
m208w2014

1

MUSC 208 Winter 2014
John Ellinger Carleton College

Lab 18 Delay Lines

Setup

Download the m208Lab18.zip files and move the folder to your desktop. 

Delay Lines

Delay Lines are frequently used in audio software. The technique originated 
back in the days of the tape recorder where the tape was sometimes run through 
two tape decks whose play heads were a separated by several inches to several 
feet. When the sound passed the first play head it was heard through the 
speakers, and when it passed the second play head it was heard again delayed in 
time by the distance between the two play heads. If the distance was short the 
delay "fattened" the sound. If the delay was long the second sound was like an 
echo. In digital audio the delay results from playing a sound wave with a delayed 
copy of itself. In the digital audio domain a delay line is created by playing the 
original samples along with a delayed version of itself.

Recirculating Delay Line Code Overview

Create a new new file in miniAudicle and save it as circularDelayExample.ck. 
This example will be used to illustrate the principles of a recirculating delay line. 
Our example will consist of a twelve element array of samples whose values are 
the numbers 1-12. The samples will begin at one and start over from one 
(recirculate) when the array index reaches twelve. The delay amount will be 
four samples; i.e. the delay line will begin at one when the original samples reach 
five. The delay line will recirculate when the delay line index reaches twelve. 
The original sample and delayed sample are added for each output.  

The following diagram illustrates what happens.



m208w2014

2

You'll need keep track of several variables: the total number of samples in the 
array, the number of samples to delay by,  the current index position for both the 
non delayed line and the delayed line, and the current sample value of each line.

Enter and run this code.



m208w2014

3

The output should look like this.



m208w2014

4

This is the same principle used to create audio delay lines except we'll be 
working with 44,100 samples per second.

Delay Types

Delay times can be measured in samples, but they're usually measured in 
milliseconds or seconds. Tempo delays are calculated as a fractions of a beat. 

Delay times can be categorized as:
• Short Delays - generally less than 10 ms
• Medium Delays - 10 - 100 ms
• Long Delays - greater than 100 ms

Short Delays

Short delays range from a few samples to a few milliseconds, generally less than 
10 ms and are sometimes used to compensate for phase issues in stereo 
recordings. If two microphones are more than a few inches apart, sounds reach 
the left and right microphones at different times and can cause phase 



m208w2014

5

cancellation. By calculating the distance between the microphones and knowing 
the speed of sound, you can calculate the number of samples needed to delay one 
of the signals and reduce phase cancellation problems.

Medium Delays

Medium delays in the rage of 10-50 milliseconds have the effect of "fattening" a 
signal. Medium delays in the range of 60-100 milliseconds are sometimes called 
Slapback echoes.

Long Delays

Delays longer than 100 milliseconds are heard as distinct echoes.

delayLine.ck

The delayLine.ck program can be used to test different delay times.



m208w2014

6



m208w2014

7

Test each wav file using these delays times
The ViolinPizzicato.wav file 

Short:  < 10 ms
Medium: 10 - 50 ms
Slapback: 60 − 100 ms
Long: > 100 ms

The ViolinPizzicato.wav file uses a violin technique where the string is plucked 
instead of bowed. Pizzicato sounds have a very sharp attack and almost no 
sustain so the delay can be clearly heard, even at short delays. The cello sounds 
have a smooth attack and long sustain making it hard to hear short delays. The 
third sound is speech, the all too familiar music208.wav file. 

I wrote this melody several years ago for testing in MUSC 108 class.

Play The CelloSolo.wav As A Round

The example melody was designed to play as a round. The tempo is 120 and a 
quarter note lasts for 500 ms. Use the CelloSolo.wav with a delay of 3000 ms 
and you'll hear the round. Modify the code to repeat the melody exactly three 
times.

Multi-tap Delay

It's possible to have more than one delay line playing at a time. This is called a 
multi-tap delay. Each delay position is called a tap and can be arbitrarily placed. 
The multiTapDelay.ck example expands delayLine.ck to create three taps.



m208w2014

8



m208w2014

9

Experiment with different delays and amplitudes.



m208w2014

10

Canyon Echo

Use multiTapDelay.ck to create an echo effect with the music208.wav file using 
long delays and decreasing amplitudes for each echo. Try these settings.

Tempo Sync Multi-tap Delay

If the multiple delays follow the tempo they are known as Tempo Sync Delays. 
Create and run this code.



m208w2014

11



m208w2014

12

Test these rhythms using the following settings.

initTap( 0, 0 * t16);
initTap( 1, 1 * t16);
initTap( 2, rest );
initTap( 3, rest );

initTap( 0, 0 * t16);
initTap( 1, 2 * t16);
initTap( 2, rest );
initTap( 3, rest );

initTap( 0, 0 * t16);
initTap( 1, 3 * t16);
initTap( 2, rest );
initTap( 3, rest );

initTap( 0, 0 * t16);
initTap( 1, 1 * t16);
initTap( 2, 2 * t16 );
initTap( 3, rest );

initTap( 0, 0 * t16);
initTap( 1, 1 * t16);
initTap( 2, 3 * t16 );
initTap( 3, rest );

initTap( 0, 0 * t16);
initTap( 1, 2 * t16);
initTap( 2, 3 * t16 );
initTap( 3, rest );

initTap( 0, 1 * t16);
initTap( 1, 2 * t16);
initTap( 2, 3 * t16 );
initTap( 3, rest );



m208w2014

13

initTap( 0, 0 * t16);
initTap( 1, 1 * t16);
initTap( 2, 2 * t16 );
initTap( 3, 3 * t16 );

tinySlices.ck

tinySlices.ck uses a delay line to hold a a small slice of sound, 100 ms duration or 
441 samples. The sound file is cut up into sequential slices of 441 samples, then 
each slice is played 15 times before moving to the next slice. Enter and run this 
code.



m208w2014

14

Add these two lines to randomize the sliceLength and the number of repeats.



m208w2014

15

You may notice a discontinuity or click between slices. You can smooth that out 
with an envelope or window. One of the easiest windows to use is half a sine 
wave.  We've used this formula many times before to generate a sine wave.

y[n] = sin 2 iπ i Freq i n
SR

⎛
⎝⎜

⎞
⎠⎟

Use a half sine wave envelope to eliminate the discontinuities. By setting 
SR = sliceLength and Freq = 0.5 the formula becomes:

y[n] = sin 2 iπ i 1
2
i

n
sliceLength

⎛
⎝⎜

⎞
⎠⎟
= sin n iπ

sliceLength
⎛
⎝⎜

⎞
⎠⎟

Modify the fillDelayLine() function. Save it as tinySlices3.ck and run the 
program.



m208w2014

16

The Karplus-Strong Algorithm

The Karplus-Strong algorithm produces the sound of a plucked string. It's a 
very simple algorithm that was used in many early synthesizers. It starts by  
filling a delay line with random values (noise).



m208w2014

17

When you play it you'll hear a buzzy pitch. Let's low pass filter it using the 
moving average filter we learned about in Lab16 (simpleLowpass.ck). 

Add/modify these lines

This should sound more like a plucked string although it doesn't decay very 
quickly as you can hear by changing

now + 1::second => time later;

to

now + 4::second => time later;



m208w2014

18

Let's add an amplitude decay factor.



m208w2014

19

Experiment with different values for ampDecay.

0.9999 => float ampDecay;
0.999 => float ampDecay;
0.99 => float ampDecay;
0.9 => float ampDecay;

Let's create a KarplusStrong class. You can reuse most of the above code. 



m208w2014

20

Create and save the karplusMelody.ck file.



m208w2014

21

Create the playKarplusMelody.ck to load the class and play the melody.



m208w2014

22

Comb Filter

If you combine a delay line with a buffer of noise the FFT spectrum resembles 
the teeth of a comb which produces multiple bandreject filters at integer 
harmonics of the delay line fundamental frequency. This picture shows the 
SoundScope FFT analysis

The combFilter.ck is ready to run in the m208Lab18 download folder. But don't 
bother running it just now. 

Hum Removal

One common use of a comb filter is removing 60 Hz hum that is sometimes 
picked up from household electricity.

Run combFilter_RemoveHum.ck found in the download folder. You'll first hear 
the StarsNStripesHum.wav file with an audible 60 Hz hum. Actually I mixed 
the original wave file with a 60 Hz sawtooth but it's similar to what you'd hear. 
Then you'll hear the same samples played back through a comb filter. Study the 
code for details.



m208w2014

23

Reverb

You can simulate reverb with a multi-tap delay line. Play the CelloSolo.wav file 
and then run the exponentialDecayReverb.ck  in the download folder to file to 
hear a simulated multi-tap delay line reverb.

Convolution Reverb

Say you have a recording of you playing an instrument at home. Then you walk 
into the concert hall and pop a balloon or clap your hands and make a recording 
of the reverberations of that noise in the concert hall. Then you take the FFT of 
your home recording and the FFT of the concert hall impulse response and 
multiply the two spectra together. You then take the InverseFFT of the resulting 
specturm. When you play back the real valued results you'll hear yourself 
playing in the concert hall.

Open Octave and cd to the convolutionReverb folder inside the download folder 
and run convolutionReverb.m.

END OF MUSIC 208 LABS


