
m208w2014

1

MUSC 208 Winter 2014
John Ellinger Carleton College

The Five Common Synthesizer Waveforms

Many hardware and software synthesizers allow you to select different waveform shapes
that are used to construct and mix sounds together. The same waveforms are often
available in the LFO's (Low Frequency Oscillators) that add color and motion to the
sounds.

The five most common waveforms are:
1. Sine
2. Saw
3. Square
4. Triangle
5. Pulse

They are all included in ChucK. http://chuck.cs.princeton.edu/doc/program/ugen.html

[ugen]: SinOsc
▪ sine oscillator
▪ see examples: whirl.ck

(control parameters)
• .freq - (float , READ/WRITE) - oscillator frequency (Hz), phase-matched
• .sfreq - (float , READ/WRITE) - oscillator frequency (Hz)
• .phase - (float , READ/WRITE) - current phase
• .sync - (int , READ/WRITE) - (0) sync frequency to input, (1) sync phase to

input, (2) fm synth
[ugen]: PulseOsc
▪ pulse oscillators
▪ a pulse wave oscillator with variable width.

(control parameters)
• .freq - (float , READ/WRITE) - oscillator frequency (Hz), phase-matched
• .sfreq - (float , READ/WRITE) - oscillator frequency (Hz)
• .phase - (float , READ/WRITE) - current phase
• .sync - (int , READ/WRITE) - (0) sync frequency to input, (1) sync phase to

input, (2) fm synth
• .width - (float , READ/WRITE) - length of duty cycle (0-1)

[ugen]: SqrOsc
▪ square wave oscillator (pulse with fixed width of 0.5)

(control parameters)
• .freq - (float , READ/WRITE) - oscillator frequency (Hz), phase-matched
• .sfreq - (float , READ/WRITE) - oscillator frequency (Hz)
• .phase - (float , READ/WRITE) - current phase

http://chuck.cs.princeton.edu/doc/program/ugen.html
http://chuck.cs.princeton.edu/doc/examples/basic/whirl.ck

m208w2014

2

• .sync - (int , READ/WRITE) - (0) sync frequency to input, (1) sync phase to
input, (2) fm synth

• .width - (int , READ/WRITE) - length of duty cycle (0 to 1)
[ugen]: TriOsc
▪ triangle wave oscillator

(control parameters)
• .freq - (float , READ/WRITE) - oscillator frequency (Hz), phase-matched
• .sfreq - (float , READ/WRITE) - oscillator frequency (Hz)
• .phase - (float , READ/WRITE) - current phase
• .sync - (int , READ/WRITE) - (0) sync frequency to input, (1) sync phase to

input, (2) fm synth
• .width - (float , READ/WRITE) - control midpoint of triangle (0 to 1)

[ugen]: SawOsc
▪ sawtooth wave oscillator (triangle, width forced to 0.0 or 1.0)

(control parameters)
• .freq - (float , READ/WRITE) - oscillator frequency (Hz), phase-matched
• .sfreq - (float , READ/WRITE) - oscillator frequency (Hz)
• .phase - (float , READ/WRITE) - current phase
• .sync - (int , READ/WRITE) - (0) sync frequency to input, (1) sync phase to

input, (2) fm synth
• .width - (float , READ/WRITE) - increasing (w > 0.5) or decreasing (w < 0.5)

We've used the (SinOsc). Let's listen to the others.

m208w2014

3

<<< "Pulse wave, width = .50, a Square wave" >>>;

m208w2014

4

Examine The Five Waveforms In Audacity

Change the duration to 400::samp and run the program again

400::samp => dur dura;

Look at the waveforms in Audacity.

m208w2014

5

Sine And Cosine Phase

Phase refers to the starting point of the sine wave. Sine waves and cosine waves are π/2
radians or 90º out of phase with each other.

cos(θ) = sin θ + π
2

⎛
⎝⎜

⎞
⎠⎟

This table shows phase relationships between fractions of one revolution, degrees, and
radians.

These Octave plots show eight sine waves incremently phase shifted by π/4 radians.

m208w2014

6

m208w2014

7

The vertical lines at beginning and ending of the sound have been removed to better
illustrate the starting phase.

m208w2014

8

The sum of several sine waves of the same frequency but with different phases results in
a sine wave of the same frequency but possibly different amplitude. Phase has no effect
on the frequency we hear.

When a waveform is combined with a copy of itself phase shifted by 180º, the two waves
cancel each other and nothing will be heard.

m208w2014

9

m208w2014

10

ChucK Phase

ChucK phase is measured as percentage of rotation around the unit circle. This table
shows common measurement units of rotation.

Units Values

Revolu.ons 0 1
8

1
4
3
8

1
2
5
8

3
4

7
8 1

Degrees 0 45 90 135 180 225 270 315 360
Radians 0

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

Chuck7Phase 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1.0

Angular Frequency Of The Sampling Rate

Divide the unit circle into 44100 pie slices. One revolution around the unit circle in one
second is 1 Hz or 44100 ssamples per second or 2π radians per second. The angle of
each slice in radians is the sampling rate phase increment. In the world of digital sound
phase is measured in radians. Radians per second is called the angular frequency and is
denoted by ω = 2π f .

m208w2014

11

Note that the phase wraps around 2π radioans (44100 samples) once per second.

m208w2014

12

Phase Increment Of Any Frequency

The phase increment for any frequency is that frequency multiplied by the sampling rate
phase increment. In this case 2π is one period of that frequency.

m208w2014

13

Notice that the sample rate phase wraps at multiples of the number of samples in
one period of the frequency 441 Hz and that the freq_phase begins at different
phases at each wrap around.

Let's see what a frequency of 300 Hz would sound like.

PhaseTest6.ck

m208w2014

14

m208w2014

15

The outpt reports that there are 168.5 samples in one period of a 261.62 Hz
frequency (Middle C).

Open phase6Test.wav in Audacity and display the number of samples in one
period. We just generated a unipolar ramp or sawtooth wave with amplitudes between
0 and 1.0.

m208w2014

16

Change a Normalized Unipolar Wave to a Normalized
Bipolar Wave

Normalized means the amplitude range is 0 − 1.0 for a unipolar wave and ±1.0
for a bipolar wave. We can turn any normalized unipolar wave into a normalized
bipolar wave in two simple steps.

1. Multiply all amplitudes by 2.
2. and subtract 1.0.

Save phase6Test.ck as phase7Test.ck and make these changes.

Run the code and look at the phase7Test.wav in Audacity.

m208w2014

17

Build A Sawtooth Wave Using The Phase Increment
Formula

Save phase7Test.ck as genSaw.ck. Modify phase7Test.ck to create a genSaw() function
that will generate sawtooth wave for any amplitude, frequency, and duration.

m208w2014

18

genSaw(1.0, 100, 1000::ms);
null @=> w; // close file

Open saw_phaseIncrement in Audacity and look at the waveform.

Plot the Spectrum.

m208w2014

19

As you move the cursor over each peak you'll observe the Peak frequencies
occur in multiples of 100 Hz, the fundamental frequency.

Try it again with a frequency of 1000 Hz. Open the wav file and plot the
spectrum in Audacity. You can see the largest peak near 1000 Hz but there is
also a large peak around 500 Hz. Evidently this version of the genSaw does not
produce bandlimited waveforms.

m208w2014

20

The Chuck SawOsc Object

Let's see if the ChucK sawtoogh can do any better.

Open chuckSaw.wav in Audacity. The ChucK wave is looks similar but does not start
at −1, as the genSaw did.

m208w2014

21

The spectrum has even more aliased frequencies.

Bandlimited Waveforms

In order to create a bandlimited sawtooth wave, we need to keep all frequencies below
SR/2 = 22050 Hz. The solution for doing that comes from the Fourier Series.

m208w2014

22

The Fourier Series

Jean Baptiste Joseph Fourier (1768-1830) developed the Fourier during his study of
heat conduction. Hundreds of books, treatises and college and graduate school
mathematics and engineering courses are devoted to the study of Fourier analysis.

The basic premise of Fourier's theorem states that: any continuous periodic waveform
can be transformed into the sum of simple sine and cosine waves of varying amplitudes
and phases at integer multiples of a fundamental frequency. For audio signals it can be
expressed like this:

x(t) = An sin(2πnf0t +θn)
n=1

∞

∑
This formula says that a sawtooth wave, a square wave, a triangle wave, a piano sound,
a violin sound, or any periodic sound can be computed by carefully choosing the
amplitude and phase values and summing the Fourier series with a fundamental
frequency of f0.

The Five Common Synthesis Waveforms

1. Sine
2. Sawtooth
3. Square
4. Triangle
5. Pulse

Each of the five common waveforms can be constructed mathematically as a sum of
harmonically related sine waves.

m208w2014

23

Sawtooth Wave Synthesis

The formula for a sawtooth wave consructed from a sum of sine waves at integer
multiples of a fundamental frequency is shown below.

Sawtooth = 2
π

1
n
sin(nω)

n=1

∞

∑

= 2
π
sin(ω)+ 1

2
sin(2ω)+ 1

3
sin(3ω)+ 1

4
sin(4ω)+ 1

5
sin(5ω)...⎛

⎝⎜
⎞
⎠⎟

ω = 2π f0

m208w2014

24

Open sawtooth_fourider.wav in Audacity and look at the waveform.

The squiggles you see cause the high frequency components above 1600 Hz in the
spectrum.

m208w2014

25

Compare the dB readings for each peak in Audacity with the printout in the Console
Monitor window. They should agree.

m208w2014

26

Ascending Sawtooth

If you alternate plus and minus signs in the sawtooth formula you reverse the direction
of the ramp.

Sawtooth = 2
π

−1 n+1()

n
sin(nω)

n=1

∞

∑

= 2
π
sin(ω)− 1

2
sin(2ω)+ 1

3
sin(3ω)− 1

4
sin(4ω)+ 1

5
sin(5ω)...⎛

⎝⎜
⎞
⎠⎟

ω = 2π f0

m208w2014

27

m208w2014

28

The Chuck sawtooth wave ramps in the other direction.

The spectrum should be identical.

m208w2014

29

Try it again with f0 = 2000 Hz. This time alias frequencies appear.

m208w2014

30

Square Wave Synthesis

The formula for a sawtooth wave consructed from a sum of sine waves at integer
multiples of a fundamental frequency is shown below.

Square = 4
π

1
n

sin(nω)
n=1

∞

∑⎛⎝⎜
⎞
⎠⎟

; n is odd

= 4
π

sin(ω)+ 1
3

sin(3ω)+ 1
5

sin(5ω)+ 1
7

sin(7ω)+ 1
9

sin(9ω)...⎛
⎝⎜

⎞
⎠⎟

ω = 2π f0
Create this ChucK code

m208w2014

31

Open sawtooth.wav in Audacity and look at the waveform.

Select the entire waveform and choose Plot Spectrum from the Analyze menu.

m208w2014

32

Position the cursor over each peak and examine the frequency componenets. They
should all be odd numbered multiples of 100 Hz. Compare the dB readings for each
peak in Audacity with the printout in the Console Monitor window. They should agree.

m208w2014

33

Turn squareWave Into A Function

Create genSquareWave(float amp, float freq, dur dura) that will create a square wave at
any amplitude, frequency, and duration. It does not have to be bandlimited.

m208w2014

34

Triangle Wave Synthesis

The formula for a sawtooth wave consructed from a sum of sine waves at integer
multiples of a fundamental frequency is shown below. Note the alternating plus -
minus signs

Triangle = 8
π 2

−1(n+1)

n2 sin(nω)
n=1

∞

∑⎛⎝⎜
⎞
⎠⎟

; n is odd

= 8
π 2 sin(ω)− 1

9
sin(3ω)+ 1

25
sin(5ω)− 1

49
sin(7ω)+ 1

81
sin(9ω)...⎛

⎝⎜
⎞
⎠⎟

ω = 2π f0

m208w2014

35

Open triangle.wav in Audacity and look at the waveform.

Select the entire waveform and choose Plot Spectrum from the Analyze menu.

m208w2014

36

Position the cursor over each peak and examine the frequency componenets. They
should all be multiples of 100 Hz. Compare the dB readings for each peak in Audacity
with the printout in the Console Monitor window. They should agree.

m208w2014

37

Turn triangleWave Into A Function.

Create genTriangleWave(float amp, float freq, dur dura) that will create a square wave
at any amplitude, frequency, and duration. It does not have to be bandlimited.

m208w2014

38

Pulse Wave Synthesis

The formula for a sawtooth wave consructed from a sum of sine waves at integer
multiples of a fundamental frequency is shown below.

Pulse = 1
n
cos(nω)

n=1

∞

∑
ω = 2π f0

= sin(ω)+ 1
2
cos(2ω)+ 1

3
cos(3ω)+ 1

4
cos(4ω)+ 1

5
cos(5ω)...

m208w2014

39

Open pulse.wav in Audacity and look at the waveform.

Select the entire waveform and choose Plot Spectrum from the Analyze menu.

m208w2014

40

Position the cursor over each peak and examine the frequency componenets. They
should all be multiples of 100 Hz. Compare the dB readings for each peak in Audacity
with the printout in the Console Monitor window. They should agree.

m208w2014

41

Pulse 2

A pulse wave can also be created by combining a sawtooth wave with a phase shifted
version of itself.

m208w2014

42

Open pulse.wav in Audacity and look at the waveform.

Select the entire waveform and choose Plot Spectrum from the Analyze menu.

m208w2014

43

Position the cursor over each peak and examine the frequency componenets. They
should all be multiples of 100 Hz. Compare the dB readings for each peak in Audacity
with the printout in the Console Monitor window. They should agree.

