus we have shown that (V) holds for πn. (I), (III), and
(IV) obviously hold from our definition of πn, and (II) holds if we utilize condition
(5) in either of our two applications of the Bounded Walk lemma to ensure that
n ∈ ran(πn). We have shown that (VI) holds if we take i = Jn−1 and j = I, and
(VII) follows from condition (2) in our second application of the Bounded Walk
lemma. So our construction is complete and we may let π ∈ S∞ be the unique
permutation which extends all of the πn’s.

Define the map f : ωω → S∞ by f(x) = π, where π is as we have constructed
above. The function f , as a map between the Polish space ωω and its Polish sub-
space S∞, is continuous by condition (III). We claim that f is in fact the continuous
reduction we desire.

To see this, suppose x ∈ C, so lim
n→∞

x(n) = ∞ and hence lim
n→∞

1
x(n)+1 = 0. For

any i ∈ ω, let ni be the greatest integer for which Jni−1 < i ≤ Jni . Then by (IV)
and (V) we have

∣∣∣∣∣
∣∣∣∣∣v −

i∑
k=0

vπ(k)

∣∣∣∣∣
∣∣∣∣∣ ≤

∣∣∣∣∣∣
∣∣∣∣∣∣v −

Jn−1∑
k=0

vπn−1(k)

∣∣∣∣∣∣
∣∣∣∣∣∣+

∣∣∣∣∣∣
∣∣∣∣∣∣

i∑
k=Jn−1+1

vπn(k)

∣∣∣∣∣∣
∣∣∣∣∣∣

≤ 1

x(ni) + 1
+ 36 · 1

x(ni) + 1

= 37 · 1

x(ni) + 1
.

Now taking the limit as i→∞ (and as ni →∞) we see that

∞∑
k=0

vπ(k) converges

to v. Hence f(x) ∈ S∞\D and f(x) ∈ S∞\DP.

On the other hand, suppose x ∈ ωω\C. Then the sequence (x(n)) is cofinally
bounded, i.e. there is an M < ∞ such that x(n) ≤ M infinitely often. Hence

1
x(n)+1 >

1
M+1 infinitely often. It follows from (VI) that there are infinitely many

blocks i, ..., j of integers for which

∣∣∣∣∣
∣∣∣∣∣
j∑
k=i

vπ(k)

∣∣∣∣∣
∣∣∣∣∣ > 1

x(n)+1 >
1

M+1 , and hence

∞∑
k=0

vπ(k)

diverges by the Cauchy criterion. In addition, we have already demonstrated that
for any ni depending on i as above, we have∣∣∣∣∣

∣∣∣∣∣v −
i∑

k=0

vπ(k)

∣∣∣∣∣
∣∣∣∣∣ ≤ 37 · 1

x(ni)+1 ≤ 37.

This implies that all partial sums of the rearranged series are bounded, and so
the series must in fact diverge properly. Thus in this case we have f(x) ∈ D and
f(x) ∈ DP. So f is the reduction we seek, and D and DP are Σ0

3-complete. �
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