
m208w2014

1

MUSC 208 Winter 2014
John Ellinger Carleton College

Lab 17 Filters II

Lab 17 needs to be done on the iMacs.

Five Common Filter Types

Lowpass
A low pass filter allows low frequencies to pass through and attenuates high
frequencies.

Highpass
A high pass filter allows high frequencies to pass through and attenuates low
frequencies.

Bandpass
A band pass filter allows is a combination of a low pass and a high pass filter. A
band pass filter allows frequencies between the start and stop bands to pass
through and attenuates frequencies outside those bands.

Bandreject or Notch
A band notch filter attenuates frequencies between the start and stop bands.

Resonant
A resonant filter amplifies a very narrow band of frequencies.

Finite Impulse Response (FIR) Filters

FIR filters operate only on input samples, current and past. Lab16 looked at two
simple FIR filters, a weighted Lowpass filter and a weighted Highpass filter.

output[n] = a0 i input[n]± a1 i input[n −1]
Adding the two inputs input produced a lowpass filter and subtracting produced a
highpass filter. The weights are the values of a0 and a1 which summed to zero.

Infinite Impulse Response (IIR) Filters

m208w2014

2

IIR filters operate on input and output samples, current and past. Lab 17 will
look at two IIR filters: a simple first order IIR lowpass and highpass filter and a
second order IIR filter, also known as the biquad filter, that is one of the most
versatile filters in digital audio.

Filter Order

The order of a filter is the determined by the number of remembered past inputs
and outputs. The filters from Lab16 are first order FIR filters because they only
remember one input sample in the past. The biquad filter is a second order IIR
filter because it remembers the previous two input samples and previous two
output samples.

First Order IIR Filer

This formula is very similar to the Lab16 FIR filter, except the second term is
the past output sample instead of the past input sample.

output[n] = a0 i input[n]± a1 i input[n −1], FIR
output[n] = a0 i input[n]± b1 i output[n −1], IIR

Download the m208Lab17 folder

The m208Lab17/Lab17_IIR folder contains ready to run Processing and ChucK
code to test the first order IIR filter. It was a simple rewrite of the Lab16 code.

Compare Files

Use TextWrangler to see exactly what has changed from the Lab16 FIR code to
the Lab17 IIR code. Open the simpleFIR.ck and simpleIIR.ck files in
TextWrangler. Choose Find Differences from the Search menu. Click the New
and Old popup menus and select the two ChucK files.

m208w2014

3

 Click Compare.

The two source file windows will be displayed side by side along with a third
window at the bottom that shows lines that differ. Click on the first difference.
Use the arrow keys to see the other differences. Most programmer text editors
have a similar file compare tool. There are also several freeware file and folder
comparison tools for both Mac and Windows available on the internet.

We're almost ready to test the first order IIR filter but first we have to go
through the same audio setup steps we did in Lab 16.

m208w2014

4

Setup

Lab 17 needs to be done on the iMacs.

You're going to create a Multiple Output Audio Device that will send ChucK
audio through SoundFlower into SignalScope and at the same time send it to the
speakers.

Audio MIDI Setup

 Open /Applications/Utilities/Audio MIDI Setup.

Use the Window menu to display the Audio Devices window. Click the plus sign
at the bottom of the Audio Devices window and choose Create Multi-Output
Device.

m208w2014

5

Select the Multi-Output Device in the left panel and click the pop-up menu that
looks like a gear and choose Use this device for sound input. Choose
Soundflower 2(ch) as the Master device. Check Built-in Output and
Soundflower as Audio devices. Check Drift Compensation for Built-in Output.
The completed setup should look like this. Quit Audio MIDI Setup.

m208w2014

6

miniAudicle

Open /Applications/miniAudicale and then open the Preferences dialog. Choose
the Multi-Ouput Device for Audio output. Quit and restart miniAudicle.

Signalscope

Open /Applications/SignalScope. Click the Try It button

m208w2014

7

Click the New button

Click the Plus sign to the left of FFT Analyzer and choose Soundflower as the
input device.

m208w2014

8

The FFT Analyzer window will appear.

Click the FFT tab and verify these settings.

Simple IIR Filter

These ready to run files are found in the m208Lab17/simpleIIR download folder.
Run Lab17_IIR.pde in Processing and then run runSimpleIIR.ck in
miniAudicle. Experiment with the GUI controls and watch the waveform that
appears in the SoundScope FFT Analyzer. The results you hear will sound

m208w2014

9

similar to the Lab16 FIR filter, but the IIR filter is subtly different from the FIR
filter as these screenshots show. All GUI sliders were set to 0.50. The lowpass
IIR filter of Lab17 attenuates high frequencies sooner (at a lower cutoff point)
than the FIR filter of Lab16. The IIR highpass filter attenuates low frequencies
much longer than the FIR highpass filter. The yellow lines were added to
emphasize the filter shape.

Lowpass

Lab 16 Lab 17

HighPass

Lab 16 Lab 17

m208w2014

10

The Biquad Filter

In the following formula above z-1 is equivalent to x(n-1) and z-2 is equivalent
to x(n-2). To quote Wikipedia http://en.wikipedia.org/wiki/Digital_biquad_filter:

"In signal processing, a digital biquad filter is a second-order recursive linear filter,
containing two poles and two zeros. "Biquad" is an abbreviation of "biquadratic", which
refers to the fact that in the Z domain, its transfer function is the ratio of two quadratic
functions:

H (z) = a0 + a1z
−1 + a2z

−2

1+ b1z
−1 + a2z

−2

High-order recursive filters can be highly sensitive to quantization of their coefficients,
and can easily become unstable. This is much less of a problem with first and second-
order filters; therefore, higher-order filters are typically implemented as serially-
cascaded biquad sections (and a first-order filter if necessary). The two poles of the
biquad filter must be inside the unit circle for it to be stable. In general, this is true for
all filters i.e. all poles must be inside the unit circle for the filter to be stable."

Expressed as a time domain formula, the biquad filter equation is:

y[n] = a0x[n]+ a1x[n −1]+ a2x[n − 2]− b1y[n −1]− b2y[n − 2]

y[n] is the current output sample, x[n] is the current input sample. x[n-1] and
x[n-2] are the two previous input samples, and y[n-1] and y[n-2] are the two
previous output samples. By choosing appropriate values for a0, a1, a2, b1, and
b2 the biquad equation can be used to produce all five common audio filter
types; a lowpass, highpass, bandpass, bandreject, or a resonant filter.

Biquad Filter Processing GUI

Open the m208Lab17/Lab17_Biquad folder and run Lab17_Biquad.pde in
Processing. Move the sliders and click the filter buttons and watch the output in
Processing's Console Monitor. You may have to increase the height of the
console window to see the button changes.

http://en.wikipedia.org/wiki/Digital_biquad_filter
http://en.wikipedia.org/wiki/Quantization_(signal_processing)
http://en.wikipedia.org/wiki/BIBO_stability

m208w2014

11

The GUI and OpenSoundControl (OSC) commands are fully functional but
ChucK is not yet ready to receive them.

Biquad Filter ChucK Implementation

Open a new blank window in miniAudicle. Save it as Lab17_biquad.ck. As you
follow along in this Lab17, each block of code should be added to
Lab17_biquad.ck as its presented. Enter this code.

m208w2014

12

Lab16 used the SndBufUtilsClass to read in the samples. Lab17 uses the
SndBuf object directly.

The following variables hold the OSC (OpenSoundControl) message values
sent to ChucK as Processing's filter type buttons and Gain, Frequency, and Q
sliders are changed. Add this code.

We'll use a special type of array in ChucK to map the filter type buttons to self
documenting strings. The array index is the name of the button (a string type)
and the array value is the button number (an int type). In CS this is known as an
Associative Array, a Map, a Dictionary, or Key Value pairs. Here the key is a
string and the value is the number.

m208w2014

13

The Biquad formula uses coefficients a0, a1, a2, b1, and b2, so we'll need
variables for them.

y[n] = a0x[n]+ a1x[n −1]+ a2x[n − 2]− b1y[n −1]− b2y[n − 2]

The Biquad formula also needs to remember the two previous inputs, and the
two previous outputs so we'll need variables for them.

Create the OscRecv object and port number that listens for OSC messages sent
from Processing. The port number must match the one defined in Processing.

Specify which events to listen for. The events must use the exact text message
that is sent from Processing.

m208w2014

14

Create the code to process each OSC message. This code determines which filter
type button is selected.

Use the code above as a guide and write functions that process the the three
slider messages.

m208w2014

15

The calcCoefficients() function is called whenever the filter buttons, Frequency,
or Q sliders change. It must be included in the updateFrequency, and updateQ
functions. It is not needed in the updateGain function.

All that's left is to determine the coefficients for a0, a1, a2, b1, and b2 for each of
the five filter types plus the None button. Add this code to calculate coefficients
when the None button is selected.

None or No Filter

a0 = 1.0
a1 = a2 = b1 = b2 = 0

m208w2014

16

Add stub functions for the other five filter types so we can test the
OpenSoundControl messaging between Processing and ChucK. Stub functions
simply print a message stating they've been called. We'll add complete the code
after we verify that the OSC messages are received correctly.

Add code to spork the OSC listeners for each message.

m208w2014

17

Write the main loop code that plays the SndBuf. This is the code that will be
used once the five filter coefficients are implemented. For now it just plays the
original noise.wav file.

Initial Test

Run BiquadFilter.ck in miniAudicle. Fix any errors. When the code is error free
run Lab17_Biquad.pde in Processing. Operate all GUI controls. Verify that all
GUI control messages are received in miniAudicle's Console Monitor window.
The only controls that currently work are Gain slider and the Resonant button.
The Resonant button that should reduce the gain, any other button will set it
back to normal. The Filter types will work as soon as we implement the code to
set the filter coefficients. But before that we need to optimize the code for the
non debug version.

m208w2014

18

Debug Print Functions

Processing's print() and println() functions and ChucK's <<< … >>> print
function are extremely useful while debugging your programs. However they
take CPU time away from audio processing. In a release version the print
statements should be turned off. This is normally done with a variable that turns
the messages on or off.

In Lab17_Biquad.pde set dbg to false in the debugPrint() function.

It's used like this.

Set DEBUG_PRINT variable to zero in Lab17_biquad.ck.

It's used like this.

m208w2014

19

Biquad Filter Coefficients

Each of the five filter types can be created by changing the values of a0, a1, a2,
b1, and b2 in the biquad equation.

y[n] = a0x[n]+ a1x[n −1]+ a2x[n − 2]− b1y[n −1]− b2y[n − 2]

The following formulas are from the book from Designing Audio Effect Plug-ins
in C++. http://www.willpirkle.com/about/books

Lowpass Filter

C = 1
tan(πF / SR)

D = C 2 +C 2 +1

a0 =
1
D

a1 =
2
D

a2 =
1
D

b1 =
2(1−C 2)

D

b2 =
C 2 −C 2 +1

D

This is the code for the Lowpass filter.

http://www.willpirkle.com/about/books

m208w2014

20

Highpass Filter

C = tan(πF / SR)

D = C 2 +C 2 +1

a0 =
1
D

a1 =
−2
D

a2 =
1
D

b1 =
2(C 2 −1)

D

b2 =
C 2 −C 2 +1

D

m208w2014

21

Implement code for the Highpass filter.

Bandpass Filter

C = tan(πF / SR)
D = C 2Q +C +Q

a0 =
C
D

a1 = 0

a2 =
−C
D

b1 =
2Q(C 2 −1)

D

b2 =
C 2Q −C +Q

D

Implement code for the Bandpass filter.

m208w2014

22

Bandreject Filter

C = tan(πF / SR)
D = C 2Q +C +Q

a0 =
Q(1+C 2)

D

a1 =
2Q(C 2 −1)

D
a2 = a0
b1 = a1

b2 =
C 2Q −C +Q

D
Implement code for the Bandreject filter.

Resonant Filter

C = 2Qcos(2πF / SR)

a0 = 0.5 −
Q2

2
a1 = 0
a2 = C
b1 = −C
b2 =Q

2

Implement code for the Resonant filter.

m208w2014

23

Crunch Time

TAKE OFF YOUR HEADPHONES AND TURN DOWN THE
VOLUME.

Run the program.

You should see this in SoundScope.

m208w2014

24

Lowpass Test
The Gain and Frequency sliders are functional. Sweep the frequency control.

Frequency at 60 Hz

Frequency at 8000 Hz

m208w2014

25

Highpass Test

The Gain and Frequency sliders are functional. Sweep the frequency control.
Frequency at 60 Hz

Frequency at 8000 Hz

m208w2014

26

Bandpass Test

All three sliders are functional. Set the Frequency to 1000. Sweep the Q control

Q at 0.01

Q around 5.0

m208w2014

27

Q at 20

Leave the Q at 20 and sweep the frequency

Frequency at 60 Hz

m208w2014

28

Frequency at 8000 Hz

Bandreject Test

All three sliders are functional. Set the Frequecy to 1000. Sweep the Q control. It will
work opposite to the Bandpass. Lower Q values show the greatest rejection.

Q at 0.01

m208w2014

29

Q at 20

Set the Q at 0.40 and sweep the frequency.

Frequency at 60 Hz

m208w2014

30

Frequency at 8000 Hz

Resonant Test

WARNING: This filter is unstable and can provide extremely loud feedback
very quickly. I've tried to mitigate the feedback by altering the sliderQ range
(0.9 - 0.9999) and reducing the amplitude to 0.05 when the Resonant button is
clicked.

m208w2014

31

All three sliders are functional. Set the frequency to 1000 Hz and sweep the Q
control. When Q is 0.9 or below the spectrum resembles a lowpass filter.

Q at 0.9

Above 0.96 you can start to see and hear resonance.

Q at 0.9985

When you've found a tolerable resonance sweep the frequency.

m208w2014

32

Stars And Stripes March

Test the filters on a short musical example: the piccolo solo from John Phillip Sousa's
march The Stars and Strips Forever.

Click the None button to hear the original wav file. Notice the piccolo solo frequency
range is centered around 2300 Hz.

Lowpass Filter

At frequencies below 500 Hz the piccolo is can hardly be heard.

Highpass Filter

At frequencies above 2000 the piccolo is prominent. Around 4500 Hz you start hearing
a piccolo and snare drum duet.

Bandpass Filter

Set the frequency around 2300 Hz and sweep the Q. You can do a pretty good job of
soloing the piccolo.

Bandreject Filter

Set the frequency around 2300 Hz and set the Q to 0.01. You can almost eliminate the
piccolo.

Resonant Filter

Be careful with this one. Keep the Gain VERY LOW. Set the frequency around 2300 and
move the Q almost to the right edge above 0.99+. You should hear the piccolo take on a
distinctly metallic tone as the filter resonates.

