m208w2014

MUSC 208 Winter 2014
John Ellinger, Carleton College

Lab 6 Wavetables And Interpolation

Create a m208Lab6 folder on your computer. Open Octave and make the
m208Lab6 folder your working directory.

octave-3.4.0:1> cd ~/Desktop/m208Labé
octave-3.4.0:2> pwd
ans = /Users/je/Desktop/m208Labé6

By definition, a wavetable contains exactly one period of an arbitrary waveform.
The number of samples in wavetables are generally a power of 2 for computing
efficiency.

Generate A Single Cycle Sine Wave Wavetable

Create a new Octave function that generates one period of a sine wave for a
given table length.

Open genSinTable.m In Your Text Editor

octave-3.4.0:168> edit genSinTable.m

Create The Gensintable Help Text and Write the Code

[ret] = genSinTable(len)
#4 returns one period of a sine wavetable
#4 of length len samples

function [ret] = genSinTable (len)
you write the code
endfunction

Create And Plot A Sine Wavetable

Generate a wave table of length 128 for a sine wave. Use the standard sine wave
formula with an amplitude of 1.0 and a frequency of 1 Hz.

m208w2014

. (27 fn
n)= Asin
y(n) (R)
Test Your Code

octave:50> wav = genSinTable(128);
octave:51> plot(wav);

® OO0 \| Figure 1
1 1 1] 1 1 1 1
0.5 | -
o -
-0.5 F -
-1 =
0 20 40 60 20 100 120 140

143,943, 0,623373

Check The Help Text

octave:4> help genSinTable
‘gensinTable’ is a function from the file /Users/

[ret] = genSinTable(len)

returns one period of a sine wavetable

of length len samples

Octave Tips

Move to beginning of line: Type Ctrl-A

Move to end of line: Type Ctrl-E

Up arrow: recall previous commands

Down arrow: recall next commands

Different Plot Types

Try these different plot commands one line at a time in the Terminal.

octave: 35>
octave: 36>
octave:37>
octave: 38>
octave:39>
octave:40>
octave:41>
octave:42>
octave:43>
octave: 44>
octave:45>
octave:46>
octave:47>
octave:48>
octave:49>

plot(wavleée);
plot(wavle, "
stem(wavlé);
stem(wavle, "
bar(wavlé);

barh(wavlé);

r

stairs(wavleé);
axis([0 17 -1.1 1.1]); # [xLo xHi yLo yHi]

grid; # turn grid on
grid; # turn grid off
hold; # don't erase existing plot

plot(wavleé,

hold; # hold off

plot(wavlé);

History command

r

wavlé = genSinTable(16);

)i

)i

)i

m208w2014

m208w2014

This command shows the last 15 commands used.

octave:80> history 15
plot(wavleé);
plot(wavlé, "r");
stem(wavlé);

1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108

stem(wavle, .);

bar(wavlé);

barh(wavlé);

stairs(wavlé);

axis([0 17 -1.1 1.1]); # [xLo xHi yLo yHi]
grid; # turn grid on

grid; # turn grid off

hold; # don't erase existing plot
plot(wavlé, "r");

hold; # hold off

plot(wavleé);
history 15

Copy a Block of Text (Mac Terminal)

Hold down the Option key and you can copy a block of text. Unknown for

windows. Test it and let me know.

octave:
octave:
octave:
octave:
octave:
octave:
octave:
octave:
octave
octave:
octave:
octave:
octave:
octave:
octave:
octave:
octave:

65>
65>
66>
67>
68>
69>
70>
71>

172>

73>
74>
75>
76>
17>
78>
79>
80>

wavlé = gensinTable(16);

plot(wavlé);

plot(wavlé, "r");

stem(wavlé);

stem(wavlé, ".");

bar(wavlé);

barh(wavlé);

stairs(wavlé);

axis([0 17 -1.1 1.1]); # [xLo xHi yLo yHi]
grid; # turn grid on

grid; # turn grid off

hold; # don't erase existing plot
plot(wavlé, "r");

hold; # hold off

plot(wavlé);

Diary command

m208w2014

Records everything you do in an octave session. Type "help diary".

Turn The Diary On For Lab6

octave:85> # turn diary on with and save to a file named diary m208Lab6.txt
octave:85> diary diary m208Lab6.txt

You'll have to turn the diary off to see the text. You can open and close the diary
at any time. For now just leave it running. We'll turn it off at the end of Lab 6.

Create Play A Wavetable

Repeat the sine table 250 times, play it, and save it to a wav file..

octave:33> wtab = genSinTable(128);

octave:34> wav = repmat(wtab, 1, 250);

octave:35> help wavwrite

octave:36> wavwrite(wav', 44100, 16, "tablel28x250.wav”);

The single quote after wav' converts a row vector into a column vector
wavwrite() expects a column vector, play samples() works withboth.

Wavetable Math

Question 1 - What frequency will you hear?

e SR
tableLength

Question 2 - How long will the sound last?

tableLength X repeats
SR

seconds =

Calculate Frequency and Duration In Octave

m208w2014

octave:37> frequency = 44100 / 128
frequency = 344.53

octave:38> seconds = 128 * 250 / 44100
seconds = 0.72562

Find the Number of Samples in One Period in Audacity

Open the "table128_250x.wav" file in Audacity and zoom in until you can see
one full period of the sine wave. Select one period of samples and change the
Length popup to display samples. Audacity should report 128 samples.

R K]

S 4) w) -6 <24 -i2 @ ﬁﬂl -36 -24 -2 0| = Core Au...

- Project Rate (Hz): Selection Start: (_JEnd (s) Length Audio Position:
-44100)#) | (snap To (000,000,000 samples+| (000,000,128 samples~] | (000,000,000 samples~|

Calculate the Duration in In Audacity

Select the entire waveform and change the length popup menu to
"hh:mm::ss+milliseconds". You should see a total duration of 726 milliseconds.

m208w2014

O O : . " -
- ———— R =L L =
OOONON S50 s e

- 0.05 p

 Project Rate (H2): Selection Start: ()End (e)Length Audio Position:
- (44100 |(§) | (Jsnap To [00h 00 m 00.000 s+ [00h 00 m00.726 5+ | [00h 00 m 00.000 s+

Click and drag to resize the track.

Calculate the Frequency In Audacity

Select the entire waveform and choose Plot Spectrum from the Analyze menu.
Make these settings.

E = ‘ z ‘ } » . » - E@aﬂﬁnﬂéﬂeﬁﬁ . » — a —

0dE]

-12dB
-18dB
-24dB-
-30dB
-36dB
-42dB
-48dB-
-54dB
-60dB+
-66dB+
-72dB-
-78dB
-84dB

3Hz SHz 10Hz 20Hz 40Hz 100Hz 200Hz 400Hz 1000Hz 3000Hz 7000Hz 15000Hz
Cursor: 345 Hz (F4) = -2 dB Peak: 345 Hz (F4) = 0.0 dB

Algorithm: | Spectrum +| Size: | 16384 4| | Export.. | [Replot |
Function: [Blackman-Harris window :] Axis: [Log frequency :] [Close] [Grids
VZ

m208w2014

Wavetable Frequency

At a given sampling rate (44100), the length of the wavetable determines the frequency
that will be heard when it is played.

= SR
tableLength

Computer based wavetable lengths are almost always powers of two for computing
efficiency. The frequencies produced by these power of two wavetable lengths are shown
below. The sample rate is 44100.

| Power of 2 | Table Size | Frequency in Hz |

7! 2 22050
0?2 4 11025
23 8 5512.5
N4 16 = 2756
23 32 ~ 1378
26 64 ~ 689
27 128 = 345
N8 256 =172
2° 512 ~ 86
10 1024 ~ 43
i 2048 =~ 21.5
12 4096 ~10.8
13 8192 ~5.4
14 16384 ~2.7
= 32768 =~ 1.3

How Do You Make A Wavetable Play At Any Frequency

That question will be the subject for the rest of the lab 6.

m208w2014

Generate a Wavetable of Specified Length and Duration

octave:13> edit genExtSinTable.m

You Write the Code

[ret] = genExtSinTable (len, secs)
#4 return a waveform of duration secs seconds
#4 using a wavetable of length len

function [ret] = genExtSinTable (len, secs)
you write the code
endfunction

generate one period table using wav = genSinTable(len)

calculate how many repetitions of len it will take to fill 44100 samples (one second)
use the floor function to round down to the nearest sample

use the repmat function to make as many copies as necessary to fill duration secs
return the wavetable

Play It

octave:41> wav = genExtSinTable(64, 4);
octave:42> playsamples(wav);

Verify The Duration

octave:43> length(wav) / 44100
ans = 3.9996

Test Octave Help for genExtendedSinTable

octave:15> help genExtSinTable
‘genExtSinTable’ is a function from the file /Users/

genExtSinTable (len, secs)
return a waveform of duration secs seconds
using a wavetable of length len

m208w2014

Write an Octave Function to Play Every Other Sample

octave-3.4.0:39> edit everyOtherSample.m

everyOtherSample (wav)

input: any waveform
#4 output: a new wav containing every other sample
#4 of the original

function [ret] = everyOtherSample (wav)
you write the code
endfunction

Code Outline

function [ret] = everyOtherSample(wavIn)
declare an empty array to hold the output samples: wavOut = [J;
declare a variable to hold the sample index for wavIn: inN;
declare a variable to hold the sample index for wavOut: outN;
write a loop to access every odd numbered sample of wavIn
beginLoop
if inN is odd,
wavOut(outN) = wavIn(C inN);
endif
endLoop
ret = wavOut
endfunction

Test Help For everyOtherSample

octave:17> help everyOtherSample
'everyOthersample’ is a function from the file /Users/

everyOtherSample (wav)
input: any waveform
output: a new wav containing every other sample
of the original

10

m208w2014

Test everyOtherSample

octave:47> wavin = genExtSinTable(128, 1.0);
octave:48> wavOut = everyOtherSample(wavin);
octave:49> playsamples(wavIin);

octave:50> playsamples(wavoOut);

Question 1

How are the frequencies of wavln and wavOut related? Prove it in Audacity.

Question 2

How are the durations of wavln and wavOut related? Prove it in Octave.

Write an Octave Function to Play Every Sample Twice
octave-3.4.0:42> edit everySampleTwice.m

[ret] = everySampleTwice (wav)

#4 input: any wav
#4 output: a new waveform containing every sample twice
#4 nl n2 n3 becomes nl nl n2 n2 n3 n3

function [ret] = everySampleTwice (wav)
you write the code
endfunction

Code Help

function [ret] = everySampleTwice(wavIn)
declare an empty array to hold the output samples: wavOut = [];
declare a variable to hold the sample index for wavIn: inN;
declare a variable to hold the sample index for wavOut: outN;
beginLoop
wavOut(outN) = wavIn(inN);
Update outN and inN as needed
wavOut(outN) = wavIn(C inN);
Update outN and inN as needed
endLoop
ret = wavOut
endfunction

11

m208w2014

Test everySampleTwice Help

octave-3.4.0:41> help everySampleTwice
“everySampleTwice' is a function from the file /Users/je/De

everySampleTwice (wav)
input: any waveform sample values computed previously
output: a new waveform containing every sample twice
nl n2 n3 becomes nl nl n2 n2 n3 n3 ...

Test everySampleTwice

octave:90> wavin = genExtSinTable(128, 1.0);
octave:91> wavOut = everySampleTwice(wavin);
octave:92> playsamples(wavin);

octave:93> playsamples(wavOut);

Question 1

How are the frequencies of wavln and wavOut related? Prove it in Audacity.

Question 2

How are the durations of wavIn and wavOut related? Prove it in Octave.

12

m208w2014

Wavetable Interpolation

Phase Increment

All examples up to this point have accessed points on the time axis (x axis) where actual
samples exist. Samples are uniformly spaced at a distance of 1/SR called the
phase_increment. A phase_increment of 1.0 is defined to be 1/SR. The
everyOtherSample function used a phase_increment of 2.0. Non integer
phase_increments will fall in between existing samples. Phase increments must be
positive numbers greater than zero.

Phase Index

The blue circles in the picture below represent two periods of a sine wavetable of length
16. The blue lines are spaced uniformly using a phase increment of 1.0. The red dots are
also uniformly spaced using a phase increment of 1.8.

® OO0 '\ Figure 1
1 T T s T T
@ Q@ @ @
@ @ @ @
0.5 -
0 \ 4 4 & $ 4 + ¢ < ¢ ¢ 4 ¢
0.5 -
U] U] U] U]
U] U] U] U]
_1 s L A A
0 5 10 15 20 25 30 35

Phase increments less than 1.0 will produce a longer sound (more samples) at a lower

13

m208w2014

frequency. Phase increments greater than 1.0 will produce a shorter sound (fewer
samples) at a higher pitch.

In the picture below blue lines (phase_increment = 1.0) are spaced at integer
sample_index locations on the x (time) axis. Existing sample values are shown as blue
ellipses. Phase increment of 1.8 are shown as red todd on the x axis. Sample values for
the red dot locations are shown as red circles and would have to be estimated.

sample_index
0 1 2 3 4 5 6 7 8 9 10 11 12 13
0
T "5 SR phase_increment = 1.0
r
(I) » . »
. » .ﬁ
phase_increment = 1.8
<> - - - w e -, -
0 1.8 3.6 54 7.2 0 1018 126
phase_index
0
L » ol »

14

m208w2014

Sample Estimation Methods

There are three estimation methods that vary is speed and quality: truncation,

rounding, and interpolation.

Truncation

Truncation is the fastest method but introduces noise in the output. Truncation chooses
the sample value to the left of the phase_index location. The Octave floor() function.

Rounding

Rounding is almost as fast but still introduces noise in the output. Rounding chooses the
closest sample value to the left or right of the phase_index. The Octave round()
function.

Interpolation

Linear interpolation is one of many interpolation methods. It is slower than truncation
and rounding but results in the lowest noise, hence best quality. Linear interpolation
estimates the sample value based on the phase_index's proportional distance between
the samples to its left and right.

The phase_index is an integer multiple of the phase_increment that reports the
current phase location on the x axis (time) as the you step through the
wavetable. The phase_index must be capable of wrapping around to the
beginning of the table when exceeds the length of the table.

The Phase Index Formula

phase _index = mod(previous _ phase + phase _increment, tableLength);
Curtis Roads: Computer Music p. 92-93

The Octave mod function mod(x, y) is used to calculate the phase_index. The
estimated sample output value can be found using this formula.

wavOut = wavln| phase _index |;

When the phase_index contain decimal places, the integer part indicates the
sample value to the left of the phase_index and the fractional part indicates the

15

m208w2014

fractional distance past the left sample. The unknown sample value 1s

determined using truncation, rounding, or interpolation methods.

Truncation Example

We'll use a wavetable of length 128 that contains one period of a sine wave. A
wavetable of length 128 will play back at 345 Hz (phase increment is 1.0). How
do we find the phase_increment that will play the wavetable at 1000 Hz?

The Phase Increment Formula

The phase_increment value needed to play a desired frequency given a fixed

wavetable size is given by this formula.

tableLength * frequency
SR

phase _increment =

Curtis Roads: Computer Music p. 92-93

octave:96> phase increment = 128 * 1000 / 44100
phase_increment = 2.9025

Create an Octave function called truncateWavetable.m

octave:97> edit truncatewavetable.m

Enter this code in Octave. Comments are included to help you understand what's
happening.

16

m208w2014

[ret] = truncateWavetable (wavIn, amp, freq, secs)

#4 computes output samples using truncation (floor function)

#4 wavIn contains sample values from a wavetable or a wave file
#4 amp is the wavOut amplitued

#4 freq is the wavOut frequency

#4 secs is the wavOut duration in seconds

function [ret] = truncateWavetable (wavIn, amp, freq, secs)

SR = 44100;
numSamples = floor(SR * secs);

initialize empty output array
wavOut = [];

find length of wavIn
tableLength = length(wavIn);

Roads phase_increment formula
phase_increment = tableLength * freq / SR;

set initial value of prev_phase_index
prev_phase_index = 0;

set first samples equal to each other
wavOout(1) = amp * wavIn(1);

for outN = 2:numSamples
Roads phase_index formula
phase_index = mod(prev_phase index + phase increment, tableLength);

the floor function strips off the decimal places = TRUNCATE
inN = floor(phase_index) + 1;

check to see if we need to wrap around
if inN > tableLength

inN = mod(inN, tableLength);
endif

assign sample value to wavOut
wavOut(outN) = amp * wavIn(inN);

update prev_phase index for next time through the loop
prev_phase_index = phase index;
endfor

return wavOut samples

ret = wavOut;
endfunction

17

m208w2014

Test truncateWavetable

Given one period of a sine wave in a wavetable of size 128, create a new
waveform with an amplitude of 1.0, a frequency of 1000 Hz, and a duration of
one second. Play the output waveform and write it to a wav file.

octave:98> wavin = genSinTable(128);
octave:99> wavOut = truncatewavetable(wavin, 1.0, 1000, 1.0);

octave:100> playsamples(wavOut);
octave:101> wavwrite(wavout', 44100, 16, "truncate.wav”);

Plot wavOut

octave:102> plot(wavOout(1:45));

x| Figure 1

0.5 fF

-1 L
0 10 20 30 40 50

46,0537, 0,815133

18

m208w2014

Compare a Pure Sine Wave with a Truncated Sine Wave

octave:194> # Pure Sine wWave at 1000 Hz

octave:194> SR = 44100;

octave:195> T = 1/SR;

octave:196> n = 0:SR-1;

octave:197> nT = n*T;

octave:198> sinel000 = sin(2 * pi * 1000 * nT);
octave:199> wavwrite(sinel000', 44100, 16, "sinel000.wav”);
octave:200> plot(sinel000(1:45));

octave:201> hold

octave:202> plot(wavout(1:45), "r");

The pure sine wave is blue and the truncated one is red. You can see minor
deviations from the pure sine wave.These deviations introduce additional
unrelated frequencies (noise) in the truncated sine wave.

® OO0 \| Figure 1
1

0.5 fF

_1 ' '
0 10 20 30 40 50

35,3404, 0,985657

19

m208w2014

The Spectrum Of A Pure Sine Wave

This is the spectrum of the pure sine wave as shown in Audacity. There is a single
frequency component at 1000 Hz.

Frequency Analysis

0dE]

-12dB
-18dB
-24dB
-30dB
-36dB-
-42dB-
-4 8dB
-54dB-
-60dB
-66dB-
-72dB
-78dB
-84dB

T T T

11Hz 20Hz 40Hz 62Hz 100Hz 200Hz 400Hz

T T T T T

" 1000Hz 2000Hz 4000Hz 10000Hz
Cursor: 1010 Hz (BS) = -2 dB Peak: 1000 Hz (BS5) = -0.0 dB

A

Algorithm: | Spectrum v | Size: | 4096 = Export... Replot

A

Function: Blackman-Harris window 3| Axis: | Log frequency v Close Grids

This is the spectrum of the truncated wavOut as shown in Audacity. The largest
frequency component appears at 1000 Hz as expected. However, there is a lot of noise
present.

20

m208w2014

e 00 Frequency Analysis
0dB]

-12dB
-18dB
-24dB
-30dB
-36dBA
-42dBA
-48dB
-54dB
-60dB
-66dB
~-72dB
-78dB

A

-84dB
T T ""lllll

11Hz ZO'HZ ' 40Hz 62Hz 100Hz 200Hz 400Hz 1000Hz 2000Hz 4000Hz 10000Hz
Cursor: 998 Hz (BS5) = 0 dB Peak: 1000 Hz (BS) = -0.0 dB

Algorithm: | Spectrum + | Size: | 4096 | | Export... | | Replot |

A

Function: | Blackman-Harris window 3| Axis: | Log frequency s/ | Close | [|Grids

Rounding Example
Create this Octave function.
octave:203> edit roundwavetable.m

Delete any and all text that appears in roundWavetable.m and then copy the contents of
truncateWavetable.m and paste it into roundWavtable.m.

Make these minor changes highlighted in red.

21

m208w2014

[ret] = roundWavetable (wavIn, amp, freq, secs)

b computes wavOut samples using rounding (round function)

ki wavIn contains sample values from a wavetable or a wave file
ki amp is the wavOut amplitued

Ed freq is the wavOut frequency

k secs is the wavOut duration in seconds

function [ret] = roundWavetable (wavIn, amp, freq, secs)

SR = 44100;
numSamples = floor(SR * secs)

declare empty array, used later in for loop
wavOut = [];

find length of wavIn
tableLength = length(wavIn);

Roads phase_increment formula
phase_increment = tableLength * freq / SR;

set initial value of prev_phase_index
prev_phase index = 0;

set first samples equal to each other
wavOout(1) = amp * wavIn(1);

for outN = 2:numSamples
Roads phase_index formula
phase_index = mod(prev_phase_index + phase_increment, tableLength);

the round function rounds to the closest wavIn sample
inN = round(phase_index) + 1;

check to see if we need to wrap around
if inN > tableLength

inN = mod(inN, tableLength);
endif

assign sample value to wavOut
wavOut(outN) = amp * wavIn(inN);

update prev_phase index for next time through the loop
prev_phase_index = phase_index;

endfor

return wavOut samples
ret = wavOut;

endfunction

22

m208w2014

Test It

octave:226> wr = roundwavetable(wavin, 1.0, 1000, 1.0);
octave:227> playsamples(wr);

octave:228> wavwrite(wr', 44100, 16, "round.wav”);

Plot It

octave:229> clf; # clear figure (clear plots)
octave:230> plot(sinelO000(1:45));
octave:231> hold

octave:232> plot(wr(1:45), "r");

r

The rounded sine wave (red) seems to match the pure sine wave (blue) more
closely. Let's see if that reduced the noise.

e OO '\ Figure 1
1 L P = 1 | 1] 1 |
0.5 F -
of/ -
() ?
() /
AN /
-0.5 4 -
-1 1 L 1 . _/
(1] 10 20 30 40 50

34,2555, 0,555910

23

m208w2014

Plot the Spectrum in Audacity
There's still plenty of unwanted additional frequencies. However none in the 1-20 Hz
band that were present in the truncate example

Frequency Analysis

0dB]

-12dB+
-18dB+
-24dB
-30dB+
-36dB-
-42dB-
-48dB
-54dB+
-60dB+
-66dB+
-72dB
~78dB+
-84dB+

L

||I|
T T T T

11Hz 20'Hz ' 4OIHZ 62Hz 100Hz 200Hz 400Hz 1000Hz 2000Hz 4000Hz 10000Hz
Cursor: 998 Hz (B5) = 0 dB Peak: 1000 Hz (B5) = -0.0 dB

Algorithm: | Spectrum 3| Size: | 4096 +| | Export... | | Replot |

Function: | Blackman-Harris window + | Axis: | Log frequency s | Close | [)Grids

V

24

m208w2014

Linear Interpolation Formula

sampleValue = sampleLeft + fraction « (sampleRight — sampleLeft)

Y(R)
@
y(x)
y(L)
Q
L ; R

x— L

R—- L

= fraction = x = L+ fraction « (R — L)

Here's a short example in octave.

octave:
octave:
octave:
octave:
octave:
octave:
:108> fraction = rem(phase index, 1)
:109> fraction = phase index - leftN

octave:

octave
octave

98> wt = genSinTable(128);
105> phase_index = 56.368

106> leftN = floor(phase index)
111> wt(leftN)

107> rightN = leftN + 1

112> wt(rightN)

110> estVal = wt(leftN)+fraction* (wt(rightN)-wt (leftN))

25

m208w2014

You should see these results.

phase index = 56.368
leftN = 56
rightN = 57
wt(leftN) = 0.42756

wt(rightN) = 0.38268
fraction = 0.36800
estVal = 0.41104

Linear Interpolation Example

octave-3.4.0:49> edit interpwWavtable.m

Copy and paste the function body of truncateWavtable in the interpWavtable function
body. Then make these changes.

26

m208w2014

interpWavetable (wavIn, amp, freq, secs)

computes output samples using a linear interpolation formula
wavIn contains sample values from a wavetable or a wave file
#4 amp is the wavOut amplitued

freq is the wavOut frequency

secs is the wavOut duration in seconds

function [ret] = interpWavetable (wavIn, amp, freq, secs)

SR = 44100;
numSamples = floor(SR * secs);

initialize empty output array
wavOut = [];

find length of wavin
tableLength = length(wavIn)

Roads phase_increment formula
phase_increment = tableLength * freq / SR;

set initial value of prev_phase_index
prev_phase_index = 0;

set first samples equal to each other
wavOout(1) = amp * wavIn(1);

for outN = 2:numSamples
Roads phase_index formula
phase_index = mod(prev_phase_index + phase_increment, tableLength);

the floor function strips off the decimal places = TRUNCATE
inN = floor(phase_index) + 1;

check to see if we need to wrap around
if inN > tableLength

inN = mod(inN, tableLength);
endif

find the samples to the left and right
leftN = inN;
rightN = inN + 1;

check to see if we need to wrap around
if rightN > tableLength

rightN = mod(rightN, tableLength);
endif

Linear interpolation formula
fraction = rem(phase_index, 1);
interpValue = wavIn(leftN) + fraction * (wavIn(rightN) - wavIn(leftN));

assign sample value to wavOut
wavOut(outN) = amp * interpValue;

update prev_phase_index for next time through the loop
prev_phase_index = phase_index;
endfor

return wavOut samples

ret = wavOut;
endfunction

27

m208w2014

Test It

octave:241> wi = interpwWavetable(wavin, 1.0, 1000, 1.0);
octave:242> playsamples(wi);
octave:243> wavwrite(wi', 44100, 16, "interp.wav");

Plot It

octave:262> clf; # clear figure (clear plots)
octave:263> plot(sinelO00(1:45));
octave:264> hold

octave:265> plot(wi(1:45), "r");

’

It matches the pure sine wave so closely the blue line has disappeared.

® OO0 \| Figure 1
1 T T T T
/ \
"/ / \\
lf""
/ \
/ y
/ 5,
0'5 B I"I sl| -
/ Y
/ I"\,

/ l."-

/ "-,

! \

Il’ \.I

o L/ .I\I . -
'lllII l'I'l
.I\I. ’||'I
II,I 'I.|,'
."s.. ’,.'
-0.5 | Y Fi -
\ /
l\.. f‘.
\
._\. /"I
~_\ ,,
LY /
-1 1 —
1} 10 20 30 40 50

44,1687, 0,623373

28

m208w2014

Type this.

octave:271> plot(sinel000(1:45), "o");

® OO \| Figure 1
1 é_m&_ S T T T
/O, \®\
@ Q
? s
@ ®
/ 4
0.5} ,.f® Os., J
@ 8
@ Q
¢ &
/ '\\.
ore % P
g ¢
g @
R o
-0.5 b d.' -
Y, /
x @
\" ,.g;
5 &
®, &
-1 AL L L Gﬁ n.»@/ 1
0 10 20 30 40 50

36,5338, 0,162284

Plot the Spectrum in Audacity

The largest amplitude frequency appears at the 1000 Hz mark. The noise is gone. That
means a small 128 sample table can produce a virtually pure sine wave using linear
interpolation. That's the basic method of optimizing waveform storage requirements on
many commercial hardware synthesizers and virtual software synthesizers.

29

m208w2014

Frequency Analysis

0dB]

-12dB+
-18dB+
-24dB
-30dB+
-36dB+
-42dB-
-48dB
-54dB+
-60dB+
-66dB+
~72dB
-78dB+
-84dB+

11Hz 20Hz 40Hz 62Hz 100Hz 200Hz 400Hz 1000Hz 2000Hz 4000Hz 10000Hz
Cursor: 974 Hz (BS5) = -21 dB Peak: 1000 Hz (BS5) = -0.0 dB

Algorithm: | Spectrum 3| Size: | 4096 +| | Export.. | | Replot |

Function: | Blackman-Harris window +| Axis: | Log frequency s/ | Close | [|Grids

V

30

