
m208w2014

1

MUSC 208 Winter 2014
John Ellinger, Carleton College

Lab 6 Wavetables And Interpolation

Create a m208Lab6 folder on your computer. Open Octave and make the
m208Lab6 folder your working directory.

By definition, a wavetable contains exactly one period of an arbitrary waveform.
The number of samples in wavetables are generally a power of 2 for computing
efficiency.

Generate A Single Cycle Sine Wave Wavetable

Create a new Octave function that generates one period of a sine wave for a
given table length.

Open genSinTable.m In Your Text Editor

Create The Gensintable Help Text and Write the Code

Create And Plot A Sine Wavetable

Generate a wave table of length 128 for a sine wave. Use the standard sine wave
formula with an amplitude of 1.0 and a frequency of 1 Hz.

m208w2014

2

y(n) = Asin 2π fn
SR

⎛
⎝⎜

⎞
⎠⎟

Test Your Code

Check The Help Text

m208w2014

3

Octave Tips

Move to beginning of line: Type Ctrl-A

Move to end of line: Type Ctrl-E

Up arrow: recall previous commands

Down arrow: recall next commands

Different Plot Types

Try these different plot commands one line at a time in the Terminal.

History command

m208w2014

4

This command shows the last 15 commands used.

Copy a Block of Text (Mac Terminal)

Hold down the Option key and you can copy a block of text. Unknown for
windows. Test it and let me know.

Diary command

m208w2014

5

Records everything you do in an octave session. Type "help diary".

Turn The Diary On For Lab6

You'll have to turn the diary off to see the text. You can open and close the diary
at any time. For now just leave it running. We'll turn it off at the end of Lab 6.

Create Play A Wavetable

Repeat the sine table 250 times, play it, and save it to a wav file..

The single quote after wav' converts a row vector into a column vector
wavwrite() expects a column vector, play samples() works withboth.

Wavetable Math

Question 1 - What frequency will you hear?

f = SR
tableLength

Question 2 - How long will the sound last?

 seconds = tableLength × repeats
SR

Calculate Frequency and Duration In Octave

m208w2014

6

Find the Number of Samples in One Period in Audacity

Open the "table128_250x.wav" file in Audacity and zoom in until you can see
one full period of the sine wave. Select one period of samples and change the
Length popup to display samples. Audacity should report 128 samples.

Calculate the Duration in In Audacity

Select the entire waveform and change the length popup menu to
 "hh:mm::ss+milliseconds". You should see a total duration of 726 milliseconds.

m208w2014

7

Calculate the Frequency In Audacity

Select the entire waveform and choose Plot Spectrum from the Analyze menu.
Make these settings.

m208w2014

8

Wavetable Frequency

At a given sampling rate (44100), the length of the wavetable determines the frequency
that will be heard when it is played.

f = SR
tableLength

Computer based wavetable lengths are almost always powers of two for computing
efficiency. The frequencies produced by these power of two wavetable lengths are shown
below. The sample rate is 44100.

Power of 2 Table Size Frequency in Hz

21 2 22050

22 4 11025

23 8 5512.5

24 16 ≈ 2756

25 32 ≈ 1378

26 64 ≈ 689

27 128 ≈ 345

28 256 ≈ 172

29 512 ≈ 86

210 1024 ≈ 43

211 2048 ≈ 21.5

212 4096 ≈ 10.8

213 8192 ≈ 5.4

214 16384 ≈ 2.7

215 32768 ≈ 1.3

How Do You Make A Wavetable Play At Any Frequency

That question will be the subject for the rest of the lab 6.

m208w2014

9

Generate a Wavetable of Specified Length and Duration

You Write the Code

generate one period table using wav = genSinTable(len)
calculate how many repetitions of len it will take to fill 44100 samples (one second)
use the floor function to round down to the nearest sample
use the repmat function to make as many copies as necessary to fill duration secs
return the wavetable

Play It

Verify The Duration

Test Octave Help for genExtendedSinTable

m208w2014

10

Write an Octave Function to Play Every Other Sample

Code Outline

function [ret] = everyOtherSample(wavIn)
 # declare an empty array to hold the output samples: wavOut = [];
 # declare a variable to hold the sample index for wavIn: inN;
 # declare a variable to hold the sample index for wavOut: outN;
 # write a loop to access every odd numbered sample of wavIn
 # beginLoop
 # if inN is odd,

 # wavOut(outN) = wavIn(inN);
 # endif

 # endLoop
 # ret = wavOut
endfunction

Test Help For everyOtherSample

m208w2014

11

Test everyOtherSample

Question 1

How are the frequencies of wavIn and wavOut related? Prove it in Audacity.

Question 2

How are the durations of wavIn and wavOut related? Prove it in Octave.

Write an Octave Function to Play Every Sample Twice

Code Help

function [ret] = everySampleTwice(wavIn)
 # declare an empty array to hold the output samples: wavOut = [];
 # declare a variable to hold the sample index for wavIn: inN;
 # declare a variable to hold the sample index for wavOut: outN;
 # beginLoop
 # wavOut(outN) = wavIn(inN);
 # Update outN and inN as needed
 # wavOut(outN) = wavIn(inN);
 # Update outN and inN as needed
 # endLoop
 # ret = wavOut
endfunction

m208w2014

12

Test everySampleTwice Help

Test everySampleTwice

Question 1

How are the frequencies of wavIn and wavOut related? Prove it in Audacity.

Question 2

How are the durations of wavIn and wavOut related? Prove it in Octave.

m208w2014

13

Wavetable Interpolation

Phase Increment

All examples up to this point have accessed points on the time axis (x axis) where actual
samples exist. Samples are uniformly spaced at a distance of 1/SR called the
phase_increment. A phase_increment of 1.0 is defined to be 1/SR. The
everyOtherSample function used a phase_increment of 2.0. Non integer
phase_increments will fall in between existing samples. Phase increments must be
positive numbers greater than zero.

Phase Index

The blue circles in the picture below represent two periods of a sine wavetable of length
16. The blue lines are spaced uniformly using a phase increment of 1.0. The red dots are
also uniformly spaced using a phase increment of 1.8.

Phase increments less than 1.0 will produce a longer sound (more samples) at a lower

m208w2014

14

frequency. Phase increments greater than 1.0 will produce a shorter sound (fewer
samples) at a higher pitch.

In the picture below blue lines (phase_increment = 1.0) are spaced at integer
sample_index locations on the x (time) axis. Existing sample values are shown as blue
ellipses. Phase increment of 1.8 are shown as red todd on the x axis. Sample values for
the red dot locations are shown as red circles and would have to be estimated.

m208w2014

15

Sample Estimation Methods

There are three estimation methods that vary is speed and quality: truncation,
rounding, and interpolation.

Truncation

Truncation is the fastest method but introduces noise in the output. Truncation chooses
the sample value to the left of the phase_index location. The Octave floor() function.

Rounding

Rounding is almost as fast but still introduces noise in the output. Rounding chooses the
closest sample value to the left or right of the phase_index. The Octave round()
function.

Interpolation

Linear interpolation is one of many interpolation methods. It is slower than truncation
and rounding but results in the lowest noise, hence best quality. Linear interpolation
estimates the sample value based on the phase_index's proportional distance between
the samples to its left and right.

The phase_index is an integer multiple of the phase_increment that reports the
current phase location on the x axis (time) as the you step through the
wavetable. The phase_index must be capable of wrapping around to the
beginning of the table when exceeds the length of the table.

The Phase Index Formula

phase_ index = mod(previous _ phase + phase_ increment, tableLength);
Curtis Roads: Computer Music p. 92-93

The Octave mod function mod(x, y) is used to calculate the phase_index. The
estimated sample output value can be found using this formula.

wavOut = wavIn[phase_ index];

When the phase_index contain decimal places, the integer part indicates the
sample value to the left of the phase_index and the fractional part indicates the

m208w2014

16

fractional distance past the left sample. The unknown sample value is
determined using truncation, rounding, or interpolation methods.

Truncation Example

We'll use a wavetable of length 128 that contains one period of a sine wave. A
wavetable of length 128 will play back at ≈345 Hz (phase increment is 1.0). How
do we find the phase_increment that will play the wavetable at 1000 Hz?

The Phase Increment Formula

The phase_increment value needed to play a desired frequency given a fixed
wavetable size is given by this formula.

phase_ increment = tableLength * frequency
SR

Curtis Roads: Computer Music p. 92-93

Create an Octave function called truncateWavetable.m

Enter this code in Octave. Comments are included to help you understand what's
happening.

m208w2014

17

m208w2014

18

Test truncateWavetable

Given one period of a sine wave in a wavetable of size 128, create a new
waveform with an amplitude of 1.0, a frequency of 1000 Hz, and a duration of
one second. Play the output waveform and write it to a wav file.

Plot wavOut

m208w2014

19

Compare a Pure Sine Wave with a Truncated Sine Wave

The pure sine wave is blue and the truncated one is red. You can see minor
deviations from the pure sine wave.These deviations introduce additional
unrelated frequencies (noise) in the truncated sine wave.

m208w2014

20

The Spectrum Of A Pure Sine Wave

This is the spectrum of the pure sine wave as shown in Audacity. There is a single
frequency component at 1000 Hz.

This is the spectrum of the truncated wavOut as shown in Audacity. The largest
frequency component appears at 1000 Hz as expected. However, there is a lot of noise
present.

m208w2014

21

Rounding Example
Create this Octave function.

Delete any and all text that appears in roundWavetable.m and then copy the contents of
truncateWavetable.m and paste it into roundWavtable.m.

Make these minor changes highlighted in red.

m208w2014

22

m208w2014

23

Test It

Plot It

The rounded sine wave (red) seems to match the pure sine wave (blue) more
closely. Let's see if that reduced the noise.

m208w2014

24

Plot the Spectrum in Audacity
There's still plenty of unwanted additional frequencies. However none in the 1-20 Hz
band that were present in the truncate example

m208w2014

25

Linear Interpolation Formula

sampleValue = sampleLeft + fraction i (sampleRight − sampleLeft)

Here's a short example in octave.

m208w2014

26

You should see these results.

Linear Interpolation Example

Copy and paste the function body of truncateWavtable in the interpWavtable function
body. Then make these changes.

m208w2014

27

m208w2014

28

Test It

Plot It

It matches the pure sine wave so closely the blue line has disappeared.

m208w2014

29

Type this.

Plot the Spectrum in Audacity

The largest amplitude frequency appears at the 1000 Hz mark. The noise is gone. That
means a small 128 sample table can produce a virtually pure sine wave using linear
interpolation. That's the basic method of optimizing waveform storage requirements on
many commercial hardware synthesizers and virtual software synthesizers.

m208w2014

30

