m208w2014

MUSC 208 Winter 2014
John Ellinger Carleton College

Lab 18 Delay Lines

Setup

Download the m208Lab18.zip files and move the folder to your desktop.

Delay Lines

Delay Lines are frequently used in audio software. The technique originated
back in the days of the tape recorder where the tape was sometimes run through
two tape decks whose play heads were a separated by several inches to several
feet. When the sound passed the first play head it was heard through the
speakers, and when it passed the second play head it was heard again delayed in
time by the distance between the two play heads. If the distance was short the
delay "fattened" the sound. If the delay was long the second sound was like an
echo. In digital audio the delay results from playing a sound wave with a delayed
copy of itself. In the digital audio domain a delay line is created by playing the
original samples along with a delayed version of itself.

Recirculating Delay Line Code Overview

Create a new new file in miniAudicle and save it as circularDelay Example.ck.
This example will be used to illustrate the principles of a recirculating delay line.
Our example will consist of a twelve element array of samples whose values are
the numbers 1-12. The samples will begin at one and start over from one
(recirculate) when the array index reaches twelve. The delay amount will be
four samples; i.e. the delay line will begin at one when the original samples reach
five. The delay line will recirculate when the delay line index reaches twelve.
The original sample and delayed sample are added for each output.

The following diagram illustrates what happens.

m208w2014

| <

NoDelay | 1[2[3[4[5[6]7[e]9[10]1[12[1]2]3][4]5][6]7]8]

Ly l
| il

4 sample Delay |- |- |-[-[1]2][3[4]s]6[7]s]9[10[n]12]1]2]3]4]

Ly |

You'll need keep track of several variables: the total number of samples in the

Output

array, the number of samples to delay by, the current index position for both the
non delayed line and the delayed line, and the current sample value of each line.

Enter and run this code.

// circularDelayExample.ck
// John Ellinger Music 208 Winter2014

// pretend these are sound samples
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] @=> int buf[];
buf.cap() => int buflength;

// number of samples to delay by
4 => int dlylLength;

// sound starting index
0 => int buflndex;
int bufVal; // snd sample value

// delay (dly) starting index
-dlyLength => int dlylndex;
int dlyval; // dly sample value

// number of times to repeat
5 => int numRepeats;

m208w2014

// main loop will run through numRepeats repeats

while (true)

{
// check if we need to wrap back to the first sample
// decrement the number of repeats

if (bufIndex >= buflLength)
{
0 => buflndex; // reset
numRepeats--; // decrement
<<< Memmmmm - R
if (numRepeats == 0)
me.exit();

}

// check if the delay needs to wrap back to the first sample
if (dlyIndex >= buflLength)
0 => dlylIndex; // reset

// sound starts right away
buf[bufIndex] => bufVal;

// delay starts when dlyIndex reaches @
if (dlylndex >= 0)
buf[dlyIndex] => dlyVal;

// verify delay and number of repeats
<<< bufVal, "\t", dlyVal >>>;

// increment buflIndex and dlylIndex indices
bufIndex++;
dlyIndex++;

}
The output should look like this.

m208w2014

[chuck](¥M): sporking incoming shred: 1 {circularDelayExample.ck)...

1 a
2 a
3 a
4 a
5 1
6 2
7 3
g 4
9 5
18 6
11 7
12 g
1 9
2 18
3 11
4 12
5 1
6 2
7 3
3 4

This is the same principle used to create audio delay lines except we'll be
working with 44,100 samples per second.

Delay Types

Delay times can be measured in samples, but they're usually measured in
milliseconds or seconds. Tempo delays are calculated as a fractions of a beat.

Delay times can be categorized as:

. Short Delays - generally less than 10 ms
. Medium Delays - 10 - 100 ms
. Long Delays - greater than 100 ms

Short Delays

Short delays range from a few samples to a few milliseconds, generally less than
10 ms and are sometimes used to compensate for phase issues in stereo
recordings. If two microphones are more than a few inches apart, sounds reach
the left and right microphones at different times and can cause phase

m208w2014

cancellation. By calculating the distance between the microphones and knowing
the speed of sound, you can calculate the number of samples needed to delay one
of the signals and reduce phase cancellation problems.

Medium Delays

Medium delays in the rage of 10-50 milliseconds have the effect of "fattening" a
signal. Medium delays in the range of 60-100 milliseconds are sometimes called

Slapback echoes.

Long Delays

Delays longer than 100 milliseconds are heard as distinct echoes.

delaylLine.ck

The delayLine.ck program can be used to test different delay times.

|

/ delaylLine.ck
" John Ellinger Music 208 Winter2014
these sound files are found in the /wav folder
the names can be copied and pasted into the code below
ViolinPizzicato.wav
CelloSolo.wav

musicZ208.wav

* /

Impulse imp => dac;

SndBuf buf;

buf.read(me.sourceDir() + "/wav/ViolinPizzicato.wav");
buf.samples() => int buflLength;

" specify delay time in milliseconds and convert to samples

(50::ms/samp) $ int => int dlyLength; // ms to samples

" sound starting index
) => int buflndex;
) => float bufVal; // snd sample value

m208w2014

// delay starting index
-dlyLength => int dlylndex;
0.0 => float dlyVal; // delay sample value

// number of times to reapeat
/2 => int numRepeats;

while (true)
{
// check we need to wrap around to the first sample

// decrement the number of repeats
if (bufIndex >= buflLength)
{
0 => buflndex; // reset
numRepeats--; // decrement
if (numRepeats == 0)
me.exit();

}

// check if the delay needs to wrap back to the first sample
if (dlyIndex >= buflLength)
0 => dlyIndex; // reset

// sound starts right away
buf.valueAt(bufIndex) => bufVal;

// delay starts when dlyIndex reaches @
1f (dlylndex >= 0)
buf.valueAt(dlyIndex) => dlyVal;

// play em
bufvVal + dlyVal => imp.next;
l::samp => now,

// increment buflIndex and dlylndex indices
bufIndex++;
dlyIndex++;

m208w2014

Test each wav file using these delays times
The ViolinPizzicato.wav file

Short: < 10 ms
Medium: 10 - 50 ms
Slapback: 60 - 100 ms
Long: > 100 ms

The ViolinPizzicato.wav file uses a violin technique where the string is plucked
instead of bowed. Pizzicato sounds have a very sharp attack and almost no
sustain so the delay can be clearly heard, even at short delays. The cello sounds
have a smooth attack and long sustain making it hard to hear short delays. The
third sound is speech, the all too familiar music208.wav file.

CelloSolo.wav music208.wav ViolinPizzicato.wav

I wrote this melody several years ago for testing in MUSC 108 class.
- -

S S U2 DI TR DI P

o — A — i —(—
éb ! —Na |+ » ! ! 1
.; *’2 & 1 r - l — l l

Play The CelloSolo.wav As A Round

The example melody was designed to play as a round. The tempo 1s 120 and a
quarter note lasts for 500 ms. Use the CelloSolo.wav with a delay of 3000 ms
and you'll hear the round. Modify the code to repeat the melody exactly three

times.

Multi-tap Delay

It's possible to have more than one delay line playing at a time. This 1s called a
multi-tap delay. Each delay position is called a tap and can be arbitrarily placed.
The multiTapDelay.ck example expands delayLine.ck to create three taps.

m208w2014

// multiTapDelay.ck

// John Ellinger Music 208 Winter2014

/*

these sound files are found in the /wav folder

the names can be copied and pasted into the code below
ViolinPizzicato.wav

CelloSolo.wav

musicZ208.wav
*/

Impulse imp => dac;

SndBuf buf;

me.sourceDir() + "/wav/ViolinPizzicato.wav" => buf.read;
buf.samples() => int buflLength;

// sound starting index
0 => int buflndex;
0.0 => float bufVal;

(100::ms/samp) $ int => int dlylLengthl;
-dlyLengthl => int dlyIndex1;
0.0 => float dlyVall; // delayl sample value

(300::ms/samp) $ int => int dlylLength2;
-dlyLength2 => int dlyIndexZ;
0.0 => float dlyval2; // delay2 sample value

(600::ms/samp) $ int => int dlylLength3;
-dlyLength3 => int dlyIndex3;
0.0 => float dlyVal3; // delay3 sample value

// Amplitude

0.6 => float AQ;
0.25 => float Al;
0.25 => float AZ;
0.6 => float A3;

// another way to do repeats
/2 => int numRepeats;
now + numRepeats * buf.length() => time later;

m208w2014

while (now < later)

{

}

// check we need to wrap around to the first sample
// decrement the number of repeats
i1f (bufIndex >= buflLength)

0 => buflndex; // reset

// check 1if the delays needs to wrap back to the first sample
if (dlyIndexl >= buflLength)
0 => dlyIndexl; // reset
if (dlyIndex2 >= buflLength)
0 => dlyIndex2; // reset
if (dlyIndex3 >= buflLength)
0 => dlyIndex3; // reset

// sound starts right away
buf.valueAt(buflndex) => bufVal;

// delay starts when dlylIndex reaches 0
if (dlylIndexl >= 0)

buf.valueAt(dlyIndexl) => dlyVall;
if (dlylIndex2 >= 0)

buf.valueAt(dlyIndex2) => dlyValZz;
if (dlylndex3 >= 0)

buf.valueAt(dlyIndex3) => dlyVal3;

// play em
A@*bufVal + Al*dlyVall + A2*dlyVal2 + A3*dlyVal3 => imp.next;
l::samp => now,;

// increment bufIndex and dlylIndex indices
bufIndex++;
dlyIndexl++;
dlyIndex2++;
dlyIndex3++;

Experiment with different delays and amplitudes.

Canyon Echo

m208w2014

Use multiTapDelay.ck to create an echo effect with the music208.wav file using
long delays and decreasing amplitudes for each echo. Try these settings.

A

(500::ms/samp) $ int => int dlylLengthl;
(750::ms/samp) $ int => int dlylLength2;
(900::ms/samp) $ int => int dlylLength3;

// Amplitude

0.4 => float AQ;
0.1 => float Al;
0.05 => float AZ;
0.001=> float A3;

Tempo Sync Multi-tap Delay

If the multiple delays follow the tempo they are known as Tempo Sync Delays.

Create and run this code.

// multiTapTempoSync.ck

// John Ellinger Music 208 Winter2014
Impulse imp => dac;

SndBuf buf;

me.sourceDir() + "/wav/ViolinPizzicato.wav" => buf.read;

buf.samples() => int buflength;
0 => int buflndex;

I => int NUMTAPS;
int delayLength[NUMTAPS 7];
float amp[NUMTAPS];

function void initTap(int n, float msTime)

{
-(msTime::ms/samp) $ int @=> delaylLength[n];

}

// Tempo of original melody is 120 bpm

500.0 / 4 => float tl6; // sixteenth note
-1000000 => float rest; // trick to create a rest

10

initTap(@, ©
initTap(1,
initTap(2,
initTap(3,

0.7 @=>
0.3 @=>
0.5 @=>
0.3 @=>

w ™N

amp[©
amp[1
amp[-
amp[3

\J

r

A

float bufOut;
float tapOut;

// 2 repeats

for (© => int n; n < NUMTAPS; n++)

i1f (bufIndex >= buflLength) // check wrap around

now + 2
while (now < later)
! 0 => float tapOut;
{
else
}
bufIndex++;
0 => buflndex;
tapOut => imp.next;
) l::samp => now,;

* buf.length() => time later;

’_\
* X X ¥
t+
=
(*2]
A

if (delaylLength[n] < ¢)

0 => tapOut;

m208w2014

tapOut+amp[n]*buf.valueAt(delayLength[n]) => tapOut;

delaylLength[n]++;

i1f (delayLength[n] >= buflLength) // check wrap around

0 => delayLength[n];

11

Test these rhythms using the following settings.

initTap(
initTap(
initTap(
initTap(

initTap(
initTap(
initTap(
initTap(

initTap(
initTap(
initTap(
initTap(

initTap(
initTap(
initTap(
initTap(

initTap(
initTap(
initTap(
initTap(

initTap(
initTap(
initTap(
initTap(

initTap(
initTap(
initTap(
initTap(

* £16);

* t£16);
rest);
rest);

* t16);

* t16);
rest);
rest);

* t£16);

* t16);
rest);
rest);

* t16);

* t£16);

* tl6);
rest);

* £16);

* t£16);

* t16);
rest);

* t16);

* t16);

* t16);
rest);

* t£16);

* t16);

* t16);
rest);

12

m208w2014

m208w2014

initTap(2, 0 * t16);

initTap(1, 1 * tlo); ég o j j j
initTap(2, 2 * t16); <

initTap(3, 3 * tl6);

tinySlices.ck

tinySlices.ck uses a delay line to hold a a small slice of sound, 100 ms duration or
441 samples. The sound file is cut up into sequential slices of 441 samples, then
each slice is played 15 times before moving to the next slice. Enter and run this
code.

’ tinySlices.ck
’/ John Ellinger Music 208 Winter2014

Impulse imp => dac;

SndBuf buf;

me.sourceDir() + "/wav/music2@8new.wav" => buf.read;
buf.samples() => int buflen;

// play original wav file

0 => buf.pos;

buf => dac;

buf.length() => now;

buf =< dac;

1::second => now; // pause

141 => int slicelength; // 100 ms

float delayLine[slicelLength];

(bufLen / slicelLength) $ int => int numSlices;
15 => int numRepeats;

function void fillDelayLine(int start, int slicelength)
{

sliceLength => delaylLine.size; // dynamic resize
for (® => int n; n < slicelLength; n++)
buf.valueAt(n + start) => delaylLine[n];

13

m208w2014

int sliceBegin;

int sliceEnd;

for (¥ => int n; n < numSlices; n++)

{
n*sliceLength => sliceBegin;
(n+1)*slicelLength - 1 => sliceknd;
fillDelayLine(sliceBegin, slicelength);

for (® => int r; r < numRepeats; r++)
{
for (U => int d; d < delaylLine.cap(); d++)
{
delayLine[d] => imp.next;
l::samp => now;
}
}
}
Add these two lines to randomize the sliceLLength and the number of repeats.
for (© => int n; n < numSlices; n++)
{

Math.random2(60, 600) => slicelength;

n*sliceLength => sliceBegin;

(n+1)*slicelLength - 1 => sliceEnd;

fillDelayLine(sliceBegin, slicelength);
| Math.random2(10, 30) => numRepeats;

for (© => int r; r < numRepeats; r++)

{
for (© => int d; d < delayLine.cap(); d++)

{
delayLine[d] => imp.next;
l::samp => now;

14

m208w2014

You may notice a discontinuity or click between slices. You can smooth that out
with an envelope or window. One of the easiest windows to use is half a sine
wave. We've used this formula many times before to generate a sine wave.

n
nl=sin| 2emweFreqe
yln] q R

Use a half sine wave envelope to eliminate the discontinuities. By setting

SR = sliceLength and Freq = 0.5 the formula becomes:

: 1 n : nerw
yln]l=sin| 2eme—e— =sin| —
2 sliceLength sliceLength

Modify the fillDelayLine() function. Save it as tinySlices3.ck and run the

program.

function void fillDelayLine(int start, int slicelength)

{
slicelLength => delaylLine.size; dynamic resize
for (U => int n; n < slicelength; n++)
buf.valueAt(n+start)*Math.sin(n*pi/sliceLength) => delaylLine[n];
}

15

m208w2014

The Karplus-Strong Algorithm

The Karplus-Strong algorithm produces the sound of a plucked string. It's a
very simple algorithm that was used in many early synthesizers. It starts by
filling a delay line with random values (noise).

// karplusStrong.ck
// John Ellinger Music 208 Winter2014

/% %k ko ok ok ok ok ok ok ok ok ok ok ok WARNIN(J L EEEEEEEE EE L E S E

LoOuD!!! LOuD!!! LoOuD!!!

ok kkkkkkkkkkkkkkk WARNING *****kkkkkkkkkk /

// Fill a delay line with random noise and play it

Impulse imp => dac;

44100.0 => float SR;

// perceived pitch

220 => float freq;

SR/freq => float samplesInOnePeriod;
samplesInOnePeriod $ int => int DELAYLENGTH;
float ks[DELAYLENGTH 7J;

// fill the delay line with random noise
for (© => int n; n < DELAYLENGTH; n++)

{

Math.random2f(-1.0, 1.0) => ks[n];
}
int n;

now + 1l::second => time later;
while (now < later)

{
ks[n] => imp.next;
N++;
1f (n > DELAYLENGTH - 1)
0 => n;
l::samp => now;
}

16

m208w2014

When you play it you'll hear a buzzy pitch. Let's low pass filter it using the
moving average filter we learned about in Lab16 (simpleLowpass.ck).

Add/modify these lines

int n;
|0.0 => float prevSamp;
now + 1l::second => time later;
while (now < later)
{

2.5 * ks[n] + 9.5 * prevSamp => ks[n];
‘ ks[n] => prevSamp;

N++;

if (. n > DELAYLENGTH - 1)

=> n;

I ks[n] => imp.next;
L:isamp => now,

}

This should sound more like a plucked string although it doesn't decay very
quickly as you can hear by changing

now + 1::second => time later;
to
now + 4::second => time later;

17

m208w2014

Let's add an amplitude decay factor.

// karplusStrong.ck
// John Ellinger Music 208 Winter2014

Impulse imp => dac;
44100.0 => float SR;
// perceived pitch
220 => float freq;

// this is the preferred formula to get a better match
// to the actual frequency specified

(SR/freq - 0.5) => float samplesInOnePeriod;
samplesInOnePeriod $ int => int DELAYLENGTH;

float ks[DELAYLENGTH]J;

// fill the delay line with random noise
for (® => int n; n < DELAYLENGTH; n++)

{

Math.random2f(-1.0, 1.0) => ks[n];
}
int n;

0.0 => float prevSamp;
|®.997 => float ampDecay;
now + 4::second => time later;
while (nhow < later)
{
| ampDecay * (©.5 * ks[n] + 0.5 * prevSamp) => ks[n];
ks[n] => prevSamp;
N++;
if (n > DELAYLENGTH - 1)
b => n;

ks[n] => imp.next;
l::samp => now;

18

m208w2014

Experiment with different values for ampDecay.

0.9999 => float ampDecay;
0.999 => float ampDecay;
0.99 => float ampDecay;
0.9 => float ampDecay;

Let's create a KarplusStrong class. You can reuse most of the above code.

// karplusStrong(Class.ck
// John Ellinger Music 208 Winter2014

public class KarplusStrong

{
function void pluck(float freq)

{
// copied from karplusStrong3.ck
Impulse imp => dac;
44100.0 => float SR;
// 220 => float freq;
// this 1is the preferred formula
(SR / freq - ©.5) => float samplesInOnePeriod;
samplesInOnePeriod $ int => int DELAYLENGTH;
float ks[DELAYLENGTH 7J;

// use only the samples we need
for (© => int n; n < DELAYLENGTH; n++)

{

Math.random2f(-1.0, 1.0) => ks[n];
}
int n;

0.0 => float lastSamp;
0.997 => float ampDecay;
now + 4::second => time later;

19

e

}

Create and save the karplusMelody.ck file.

while (now < later)

{

m208w2014

ampDecay * (0.5*ks[n] + 0.5*LastSamp) => ks[n];
ks[n] => lastSamp;

N++

if (. n > DELAYLENGTH - 1)
0 =>n,;

ks[n] => imp.next;
l::samp => now;

// karplusMelody.ck
// John Ellinger Music 208 Winter2014

// the class
KarplusStrong ks;

D=

spork
spork
spork
spork
spork
spork
spork
spork

spork
spork
spork
spork
spork
spork
spork

float wait;

~ ks.

~ ks

~ ks

~ ks

pluck(

.pluck(
~ ks.
~ ks.
~ ks.
.pluck(
~ ks.
~ ks.

pluck(
pluck(
pluck(

pluck(
pluck(

.pluck(
~ ks.
~ ks.
~ ks.
~ ks.
~ ks.
~ ks.

pluck(
pluck(
pluck(
pluck(
pluck(
pluck(

Std.
Std.
Std.
Std.
Std.
Std.
Std.
Std.

Std.
Std.
Std.
Std.
Std.
Std.
Std.

mtof(60)
mtof(62)
mtof(64)
mtof(65)
mtof(67)
mtof(52)
mtof (/1)
mtof(/2)

mtof(60)
mtof(55)
mtof(55)
mtof(56)
mtof(55)
mtof(52)
mtof(60)

),
),
),
D,
),
),
),
),

),
),
),
),
),
),
),

20

wait:
wait:
wait::
wait:
wait:
wait:
wait:
wait:

wait::
wait:
wait:
wait:
wait:
wait:
wait:

:second =>
:second =>
second =>
:second =>
:second =>
:second =>
:second =>
:second =>
second =>
:second/’

:second/’

now;
now;
now;
now;
now;
now;
now;
now;

now;

=> NOw;
=> NOw;
:second => now;
:second*Z => now;
:second => now;
:second*Z => now;

m208w2014

3 => wait;

spork ~ ks.pluck(Std.mtof(60));
spork ~ ks.pluck(Std.mtof(64));
spork ~ ks.pluck(Std.mtof(70));
Z::second => now;

Create the playKarplusMelody.ck to load the class and play the melody.

// playKarplusMelody.ck
// John Ellinger Music 208 Winter2014

Machine.add(me.sourceDir() + "/karplusStrongClass.ck");
Machine.add(me.sourceDir() + "/karplusMelody.ck");

21

m208w2014

Comb Filter

If you combine a delay line with a buffer of noise the FFT spectrum resembles
the teeth of a comb which produces multiple bandreject filters at integer
harmonics of the delay line fundamental frequency. This picture shows the

SoundScope FFT analysis

©60 | st
@ @ Q @ @ + @ Q @ 'Tignal Measurements:)

| dF: 10.000 Hz
FFT Size: 4410
Avgs: 10

Analyzer 1:
126.030 pV peak (abs) 1
31.329 uV rms
Cursor 1:

X:5.810 kHz

Y:-144.2 dBV pk
Cursor 2:

X:8.120 kHz

Y:-146.5 dBV pk
Cursor Delta:

df: 2.310 kHz

dy: 2.37 dBV pk

The combFilter.ck is ready to run in the m208Lab18 download folder. But don't

bother running it just now.

Hum Removal

One common use of a comb filter is removing 60 Hz hum that is sometimes
picked up from household electricity.

Run combFilter RemoveHum.ck found in the download folder. You'll first hear
the StarsNStripesHum.wav file with an audible 60 Hz hum. Actually I mixed
the original wave file with a 60 Hz sawtooth but it's similar to what you'd hear.
Then you'll hear the same samples played back through a comb filter. Study the
code for details.

22

m208w2014

Reverb

You can simulate reverb with a multi-tap delay line. Play the CelloSolo.wav file
and then run the exponentialDecayReverb.ck in the download folder to file to
hear a simulated multi-tap delay line reverb.

Convolution Reverb

Say you have a recording of you playing an instrument at home. Then you walk
into the concert hall and pop a balloon or clap your hands and make a recording
of the reverberations of that noise in the concert hall. Then you take the FFT of
your home recording and the FFT of the concert hall impulse response and
multiply the two spectra together. You then take the Inverse FFT of the resulting
specturm. When you play back the real valued results you'll hear yourself
playing in the concert hall.

Open Octave and cd to the convolutionReverb folder inside the download folder
and run convolutionReverb.m.

END OF MUSIC 208 LABS

23

