
m208w2014

1

MUSC 208 Winter 2014
John Ellinger, Carleton College

Lab 8 Arrays, Classes, Time Sync, and STK Instruments

Note And Rhythm Array
You want to play a melody in ChucK and you already know the notes and rhythms.
There are several ways you could structure the note and rhythm data.

The notes are the 8 notes of the C major scale as MIDI note numbers. The rhythm is
represented by the numbers 1-8. In your code the rhythm would be a number (float) that
represents time, duration, or multiples/fractions of a beat.

m208w2014

2

Method 1 - Alternating Pairs

We'll first look at a one dimensional array that alternates the scale notes and the fake
rhythm numbers.

m208w2014

3

Exercise 1

// add code to print notes only
<<< "====== Notes only ======" >>>;
Excercise 2

// add code to print notes only
<<< "====== Rhythms only ======" >>>;
Exercise 3

add code to print this
60 1
62 2
64 3
65 4
67 5
69 6
71 7
72 8
// add code to print note rhythm pairs
<<< "====== Note Rhythm Pairs ======" >>>;

m208w2014

4

Method 2 - Multidimensional Array

You could also use a multi dimensional array where elements of the larger array are
individual two element arrays.

[…] outer array encloses [n, r] inner arrays
[[n, r], [n, r], [n, r], [n, r], …] multiDimensional array

Chuck array definition syntax

[[60,1], [62,2]] @=> int nr[][]; // nr[1][0] = 62 and nr[0][1] = 1

Method 2 Code

m208w2014

5

Exercise 4
// add code to print notes only
<<< "====== Notes only ======" >>>;
Exercise 5

// add code to print rhythms only
<<< "====== Rhythms only ======" >>>;

m208w2014

6

Chuck Classes

A class is an object that contains data and methods that operate on that data. We've
already used many ChucK classes like SinOsc, Impulse, NRev, etc.

A ChucK class encapsulates variables and functions. For example

Class vs. Array

A major difference between classes and arrays is that classes can contain mixed data
types. All elements in an array must all be the same type.

m208w2014

7

Method 3 - Note and Rhythm Class

m208w2014

8

Twinkle Twinkle, Melody And Bass In Stereo

Code Outline

1. Define rhythm values
2. Define MIDI note numbers
3. Create the Note-Rhythm two dimensional array for melody
4. Create the Note-Rhythm two dimensional array for bass
5. Define Tempo related variables.
 gTempo is beats per minute
 gSecondsPerBeat is the duration of one beat
6. Write the setTempoVariables(float tempo) function
7. Write the playClarinetMelody(int repeats) function
8. Write the playMoogieBass(int repeats) function
9. Test
Save twinkleLab8.ck. You'll need it for Homework 7-8.

m208w2014

9

m208w2014

10

m208w2014

11

Add Keyboard Code To Control The Tempo

We'll use code you've seen before to make the up and down arrows increase and
decrease the tempo.

// STEP 10
Hid hi;
HidMsg msg;
you_find_it => int upArrowCode;
you_find_it => int downArrowCode;

// which keyboard
0 => int device;
// get from command line
if(me.args()) me.arg(0) => Std.atoi => device;

// open keyboard (get device number from command line)
if(!hi.openKeyboard(device)) me.exit();
<<< "keyboard '" + hi.name() + "' ready", "" >>>;

// define the amount the tempo changes in response to the arrow keys
10 => int tempoDelta;
30 => int MIN_TEMPO;
300 => int MAX_TEMPO;

function void handleKeyboard()
{

gTempo => float tempo;
// infinite event loop
while(true)
{

// wait on event
hi => now;

// get one or more messages
while(hi.recv(msg))
{

// check for action type
if(msg.isButtonDown())
{

if (msg.which == upArrowCode)
{

tempo + tempoDelta => tempo;
if (tempo > MAX_TEMPO)

MAX_TEMPO => tempo;
setTempoVariables(tempo);

}
else if (msg.which == downArrowCode)
{

tempo - tempoDelta => tempo;
if (tempo < MIN_TEMPO)

MIN_TEMPO => tempo;

m208w2014

12

setTempoVariables(tempo);
}
// <<< "down:", msg.which, msg.key, msg.ascii >>>;

}
else
{

// <<< "up:", msg.which, msg.key, msg.ascii >>>;
}

}
}

}

Copy Step 9 To Here And Add The Handlekeyboard() Function

// STEP 9 Test and Debug
// handleKeyboard() function added
setTempoVariables(100);
spork ~ handleKeyboard();
spork ~ playClarinetMelody(10);
spork ~ playMoogieBass(10);

2::minute => now; // so shreds can run

Test and Debug

Run the program and test the tempo controls. You should be able to hear
Twinkle respond to up arrow/down arrow tempo changes.

m208w2014

13

Time Synchronization

Observe ChucK Time in the Console Monitor

This example counts in seconds. You should see decimal places in the output.

Observe Chuck Synchronized Time

Have ChucK synchronize the time for you. Line 6 does the magic.

m208w2014

14

Example Non Synchronized Sound
This example uses an Impulse and a BiQuad filter to produce "blips".

See if you can get the clicks to line up when you repeatedly click the Add shred button.
It's almost impossible.

Example Synchronized Sound

Repeatedly click the Add shred button. The clicks get louder but remain in sync. They
get louder because the amplitudes of each added shred are additive.

m208w2014

15

Biquad Filter Experiments
http://chuck.cs.princeton.edu/doc/program/ugen_full.html#BiQuad

[ugen]: BiQuad
▪ STK biquad (two-pole, two-zero) filter class.

 This protected Filter subclass implements a
 two-pole, two-zero digital filter. A method
 is provided for creating a resonance in the
 frequency response while maintaining a constant
 filter gain.

 by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

(control parameters)
• .b2 - (float , READ/WRITE) - b2 coefficient
• .b1 - (float , READ/WRITE) - b1 coefficient
• .b0 - (float , READ/WRITE) - b0 coefficient
• .a2 - (float , READ/WRITE) - a2 coefficient
• .a1 - (float , READ/WRITE) - a1 coefficient
• .a0 - (float , READ only) - a0 coefficient
• .pfreq - (float , READ/WRITE) - set resonance frequency (poles)
• .prad - (float , READ/WRITE) - pole radius (less than 1 to be stable)
• .zfreq - (float , READ/WRITE) - notch frequency
• .zrad - (float , READ/WRITE) - zero radius
• .norm - (float , READ/WRITE) - normalization
• .eqzs - (float , READ/WRITE) - equal gain zeroes

http://chuck.cs.princeton.edu/doc/program/ugen_full.html#BiQuad

m208w2014

16

Experiment With The BiQuad filter.

m208w2014

17

Random Mandolin In Sync

m208w2014

18

Try This

Remove all shreds. Change these parameters and add these three shreds.

Shred 1

// change ms tempo in line 12 to 2000
0 => p2.pan; // line 54
playMandolin(48); // line 55

Shred 2

// change ms tempo in line 12 to 1000
-1 => p2.pan; // left speaker
playMandolin(60);

Shred 3

// change ms tempo in line 12 to 500
1 => p2.pan; // right speaker
playMandolin(72);

m208w2014

19

STK Instruments

STK is an acronym for Synthesis Tool Kit written by Perry Cook and Gary Scavone.
Perry Cook along with Dan Trueman who you met in class were Ge Wang's PhD advisors
at Princeton. ChucK is the result of Ge Wang's PhD dissertation.

All STK instruments are created using Physical Modeling Synthesis. The sounds are
constructed using mathematical models of physics sound waves in a tube, along a string,
on two dimensional membranes, etc. The math is complicated often involving second
order differential equations.

Open and play STK_test.ck from the m208Lab8 download folder.

Run it. Several instruments have a limited range and sound terrible outside of that
range.

