
m208w2014

1

MUSC 208 Winter 2014
John Ellinger, Carleton College

Lab 4 Mapping the HID Keyboard, MIDI
Output, Recording

Do This Lab On An iMac in the Lab

Lab 4 is an extended version of Lab 3. In Lab 3 we defined four functions to say a word
when you pressed m, 2, 0, and 8. In Lab 4 we'll map most of the keys on the keyboard.
We'll write a function called playIt(keyPress) that is called every time a key is pressed.
What gets played depends on what key is pressed.

Setup

Download and unzip this file to your Desktop: m208Lab4.zip.

Directions in this lab refer to the folder named m208Lab4 and assume it's on the
Desktop. The m208Lab4 folder should contain these files:

Set the miniAudicle Working Directory

Open /Application/miniAudicle and choose Preferences from the miniAudicle menu.
Select the Miscellaneous tab, click the Select button and choose the m208Lab4 folder on
the Desktop. Lab iMac pathname is shown.

m208w2014

2

m208w2014

3

Map the ASCII Keyboard Layout

Lab 3 responded to key presses using this code.

Lab 4 is going to map most of the keys the keyboard into four horizontal rows using
command line (Terminal) ChucK and TextWrangler to help write the code. Do this
portion of Lab 4 on an iMac using those two programs. You can easily copy the code to
your laptop when finished. The finished code can be reused in future ChucK programs.

Modify kb.ck

The kb.ck file can be found in the m208Lab4 folder. kb.ck is one of many code
examples that are distributed with ChucK. Open it in TextWrangler.

m208w2014

4

Display TextWrangler Line Numbers

Choose Show Line Numbers from the "T" popup menu. Another useful item in this
menu is Show Invisibles.

m208w2014

5

Display Textwrangler Color Syntax Coding

Choose C++ syntax from the formatting popup menu.

Save the file.

Open Terminal

At the Terminal prompt type cd followed by space, and then drag the m208Lab4 icon
into the terminal window.

Release the mouse buton and the pathname of the m208Lab4 will appear after cd. Type
return to change directory to the m208Folder and then execute pwd to verify the
change.

Run kb.ck from the Terminal

You can run any ChucK file in the Terminal by typing chuck followed by the file name.
The file must exist in the working directory (pwd).

m208w2014

6

Type Enter to execute. You should see

msg.which, msg.key, and msg.ascii

The msg.isButtonDown() and msg.isButtonUp() methods return three data items for
each key press: the raw key code, the USB key code, and the ASCII value. Which of the
three msg values you use in your program is up to you. The ASCII codes are most
consistent. However, the key code values can vary between Mac/Windows and desktop/
laptop keyboards.

Experiment 1 - type a b c d and A B C D

Both upper and lower case letters return the same ASCII code. The capital letters are
correct. The lower case ASCII codes are off by 32, "a" = 97.

Experiment 2 - type Shift key

If your code depended on distinguishing between upper and lower case letters, you'd
have to define a separate variable that kept track of the state of the Shift key. The up and
down values are the same.

Other keyboard modifier keys like capsLock, control, alt, command also return ASCII
value zero. You'll need to be check for those keys with msg.which data.

Experiment 3 - type space bar

m208w2014

7

Experiment 4 - type backspace

Experiment 5 - type Enter and 2nd Enter key if present
Both enter keys return ASCII 10, but return different key codes.

Experiment 6 - type some Function keys (F1-F6 here)
The function keys on my Microsoft keyboard all return ASCII zero but differ by key
code.

Experiment 7 - type 1 2 3 4 on the upper row of the keyboard and on the
keypad.
The ASCII values are the same, but the key codes differ.

Map the four main keyboard rows

Start with the top row 1 2 3 4 5 6 7 8 9 0 - = and type every character from left to
right. Do the same with the qwerty row, the asdfgh row, and the zxcvbn row.

m208w2014

8

Quit kb.ck

 Type Control C to quit.

m208w2014

9

Using Grep to Write Code

Grep - General Regular Expression Parser

Copy and paste the kb.ck data from the Terminal into TextWrangler.

etc.

We're going to use Grep to write some ChucK code for us. Choose the Find command in
TextWrangler's Search menu (Command-F). When the Find dialog opens make sure
Grep and Wrap around are selected.

Close the Find dialog and select line 1 of the text. Try to end the selection with the last
closing parenthesis.

m208w2014

10

Type Command-E to automatically enter line 1 into the Find field of the Find dialog.
Open the Find dialog again and you should see this.

If you see the end of line character \r at the end of the selection, delete it.

Carefully change these four numbers

into this. Be careful not to remove any whitespace and be sure to enclose the first and
fourth underlined items in parentheses. The \1 and \2 in the Replace field will be
replaced by whatever is in the first and fourth text locations in each line.

m208w2014

11

Click The Replace All Button

Click Replace All and you should see corectly for matted ChucK code appear.

etc.

What Just Happened

Find:
. means match any 1 single character

.* means match any number of characters to the end of the line or until another regular
expression symbol like a space is encountered

[0-9] means find any single number in the range zero to nine.

[a-z] means find any single lower case letter

 [A-Z] means find any single upper case letter

[0-9a-zA-Z] means find any single alpha-numeric character

[0-9]+ the plus sign means find one or more numeric characters.

m208w2014

12

() means to remember whatever is inside the parentheses save it as a variable for later

\1, \2, … refer to the variables surrounded by the parenthesis in left to right order.

Replace:

\1 is the the single character surrounded by parentheses in data column 1

\2 is the characters [0-9]+ surrounded by parentheses (the ASCII code)

Edit the Code

There are a few lines that would return errors in ChucK. You'll need to changes these.

Save As keyboardASCII.txt

We'll use it again later.

Learning Grep

If you plan to continue programming or manipulate text based data you need to learn
Grep. TextWrangler's Help menu is a good place to start.

m208w2014

13

m208w2014

14

Create the keyboardPlay ChucK Code
Open keyboardPlay.ck in TextWrangler from the m208Lab4 folder.

m208w2014

15

Add the ASCII variable Definitions

Copy and paste the ASCII Keyboard definitions into keyboardPlay.ck at line 16.

m208w2014

16

Create the Keydown Message Code for ChucK

Open the keyboardASCII.txt file you saved.

Select the first line up through the semicolon and type Command-E.

Find Command

Choose the Find command from TextWrangler's Search menu and enter this. Make sure
Grep an Wrap around are selected. Enter these Find and Replace statements.

Find:
We're matching line by line and remembering the suffix of ascii_

Replace:
My comments are indicated by #

else if (msg.ascii == ascii_\1) # set up the loop condition
\n # new line
{ # opening code bracket
\n # new line
\t # tab character
playIt(\"\1\"); # call function playIt()
\n # new line
} # closing code bracket
the \ in line 1 and line 6 will be replaced by the ascii_ suffix from the Find text field

Click The Replace All Button

You should see this.

m208w2014

17

Change the playIt() Parameter in These Lines

Find and change these playIt parameters to use the actual character typed rather than
the ascii_ definition.

m208w2014

18

m208w2014

19

Delete the else from the first line

Add the KeyDown Message Statements

Process a Key Press in the While Loop

Key presses are processed in the msg.isButtonDown() block inside the while(true) loop.

// infinite event loop
while(true)
{
 // wait on event
 hi => now;

 // get one or more messages
 while(hi.recv(msg))
 {
 // check for action type
 if(msg.isButtonDown())
 {
 }
 else
 {
 }
 }
}

m208w2014

20

Copy Paste the Keydown Messages

Copy and paste the keydown messages from TextWrangler into the
msg.isButtonDown() code block.

 etc.

m208w2014

21

Create The playIt() Function

The first version of playIt looks like this and used to see if the code can be run free of
errors. Add it to keyboardPlay.ck.

Run keyboardPlay.ck in the Terminal

If everything works you should see this

Save A Copy As keyboardPlayTemplate.ck

Congratulations. You've created a skeleton program that you can reuse again and again
whenever you want ChucK to respond to the keyboard.

m208w2014

22

The ABC Song

Save keyboardPlay.ck as ABCSong.ck

The data folder in the m208Lab4 folder contains 26 wave file samples of each alphabet
letter. We'll play them by typing the keys using the SndBuf object we learned about in
Lab 3.

Create A Sndbuf Object And Modify The playIt() Function

Make ChucK Sing the Song

Type a b c d e f g … to the tune of "Twinkle Twinkle Little Star."

Let's Record It

ChucK's WvOut object can be used to save the samples you hear to a wave file. Modify
this line.

SndBuf buf => dac;

to read

SndBuf buf => WvOut w => dac;
"abcSong.wav" => w.wavFilename;

WvOut Documentation

From: http://chuck.cs.princeton.edu/doc/program/ugen_full.html#WvOut

http://chuck.cs.princeton.edu/doc/program/ugen_full.html#WvOut

m208w2014

23

[ugen]: WvOut (STK Import)
▪ STK audio data output base class.

 This class provides output support for various
 audio file formats. It also serves as a base
 class for "realtime" streaming subclasses.

 WvOut writes samples to an audio file. It
 supports multi-channel data in interleaved
 format. It is important to distinguish the
 tick() methods, which output single samples
 to all channels in a sample frame, from the
 tickFrame() method, which takes a pointer
 to multi-channel sample frame data.

 WvOut currently supports WAV, AIFF, AIFC, SND
 (AU), MAT-file (Matlab), and STK RAW file
 formats. Signed integer (8-, 16-, and 32-bit)
 and floating- point (32- and 64-bit) data types
 are supported. STK RAW files use 16-bit
 integers by definition. MAT-files will always
 be written as 64-bit floats. If a data type
 specification does not match the specified file
 type, the data type will automatically be
 modified. Uncompressed data types are not
 supported.

 Currently, WvOut is non-interpolating and the
 output rate is always Stk::sampleRate().

 by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
(control parameters)
• .matFilename - (string , WRITE only) - open matlab file for writing
• .sndFilename - (string , WRITE only) - open snd file for writing
• .wavFilename - (string , WRITE only) - open WAVE file for writing
• .rawFilename - (string , WRITE only) - open raw file for writing
• .aifFilename - (string , WRITE only) - open AIFF file for writing
• .closeFile - (string , WRITE only) - close file properly

See: http://wiki.cs.princeton.edu/index.php/ChucK/Record
for more information.

Run The Program

http://wiki.cs.princeton.edu/index.php/ChucK/Record

m208w2014

24

Play the complete song.

Important: When finished press the Stop Virtual Machine button in the Virtual
Machine window.

You should see an abcSong.wav file in the m208Lab4 folder. Open and play it in
Audacity.

m208w2014

25

Chuck MIDI
 I'll post instructions for getting this lab to work on your laptops for both Mac and
Windows on the course web page as homework assignments. It should be there by
Sunday morning.

Save keyboardPlay.ck as keyboardPlayMIDI.ck

The MIDI programs you need to use with ChucK are already setup in the Lab. I've
placed instructions on the web page to help you use MIDI on your laptop. It's easier on
Windows.

Open Au Lab

Open /Applications/Au Lab

Open Terminal and Type chuck —probe

At the end of the output you'll see all MIDI inputs and outputs ChucK can find. In this
case it found one input and two outputs.

IAC Driver Bus 1

m208w2014

26

Input and Output [0] use the IAC driver. IAC stands for Inter Application
Communication and is part of MacOS. The IAC Driver allows you to connect ChucK to
many commercial MIDI applications like GarageBand, LogicPro, Abelton Live, Reaktor,
Reason, and others. ChucK can use this.

DLSMusicDevice

This is the General MIDI software synthesizer supplied by Apple and is part of MacOS.
ChucK can use this.

Initialize Midi Output

Add these lines above the current playIt() function.

Lines 64-69
The mout variable is a MidiOut object that represents one of the available MIDI Output
ports on the computer. The output from chuck —probe showed that we could use either
output port 0 or 1. Line 67 attempts to open port 1, the DLS Music Device (the built in
MAC MIDI synthesizer). If the port was opened successfully the variable amIOpen will
be set to 1. If the port could not be opened it will be set to 0. Line 68 checks that result.
The ! means not, so if "not amIOpen" then exit. No point in trying to hear MIDI if we
can't talk to it.

Replace The Playit() Function

Use this code.

m208w2014

27

Lines 74-81
These three lines construct the MIDI message.

Line 79
Send the message so you can hear it.

Line 80
Display the note number and velocity in the Console Monitor window.

MIDI Messages

Most MIDI messages consist of three numbers referred to as status, data1, and data2.
All three numbers are restricted to an 8 bit range, 0-255, called a byte in computer
terms. The data1 and data2 bytes occupy the lower half of the range (0-127) and the
status byte covers the upper half (128-255).

Status Bytes are Hexadecimal Numbers - Base 16

Status bytes are easiest to understand in the hexadecimal number system (base 16)
which counts from 0-15 using the numbers 0123456789ABCDEF. You enter a hex
number in Chuck by prefixing with 0x (zero x). There are 8 status messages. All status
and data bytes can be written as two hex digits. The first hex digit (8 - F) of a status byte
determines the type of MIDI message. The second hex digit (0 - F) determines which of
the 16 MIDI channels the message applies to. In Lab 4 we'll use channel 0.

Status Byte
in Hex

Message Type

80 − 8F Note Off
90 − 9F Note On
A0 - AF After touch applies to all notes on a channel
B0 - BF Controller messages for knobs, pedals, sliders, etc.
C0 - CF Patch change messages change instruments
D0 - DF After touch applies to individual notes on a channel
E0 - EF Pitch bend

m208w2014

28

F0 - FF System messages

We'll begin with the two most used MIDI messages : the message for note on (NON),
and the message for the note off (NOF).

Non Messages - Status Data1 Data2

Note On messages turn on a MIDI note that will continue to sound until it receives a
matching Note Off message. Some instrument sounds, like a guitar pluck, die away
naturally because of built in decay. Other instruments, like an organ, continue to sound
until the Note Off message is received. You should always test MIDI programs you write
with an organ sound so you can hear if there are any "stuck" notes, or notes that don't
turn off.

Both data1 and data2 bytes are numbers in the range 0-127. The data1 byte is the MIDI
note number based on the piano keyboard layout. Middle C is note number 60. The next
higher key, C#, is 61, followed by D, 62, etc. The same note name an octave higher adds
12 to the MIDI note number. The same note name an octave lower subtracts 12 from the
MIDI note number. The C below middle C is 48 and the C above middle C is 72.

The data2 byte represents how loud or soft the note is played and is termed the velocity.
Zero is silence and 127 maximum loudness.

Example NON message - 0x90 60 100

0x90 - Attention computer! this is a note on message for channel 0
60 - Turn on the current instrument sound for middle C (261 Hz)
100 - Set its volume to 100 using a range from 0 (silence) to 127 (maximum).

Nof Messages - Status Data1 Data2

Note Off messages are used to turn a previous Note On, off. We'll turn notes off by
sending a Note On message with a velocity of 0.

Example NOF message - 0x90 60 0 (this is the one used in today's lab)

0x90 - Attention computer! this is a Note On message for channel 0
60 - Turn on the current instrument sound for middle C (261 Hz)
0 - Set its volume to 0 (silence)

Example NOF message - 0x80 60 0

0x80 - Attention computer! this is a Note Off message for channel 0
60 - Turn off the current instrument sound for middle C (261 Hz)

m208w2014

29

0 - can be anything, it's already a note off message

ChucK's MidiMsg Object

MIDI data holder

• .data1 (int, READ/WRITE) first byte of data (member variable)
• .data2 (int, READ/WRITE) second byte of data (member variable)
• .data3 (int, READ/WRITE) third byte of data (member variable) (see

MIDI tutorial)

From the ChucK manual: http://booki.flossmanuals.net/chuck/_full/

ChucK is contrary to most MIDI references and calls the status byte data1, the note
number data2, and the velocity data3.

Change the Parameters of All playit()'s Inside The While
Loop

The playIt function for MIDI expects to see two parameters, one for the MIDI note
number and one for the velocity (volume of that note). We'll need to modify every
playIt() function inside the while loop to take a two int parameters. There are a lot of
them and they all need to be done by hand. This is what you need to do. Notice that the
MIDI note number is increasing by 1 each time. You'll eventully reach note number 81,
producing an ascending chromatic scale, or scale of half steps. A half step on the piano is
the interval between any note and its nearest neighbor. The velocity vales are all 100.

Open TextWrangler's Find Dialog

Enter these statements and click Replace All.

http://booki.flossmanuals.net/chuck/_full/

m208w2014

30

You should see this.

All playIt velocities are set to 100. Next set the note numbers. Start with 36 and
increment by one until done.

m208w2014

31

We're almost ready to test it, but first we're going to write a function that will allow us to
test different instrument sounds.

General MIDI (GM) Instrument Sound Set

The General MIDI specification defines 128 instruments in 16 different families as well
as the MIDI patch number assigned to that instrument.

==
 List all GM instruments
==

Piano =========================
 0: Acoustic Grand Piano
 1: Bright Acoustic Piano
 2: Electric Grand Piano
 3: Honky-tonk Piano
 4: Electric Piano 1

m208w2014

32

 5: Electric Piano 2
 6: Harpsichord
 7: Clavinet
Chromatic Percussion ==========
 8: Celesta
 9: Glockenspiel
 10: Music Box
 11: Vibraphone
 12: Marimba
 13: Xylophone
 14: Tubular Bells
 15: Dulcimer
Organ =========================
 16: Drawbar Organ
 17: Percussive Organ
 18: Rock Organ
 19: Church Organ
 20: Reed Organ
 21: Accordion
 22: Harmonica
 23: Tango Accordion
Guitar ========================
 24: Acoustic Guitar (nylon)
 25: Acoustic Guitar (steel)
 26: Electric Guitar (jazz)
 27: Electric Guitar (clean)
 28: Electric Guitar (muted)
 29: Overdriven Guitar
 30: Distortion Guitar
 31: Guitar harmonics
Bass ==========================
 32: Acoustic Bass
 33: Electric Bass (finger)
 34: Electric Bass (pick)
 35: Fretless Bass
 36: Slap Bass 1
 37: Slap Bass 2
 38: Synth Bass 1
 39: Synth Bass 2
Strings =======================

m208w2014

33

 40: Violin
 41: Viola
 42: Cello
 43: Contrabass
 44: Tremolo Strings
 45: Pizzicato Strings
 46: Orchestral Harp
 47: Timpani
Ensemble ======================
 48: String Ensemble 1
 49: String Ensemble 2
 50: SynthStrings 1
 51: SynthStrings 2
 52: Choir Aahs
 53: Voice Oohs
 54: Synth Voice
 55: Orchestra Hit
Brass =========================
 56: Trumpet
 57: Trombone
 58: Tuba
 59: Muted Trumpet
 60: French Horn
 61: Brass Section
 62: SynthBrass 1
 63: SynthBrass 2
Reed ==========================
 64: Soprano Sax
 65: Alto Sax
 66: Tenor Sax
 67: Baritone Sax
 68: Oboe
 69: English Horn
 70: Bassoon
 71: Clarinet
Pipe ==========================
 72: Piccolo
 73: Flute
 74: Recorder
 75: Pan Flute

m208w2014

34

 76: Blown Bottle
 77: Shakuhachi
 78: Whistle
 79: Ocarina
Synth Lead ====================
 80: Lead 1 (square)
 81: Lead 2 (sawtooth)
 82: Lead 3 (calliope)
 83: Lead 4 (chiff)
 84: Lead 5 (charang)
 85: Lead 6 (voice)
 86: Lead 7 (fifths)
 87: Lead 8 (bass + lead)
Synth Pad =====================
 88: Pad 1 (new age)
 89: Pad 2 (warm)
 90: Pad 3 (polysynth)
 91: Pad 4 (choir)
 92: Pad 5 (bowed)
 93: Pad 6 (metallic)
 94: Pad 7 (halo)
 95: Pad 8 (sweep)
Synth Effects =================
 96: FX 1 (rain)
 97: FX 2 (soundtrack)
 98: FX 3 (crystal)
 99: FX 4 (atmosphere)
 100: FX 5 (brightness)
 101: FX 6 (goblins)
 102: FX 7 (echoes)
 103: FX 8 (sci-fi)
Ethnic ========================
 104: Sitar
 105: Banjo
 106: Shamisen
 107: Koto
 108: Kalimba
 109: Bag pipe
 110: Fiddle
 111: Shanai

m208w2014

35

Percussive ====================
 112: Tinkle Bell
 113: Agogo
 114: Steel Drums
 115: Woodblock
 116: Taiko Drum
 117: Melodic Tom
 118: Synth Drum
 119: Reverse Cymbal
Sound Effects =================
 120: Guitar Fret Noise
 121: Breath Noise
 122: Seashore
 123: Bird Tweet
 124: Telephone Ring
 125: Helicopter
 126: Applause
 127: Gunshot

Patch Change Messages - Status Data1 Data2

Patch Change messages change instruments. The data2 byte is used in ChucK but is
ignored.

Example Patch Change message - 0xC0 0 0

0xC0 - Attention computer! this is a Note On message for channel 0
0 - Use patch number 0 "Acoustic Grand Piano"
0 - ignored

Example Patch Change message - 0xC0 18 0

0xC0 - Attention computer! this is a Note On message for channel 0
18 - Use patch number 18 "Rock Organ"
0 - ignored

m208w2014

36

Add The patchChange Function

Run The Program

Type a few keys and —

Houston, We've gota a problem- Stuck Notes!

You'll have to quit Au Lab to turn them off.

Save Your Work And Quit Terminal

Whenver you close Au Lab it's a good idea to close other programs that are using it.

m208w2014

37

Restart Au Lab And Then Restart Terminal In That Order

Many, but not all, MIDI programs look for Au Lab at startup so you should get in the
habit of starting Au Lab first.

All Notes Off

Most MIDI programs have a Panic button to turn all notes off. Let's write a ChucK
function to do that.

Use the Space Bar to Turn All Notes Off

Now we need to find a key to press to turn all notes off. Let's use the space bar (ASCII
32). Add these lines at the beginning of the key press statements in the while loop. Since
we're panicking we might as well do it first. Then add and else in front of the ascii_1
line.

m208w2014

38

Run The Program Again

This time when you hear the stuck notes, press the space bar.

The Real Fix

The stuck note problem occurred because we forgot to send Note Off messages. I used
the organ patch to make stuck notes obvious. Inside the while loop the if
(msg.IsButtonDown) block processes all key downs and sends Note On messages.

We'll everything inside the msg.isButtonDown() block between the opening and closing
curly brass and and paste them into the msg.isButtonUp() block.

Set the velocity parameter in every isButtonUp line to zero. An easy way to do it is to
copy the buttonDown messages into a new document and use the Find dialog to replace
all 100's with 0's.

After this fix key downs will send Note On messages and key ups will send Note Off
messages. Notes will continue to sound until you let the key up. You can play chords.

m208w2014

39

Run The Program

Test it out.

The Drum Channel

Sending messages to channel 10 (status byte 0x99) will produce drum sounds.
Channel 1 in english is channel zero in MIDI.

General MIDI Drum Note Assignments

Individual drum sounds are assigned to these MIDI note numbers on channel 10.

==
 List GM drum kit MIDI note numbers.
 All GM drum notes are assigned to MIDI channel 10
==

 35: Bass Drum 2
 36: Bass Drum 1 // Lab 4 starts with 36
 37: Side Stick
 38: Snare Drum 1
 39: Hand Clap
 40: Snare Drum 2
 41: Low Tom 2
 42: Closed Hi-hat
 43: Low Tom 1
 44: Pedal Hi-hat
 45: Mid Tom 2
 46: Open Hi-hat
 47: Mid Tom 1
 48: High Tom 2
 49: Crash Cymbal 1
 50: High Tom 1
 51: Ride Cymbal 1
 52: Chinese Cymbal
 53: Ride Bell
 54: Tambourine
 55: Splash Cymbal
 56: Cowbell
 57: Crash Cymbal 2

m208w2014

40

 58: Vibra Slap
 59: Ride Cymbal 2
 60: High Bongo
 61: Low Bongo
 62: Mute High Conga
 63: Open High Conga
 64: Low Conga
 65: High Timbale
 66: Low Timbale
 67: High Agogo
 68: Low Agogo
 69: Cabasa
 70: Maracas
 71: Short Whistle
 72: Long Whistle
 73: Short Guiro
 74: Long Guiro
 75: Claves
 76: High Wood Block
 77: Low Wood Block
 78: Mute Cuica
 79: Open Cuica
 80: Mute Triangle
 81: Open Triangle

Modify the playIt() function to use status byte 0x99. To be consistent you should also
change the status byte in the allNotesOff function. You do not have to modify the
patchChange function, the drum channel ignores it.

m208w2014

41

Recording MIDI From Chuck Into Audacity

MACINTOSH - Soundflower and Au Lab

Soundflower is free utility that allows you to play audio in one application and record it
in another. It's a Mac only program and is available at http://cycling74.com/
soundflower-landing-page/. You can install it on your laptop. For

Au Lab Setup

Choose Show Studio from the Au Lab Window menu.

In the Studio Panel set the Output Device to Soundflower (2ch). Remember the current
output device name. I took this picture at home and the lab may be different.

http://cycling74.com/soundflower-landing-page/
http://cycling74.com/soundflower-landing-page/

m208w2014

42

Audacity Setup

Open Audacity and choose Soundflower (2ch) as the sound input device using 1 (Mono)
track.

m208w2014

43

Click the Audacity record button (Red Circle) and then return to miniAudicle and start
typing. You should see the recorded audio update in real time in the Audacity window.

Set Au Lab Output Device Back To Its Original Output
Device

Done with Lab 4

Windows users can watch this YouTube video to see one way to do it in Windows:
http://www.youtube.com/watch?v=mjQ_qS-LaoU

http://www.youtube.com/watch?v=mjQ_qS-LaoU

