
m208w2014

1

MUSC 208 Winter 2014
John Ellinger Carleton College

Fun With Envelopes

The term envelope in digital audio is generally applied to the overall amplitude
shape of a single musical note. The envelopes of three common instruments are
outlined in red.

Horn

Cello

Guitar

Performers on wind and string instruments like the the Horn and Cello can
control the shape of the amplitude envelope. Performers on percussion and
plucked or struck strings like the snare drum, piano, and guitar have no control
over the shape of the amplitude envelope. It's built into the instrument.

Why Use Envelopes

Enter and run this code. You should hear four notes played.

m208w2014

2

Change all four notes to Middle C and play again.

Did you hear all four notes? No, you heard one continuous frequency for 4
seconds. Let's see if we can turn the notes on and off by changing on and off
times and on and off gains.

m208w2014

3

m208w2014

4

This sort of worked but produced clicks between the notes.

Try setting the off frequency to zero at the end of the note to remove clicks.

Didn't seem to help. Clicks are still present.

m208w2014

5

ChucK Envelope Class To The Rescue

[ugen]: Envelope (STK Import)
▪ STK envelope base class.
▪ see examples: envelope.ck

 This class implements a simple envelope
 generator which is capable of ramping to
 a target value by a specified \e rate.
 It also responds to simple \e keyOn and
 \e keyOff messages, ramping to 1.0 on
 keyOn and to 0.0 on keyOff.

 by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
(control parameters)

• .keyOn - (int , WRITE only) - ramp to 1.0
• .keyOff - (int , WRITE only) - ramp to 0.0
• .target - (float , READ/WRITE) - ramp to arbitrary value.
• .time - (float , READ/WRITE) - time to reach target (in seconds)
• .duration - (dur , READ/WRITE) - duration to reach target
• .rate - (float , READ/WRITE) - rate of change
• .value - (float , READ/WRITE) - set immediate value

http://chuck.cs.princeton.edu/doc/program/ugen_full.html#Envelope

Envelope 1

Uses the keyOn and keyOff methods. No clicks.

http://chuck.cs.princeton.edu/doc/examples/basic/envelope.ck
http://chuck.cs.princeton.edu/doc/program/ugen_full.html#Envelope

m208w2014

6

Envelope 2
 Use the duration and target methods to change the envelope.

Envelope 3

Create an ADSR envelope. The ADSR envelope problem in Homework 5-6 treated
the envelope like a wind or string instrument where the shape of the envelope
was controlled as a percentage of the overall length of the note. This solution is
not be appropriate for piano and guitar because their envelopes have a sharp
attack and rapid decay that is not affected by how long the note lasts.

Enter and run this code.

m208w2014

7

Waveform viewed in Audacity

m208w2014

8

ChucK's ADSR Class

[ugen]: ADSR (STK Import)
▪ STK ADSR envelope class.
▪ see examples: adsr.ck

 This Envelope subclass implements a
 traditional ADSR (Attack, Decay,
 Sustain, Release) envelope. It
 responds to simple keyOn and keyOff
 messages, keeping track of its state.
 The \e state = ADSR::DONE after the
 envelope value reaches 0.0 in the
 ADSR::RELEASE state.

 by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
extends Envelope
(control parameters)

• .keyOn - (int , WRITE only) - start the attack for non-zero values
• .keyOff - (int , WRITE only) - start release for non-zero values
• .attackTime - (dur , READ/WRITE) - attack time
• .attackRate - (float , READ/WRITE) - attack rate
• .decayTime - (dur , READ/WRITE) - decay time
• .decayRate - (float , READ/WRITE) - decay rate
• .sustainLevel - (float , READ/WRITE) - sustain level
• .releaseTime - (dur , READ/WRITE) - release time
• .releaseRate - (float , READ/WRITE) - release rate
• .state - (int , READ only) - attack=0, decay=1 , sustain=2, release=3, done=4
• .set - (dur, dur, float, dur) - set A, D, S, and R all at once

http://chuck.stanford.edu/doc/program/ugen_full.html#Envelope

ADSR Example 1

The attack, decay, and release values in ChucK's ADSR envelope class are
durations in seconds. The sustain value is a float acts as a percentage of the
current gain value. ADSR example 1 plays four notes decreasing in volume, all
using the same envelope shape.

http://chuck.cs.princeton.edu/doc/examples/basic/adsr.ck
http://chuck.cs.princeton.edu/doc/program/ugen_full.html#Envelope
http://chuck.stanford.edu/doc/program/ugen_full.html#Envelope

m208w2014

9

m208w2014

10

ADSR Example 2

ADSR example 2 repeats a one measure rhythm four times. The notes are of
different durations but all notes use the same envelope shape.

m208w2014

11

m208w2014

12

ADSR Example 3
ADSR example 3 plays four notes of different durations and different envelope
shapes. See if you can create them.

Fill in the ? mark values in the code below to create these four envelope shapes.

m208w2014

13

m208w2014

14

The Natural Decay Envelope

Human hearing responds to sound levels (amplitude) in an exponential manner.
Envelope segments using exponential curves sound natural to the ear.

The exponential natural decay function is found in many natural phenomenon
and is given by this formula.

f (n)= e−
Kn
N

where e is the base of natural logarithms, K is a positive integer called the time
constant, n is a single data pointr, and N is the total number of data points.

Plot The Natural Decay Function in Octave

Open octave. Create a new naturalDecayPlots.m file. Enter this code and run it
in octave.

m208w2014

15

You should see these plots. Notice that time constants 1, 3, and 5 never quite
reach zero. In digital audio terms that means a note is not completely silenced.

m208w2014

16

Natural Decay Envelope in ChucK

NaturalDecayEnv1.ck uses an Impulse to create a sine wave and uses the
Math.exp() function to create the natural decay function. The sine value and the
decay value at each sample point are multiplied together to create an output
sample.

[function]: float exp (float x);
▪ computes e^x, the base-e exponential of x

Enter and run this code

m208w2014

17

Audacity Amplitude View

Open the naturalDecay1.wav in Audacity. As the time constant increases the
duration of the note gets shorter and shorter.

Audacity Decibel View

When the amplitude is viewed on the decibel scale it is apparent that you need a
time constant of 7 or greater to ensure a silence between notes.

Audacity dB popup menu.

m208w2014

18

Natural Decay Envelope 2

NaturalDecayEnv2.ck uses a SinOsc and an Envelope to create the decay. Enter
and run this code. Experiment with different time constants.

m208w2014

19

Frequency Sweep Using An Envelope

This code is similar to the frequency sweep problem from Homework 5-6 but
solves by directly incrementing the frequency at each sample. It does this by
using the envelope to create a ramp with 88200 samples starting at 220 and
ending at 880. Blackhole pulls the envelope values one sample at a time and
assigns the envelope value to the SinOsc s.freq. The code is very short and
compact.

Do it again this time sweeping down.

Change the start and end frequencies.

m208w2014

20

Envelope Tremelo is Amplitude Modulation

This code uses a Low Frequency Oscillator as an envelope creating amplitude
modulation with three cycles per note.

m208w2014

21

Single Note Viewed in Audacity

m208w2014

22

Envelope Pitch Bend

Use two envelopes, one for keyOn and keyOff and another for LFO created pitch bend.

m208w2014

23

Experiments

Change the ePitchRls time

noteDur * .85 => dur ePitchRls;

Change the endFreq by adjusting the amount added to midiNote. For example
+12 would be an octave swing. 1.1 is slightly more than a half step.

Std.mtof(midiNote + 1.1) => float endFreq;

Change the direction of the endFreq swing.

Std.mtof(midiNote - 1.1) => float endFreq;

See if you can figure out a way to alternate the direction of the swing + - + - + - .

