
m208w2014

1

MUSC 208 Winter 2014
John Ellinger Carleton College

Lab 16 Filters

Lab 16 needs to be done on the iMacs. 

The only reason we need to use the iMacs is because of the Signal Scope 
application that will be used towards the end of the lab to display a real time 
FFT of the audio that's being played. All code created in Processing and ChucK 
is cross platform and will work on both Mac and Windows. I'm certain there is 
an equivalent Windows application for the Mac only SignalScope but you'll 
have to discover that on your own.

Setup

Download the m208Lab16.zip files.

Overview

Finite Impulse Response (FIR) Filters

Moving Average Filter

Low Pass and High Pass filters

Processing GUI to Experiment with

An audio filter can be thought of as a black box that has an input and an output. 
Digital samples enter through the input. Some type of processing occurs on a 
single sample or on a group of samples. The processed samples are then sent to 
the  output ready to be played through a speaker. The output may have a strong 
resemblance the input or have not resemblance at all.

Lab 16 will look at the two basic digital filter types, the Finite Impulse Response 
filter and the Infinite Impulse Response filter. The FIR filters depend only on 
current and previous samples while IIR filters also depend on past output. IIR 
filters can become unstable if the output is fed back into the input and causes an 
exponential increase in volume similar to holding a live microphone close to an 



m208w2014

2

output speaker.

 Create a wave file with a fundamental frequency of 100 Hz and 200 harmonics 
all with equal amplitude that covers the frequency spectrum from 100 Hz - 
20,000 Hz. When we apply a filter to this waveform it will be easy to see the 
results. Enter and execute this code.

When the program exits, open the sines20k.wav file in Audacity and look at the 
frequency spectrum.



m208w2014

3

Finite Impulse Response Filter

FIR filters only depend on current and previous samples. The general form of an FIR 
filter is:

output[n] = a0sample[n]+ a1sample[n −1]+ ...aM sample[n −M ]
or

output[n] = aisample[n − i]
i=0

M

∑

Moving Average Filter

We'll look at a very simple FIR filter, called the moving average filter. The output of the 
filter is the average of the current and previous sample.

Low Pass 

output[n] = 0.5 i sample[n]+ 0.5 i sample[n −1]

High Pass



m208w2014

4

output[n] = 0.5 i sample[n]− 0.5 i sample[n −1]

Create this code.



m208w2014

5

Run it and you'll get an error.

There's an updated version of SndBufUtilsClass.ck in the m208Lab16 folder. 
There are three ways to run the movingAverageFilter.ck code without causing 
the error. Try all three.



m208w2014

6

Method 1. miniAudicle

Stop and restart the miniAudicle Virtual Machine. Run the SndBufUtilsClass.ck first and 
the movingAverageFilter.ck code second.

Method 2. Terminal

Open Terminal. Set the working directory to the m208Lab16 folder and execute 
these commands.

Method 3. Use the Machine.add() function

Create a new ChucK file called runMovingAverage.ck. Enter and run this code.

Two new wave files should be in the m208Lab16 folder.

Open the two wave files in Audacity and look at their spectrums.



m208w2014

7

Low Pass Spectrum

The low pass filter allows low frequencies to pass through but attenuates high 
frequencies.

High Pass Spectrum

The high pass filter allows high frequencies to pass through but attenuates low 
frequencies.



m208w2014

8

More Flexible Low Pass And High Pass Filters

If you vary the coefficients of the moving average filter, the frequency response  
will change. If you add the samples you'll get a low pass filter. If you subtract the 
samples you'll get a high pass filter. 

output[n] = a0 i sample[n]  ±  a1 i sample[n -1]
where a0  and a1  sum to 1.0 to avoid clipping

Processing => ChucK => SoundScope

We'll investigate this filter by building a GUI in Processing to manipulate the 
coefficients, send their values to ChucK where hear the filter effects, and also 
send the audio to the SoundScope FFT Analyzer application so we can see the 
results.



m208w2014

9

When completed, the Processing GUI you'll build will look like this.

Open the Processing Application and save your sketch as "Lab16_FIR" in the 
m208Lab16 folder. 

Step 1 Create the Gain Slider

Enter and run this code in Processing.

Imports and global variables.



m208w2014

10

Next define the Gain control settings.



m208w2014

11

Create the setup() function. The setup function is the first function called by the 
Processing application. The size() function must be the first line in setup().s

Create the draw() function. Processing calls the draw() function whenever the 
screen needs updating.

Create the controlEvent() function that handles user interaction with the 
controlP5 controls you've created.

Run the program. You should see this.



m208w2014

12

Move the slider and watch the output in the Processing console.

Step2 Create the OSC event that will be sent to ChucK

Add these lines of code to the globals section.

Add the OSC setup commands in the setup() function.



m208w2014

13

Create the function that will send the OSC message

Modify the controlEvent so the sendOSCgain() function is called when the 
slider is moved.

Step 3 Create the OSC receive messages in ChucK

Create a new ChucK file named simpleFIR.ck. Enter this code.

Important: Turn down the computer volume. The noise.wav is loud.

// simpleFIR.ck
// John Ellinger Music 208 Winter 2014



m208w2014

14

Impulse imp; // define but don't connect yet
SndBufUtilsClass sbc;
sbc.init( me.sourceDir() + "/noise.wav" );
// copy the SndBuf samples from the SndBufUtilsClass
// into a local array of samples called ra.
sbc.getSamples() @=> float ra[];
ra.cap() => int numSamps;
// sanity check
<<< "numSamps", numSamps >>>;

// Set the gain to the initial Processing
0.5 => float gane; 

// create our OSC receiver
OscRecv recv;
// listen on port 12346 that was defined in Processing
12346 => recv.port;
// start listening
recv.listen();

// listen for the /lab16/gain event followed by one float
recv.event( "/lab16/gain, f" ) @=> OscEvent oeGain;

// The OSC Listening function for sliderGain
function void updateGain() 
{

while ( true )
{

// wait for event to arrive
oeGain => now;
// grab the next message from the queue
// it will be one float - the sliderGain value
while ( oeGain.nextMsg() != 0 )
{ 

oeGain.getFloat() => gane;
<<< "sliderGain", gane >>>;

}
}

}

// spork the OSC listener
spork ~ updateGain(); 



m208w2014

15

// connect Impulse to dac
imp => dac;
// our counter
0 => int n;
while (true)
{

if ( n == 0 )
gane * ra[0] => imp.next;

else 
gane * ra[n] => imp.next; // low pass

1::samp => now;
n++;
if ( n == numSamps )

0 => n;
}

Create a new file in ChucK that will run both SndBufUtilsClass and the 
simpleFIR.

// runSimpleFIR.ck

Machine.add( me.sourceDir() + "/SndBufUtilsClass.ck" );
Machine.add( me.sourceDir() + "/simpleFIR.ck" );

Step 4 Implement the A0 slider in Processing.

Add the sliderA0 variable to the global variables list. You might as well add the 
sliderA1 variable at the same time.

Duplicate (copy/paste) the sliderGain section of of addGUIControls(). Make a 
few changes.



m208w2014

16

Step 5 Implement the A1 slider in Processing

Do the same thing to create sliderA1.

Step 6 Create the OSC message function for the two sliders



m208w2014

17

Step 7 Handle the controlEvent when the sliders are moved

Step 8 Create the ChucK code to process the OSC events

Create variables for the a0 and a1 filter coefficients and add a new receive event.



m208w2014

18

Add the OSC listening function for the the a0 event and spork it.



m208w2014

19

Write the code for the simpleFIR filter.

Run the Processing Controls GUI and then runSimpleFIR.ck. Move the sliders 
and listen for changes in the sound. I did not hear much difference with the low 
pass filter but it might just be aging ears. I definitely heard a difference with the 
high pass filter that we'll do next. Stop ChucK.

Change one line to create the high pass filter and run the programs again.

Step 9 GUI Enhancemets

We'll add a two Toggle controls to our Processing GUI, one to switch between 
low pass and high pass filters and one to bypass the filter and play the original 
samples.



m208w2014

20

Add these variables to the global controls.

Add this code to the addGUIControls function. First the Lo-Hi switch.

Then the Bypass button.



m208w2014

21

Add the OSC message functions.



m208w2014

22

Add the control event handling code.

Test the controls in Processing.

Step 10 Create the ChucK code to process the OSC events

Create variables for the bypass and low high buttons.  



m208w2014

23

Add a new receive events.

Add the OSC listening function for the the low high event and spork it.



m208w2014

24

Add the OSC listening function for the the bypass event and spork it.

Update the code for the simpleFIR filter.



m208w2014

25

Run the Processing Controls GUI and then runSimpleFIR.ck. Test the Low 
Pass High Pass switch and the Bypass button.

Step 11 Display the real time FFT in Signal Scope

First Open /Applications/Audio MIDI Setup. Use the Window menu to display 
the Audio Devices window. We're going to create a Multiple Output Device so 
we can send ChucK audio through SoundFlower to SignalScope and be able to 
hear the audio at the same time.

Click the plus sign at the bottom of the Audio Devices window and choose 
Create Multi-Output Device. 



m208w2014

26

Next Select the Multi-Output Device in the left panel and click the pop-up 
menu that looks like a gear and choose Use this device for sound input.



m208w2014

27

Choose Soundflower 2(ch) as the Master device and check the Built-in Output 
and Soundflower as the Audio devices. Check Drift Compensation for Built-in 
Output.

Open miniAudicle Preferences and choose the Multi-Ouput Device for Audio 
output.



m208w2014

28

Quit and restart miniAudicle. 

Run the Processing GUI.

Run simpleFIR.ck.



m208w2014

29

Open /Applications/SignalScope

Click the Try It button



m208w2014

30

Click the New button

Click the Plus sign to the left of FFT Analizer and choose Soundflower as the 
input device.



m208w2014

31

The FFT Analyzer window will appear. Click the Run button.

FFT Tab



m208w2014

32

Display Tab

Cursors Tab

Triggering Tab



m208w2014

33

GUI Settings 0.5 0.5 0.5

Freeze or Stop Low Pass Picture



m208w2014

34

High Pass

Settings 0.5 0.5 0.5

High Pass Picture

Experiment with other a0 and a1 settings.



m208w2014

35

Group 70 30

High Pass



m208w2014

36

Using OSC in ChucK
http://booki.flossmanuals.net/chuck/_full/

by Rebecca Fiebrink 

To send OSC

Host Decide on a host to send the messages to. E.g., ”splash.local” if 



m208w2014

37

sending to computer named ”Splash,” or ”localhost” to send to the same 
machine that is sending.

Port Decide on a port to which the messages will be sent. This is an integer, 
like 1234.

Message ”address” For each type of message you’re sending, decide on a 
way to identify this type of message, formatted like a web URL e.g., 
”conductor/downbeat/beat1” or ”Rebecca/message1”

Message contents Decide on whether the message will contain data, which 
can be 0 or more ints, floats, strings, or any combination of them.

To set up a OSC sender in ChucK you'll need code like the following:

//Create an OscSend object:
OscSend xmit;
//Set the host and port of this object:
xmit.setHost("localhost", 1234);
For every message you want to send, start the message by supplying the 
address and format of contents, where ”f” stands for float, ”i” stands for int, 
and ”s” stands for string:

//To send a message with no contents:
xmit.startMsg("conductor/downbeat");
//To send a message with one integer:
xmit.startMsg("conductor/downbeat, i");
//To send a message with a float, an int, and another float:
xmit.startMsg("conductor/downbeat, f, i, f");
For every piece of information in the contents of each message, add this 
information to the message:

//to add an int:
xmit.addInt(10);
//to add a float:
xmit.addFloat(10.);
//to add a string:
xmit.addString("abc");
Once all parts of the message have been added, the message will 



m208w2014

38

automatically be sent.

To receive OSC

Decide what port to listen on. This must be the same as the port number of 
the sender(s) you want to listener to receive messages from. Message 
address and format of contents: This must also be the same as what the 
sender is using; i.e., the same as in the sender’s startMsg function.

The following code shows how to setting up an OSC receiver with ChucK.

//Create an OscRecv object:
OscRecv orec;
//Tell the OscRecv object the port:
1234 => orec.port;
//Tell the OscRecv object to start listening for OSC messages on 
that port:
orec.listen(); 
For each type of message, create an event that will be used to wait on that 
type of message, using the same argument as the sender’s startMsg 
function:

orec.event("conductor/downbeat, i") @=> OscEvent myDownbeat;
To wait on an OSC message that matches the message type used for a 
particular event e, do

e => now;
This is just like waiting for regular Events in ChucK.

To process the message first it's necessary to grab the message out of the 
queue. In our example this can be achieved using e.nextMsg(). After we 
called this, we can use other methods on e to get the information we're 
interested in out of the message. We must call these functions in order, 
according to the formatting string we set up above.

e.getInt() => int i;
e.getFloat() => float f;
e.getString() => string s;
If you expect you may receive more than one message for an event at once, 



m208w2014

39

you should process every message waiting in the cue:

while (e.nextMsg() != 0) {
  //process message here (no need to call nextMsg again
} 


