m208w2014

MUSC 208 Winter 2014
John Ellinger Carleton College

Lab 10 The Harmonic Series, Scales, Tuning, and Cents

Musical Intervals

An interval in music is defined as the distance between two notes. In western
European music intervals are named both by the number of inclusive half steps
between the two notes and also by the inclusive number of lines and spaces
separating the notes on the music staff.

Intervals are divided into classes based on consonance and dissonance.
Consonant intervals are further divided into perfect and imperfect consonances.
Using the notes of the C Major scale the basic intervals are shown below.

Perfect Consonant Intervals

2 5

AN © O
¢ ©OO B - B = ©

Unison Octave Fifth Fourth

Imperfect Consonant Intervals Dissonant Intervals
O # ©
NV N NV

¢ - e v >
Third Sixth Second Seventh

One of the reasons consonant intervals sound pleasing to the ear is because the
frequencies of the two notes are related by small integer ratios. The most

consonant intervals appear early in the harmonic series.

m208w2014

Harmonic Series

When you press a key on a piano, blow into a wind or brass instrument, pluck a
guitar string, or sing you generate a note at a certain frequency. That note is
actually composed of several frequencies related by the harmonic series.

Harmonic Series Definition

1. Mathematics A series whose terms are in harmonic progression, especially
the series 1+ 1/, + 1/3 + 1+

2. Music A series of tones consisting of a fundamental tone and the consecutive
harmonics produced by it.
http://www.thefreedictionary.com/harmonic+series

The frequency of each harmonic is an integer multiple of the fundamental
frequency. The first harmonic is also called the fundamental frequency.

Name Period Frequency 100 Hz Fundamental
First Harmonic 1 f 100
2nd Harmonic 1/2 2f 200
3rd Harmonic 1/3 3f 300
4th Harmonic 1/4 af 400
5th Harmonic 1/5 5f 500
6th Harmonic 1/6 6f 600
7th Harmonic 1/7 7f 700
8th Harmonic 1/8 8f 800
9th Harmonic 1/9 of 900
10th Harmonic 1/10 10f 1000
11th Harmonic 1/11 11f 1100
12th Harmonic 1/12 12f 1200
13th Harmonic 1/13 13f 1300
14th Harmonic 1/14 14f 1400
15th Harmonic 1/15 15f 1500
16th Harmonic 1/16 16f 1600

Harmonics, Overtones, And Partials

These terms are often used misused when referring to notes in the harmonic
series. Harmonics and overtones refer to integer multiples of a fundamental
frequency, the notes of the harmonic series. The fundamental frequency is the

http://www.thefreedictionary.com/harmonic+series

m208w2014

first harmonic. The first overtone is the second harmonic. A partial is a non
integer multiple of the the fundamental frequency and does not occur in the
harmonic series.

plotHarmonicSeries.m

Execute the Octave script plotHarmonicSeries.m in the m208Lab10 folder. The
wavelengths (periods) of all notes found in the harmonic series fit an exact
integer number of times into the period of the fundamental.

Even Harmonics 1 24 6 8

/\\/\/\\/ﬁ\ A\/ |
\VVVVW

Odd Harmonics 1 3579

m208w2014

Harmonic Series In Musical Notation

The first 16 harmonics of C2 (MIDI 36) are shown below. Harmonic series
notes, 2f, 4f, 8f, and 16f (the octaves above C2) precisely match the notes on the
piano. All other notes in the harmonic series will be out of tune with the piano
by varying degrees. The reasons why will be explained throughout the
remainder of this lab.

Middle C
261.626 H | -
0 2 s, o pba Gz =
/ T e L o %
G} BRI o
[;: < e '
f 2f 3f 4f 5f 6f 7f 8f of 10f 1Mf 12f 13f 14f 15f 16f
— i
9: 2
e =
=

Play the Harmonic Series

Enter and run this code in ChucK.

’ playHarmonicSeries
’ John Ellinger, Music 208, Spring2013
SinOsc s => Envelope e => dac;
16 => int numH;
function void playHarmonicSeries(float f@, dur d)
{
for (I => int ix; 1x <= numH; ix++)

{

<<< "Harmonic ", ix >>>;

fo * (ix) => s.freq;

'/ reduce the gain to prevent clipping
2.5 => s.gain;

e.keyOn();

d * .8 => now;

e.keyOff();

d* .2 => now;

m208w2014

dac => WvOut w => blackhole;
"harmonicSeries.wav" => w.wavFilename;
playHarmonicSeries(100, 1000::ms);

Examine the wav file in Audacity
Open the harmonicSeries.wav file in Audacity

30 40 0 € 70 & 50 00 1o 20 130 Mo 10 60

Select the entire waveform and choose Plot Spectrum from the Analyze menu. Set the
controls as shown below. Slide the cursor across each peak and read the peak frequency.
They should all be multiples of fo = 100 Hz.

8 O 0 - - ~ Frequency Analysis

-24dB
-30dB-
-36dB
-42dB+
-48dB

-54dB
-60dB

-66dB

-72dB

-78dB+

-84dB
-90dB

1Hz 2Hz 4Hz 10Hz 20Hz 40Hz 100Hz 300Hz 1000Hz 3000Hz 8000Hz
Cursor: 8230 Hz (C9) = -148 dB Peak: 8229 Hz (C9) = -146.8 dB

Algorithm: | Spectrum +| Size: | 65536 :} [Export... | | Replot |

Function: | Blackman-Harris window +| Axis: | Log frequency ﬂ [Close | [Grids

4

m208w2014

Select harmonic 5.

-20 -1.0

xl.mBQv'
Mono, 441004z
32-bix float

CMute | Solo

| a | |-10

Plot the spectrum again. Use the control settings shown below and you'll see a
single frequency at 500 Hz.

uency Analysis

3Hz SHz 10Hz 20Hz 40Hz 100Hz 200Hz 400Hz 1000Hz 3000Hz 7000Hz 15000Mz
Cursor: 501 Hz (84) = -10 dB8 Peak: 500 Hz (B4) = -3.1 dB

Algorithm: = Spectrum Size: 16384 | | Export... . Replot |
Function: Blackman-Harris window + Axis: | Log frequency | | Close __ Grids

m208w2014

Frequency Ratios And Musical Intervals

"Pythagoras 1s credited by ancient Greek writers with having discovered the
intervals of the octave, fifth, fourth, and double octave. Pythagoras and his
followers attached great numerological significance to the fact that these most
harmonious intervals were constructed strictly from ratios of the consecutive
inters 1, 2, 3, and 4." Gareth Loy, 2006, Musimathics Vol 1, The MIT Press, page 48.

Pythagorean tuning was used for over 1000 years partly because of the mystical,
almost religious, simplicity of the ratios 2:1, 3:2, and 4:3. These ratios where the
numerator is one greater than the denominator held great significance to ancient
Greek, Medieval and Renaissance music theorists. It was during the
Renaissance with the rise of polyphonic music and a desire to transpose music
into different keys that led to the development of alternate tuning systems.

Frequency Ratios Between Adjacent Harmonics, H / H-1

u . e ba Gz =
2 — p— — - : ! i '
. : ! } Do = f
®) . ‘ — f f .
. m— ¢ & I f !
7~ 43 54 6:5 7:6 87 9:8 10:9 11:10 12:11 13:2 14:13 15:14 16:15
P8 PS5 P4 M3 m3 m3 W W W W b w 5 H Hv
211 32
9' —

=
Here's a chart showing the harmonic series ratios and their closest music theory
interval. An interesting feature is that harmonics 2f, 4f, 8f, and 16f are one, two,
three, and four octaves above the fundamental frequency f. However, there is
more than one ratio for minor thirds, whole steps, and half steps.

Harmonic H / H-1 Ratio Closest Music Theory Interval
f 1/1 unison
2f 2/1 P8 octave
3f 3/2 P5 perfect fifth
Af 4/3 P4 perfect fourth
5f 5/4 M3 major third
6f 6/5 m3 minor third
7f 7/6 m3 minor third
8f 8/7 W whole step M2
of 9/8 W whole step M

Pythagorean Scale

m208w2014

The Pythagorean scale that has been known for thousands of years. The first
three ratios of the harmonic series, 2/1, 3/2, and 4/3, are used to build the scale.

Rules

1. Multiply by 2 to go up one octave.
2. Multiply by 3/2 to go up one fifth.
3. Multiply by 4/3 to go up one fourth.

4. Divide by 2 (multiply by 1/2) to go down one octave.
5. Divide by 3/2 (multiply by 2/3) to go down one fifth (or up 4, down 8).
6. Divide by 4/3 (multiply by 3/4) to go down one fourth (or up 5, down 8).

Using these rules we can construct the Pythagorean scale that is similar to the notes of

our major scale.

1 2 3 B 5 7 8
o
é oy o - o < =
fo
A 1 8 5 B 2 3 7
l’;"'\ o = = O O ©
%/’ <y ©y = > © = o o = =
fO up 8ve up 5 up 4 down 4 down 4 up 5
Construct in this order | Directions Formula
Note1 Fundamental Frequency Note1 = fo
Note8 Note1 up one octave Note1 * 2
Notes Note1 up fifth Note1 * 3/2
Note4 Note1 up fourth Note1 * 4/3
Note2 Notes down fourth Notes * 3/4
Note6 Note2 up fifth Note2 * 3/2
Note3 Note6 down fourth Note6 * 3/4
Note7 Note3 up fifth Note3 * 3/2

Using these rules you can construct the Pythagorean scale for one octave from

any starting frequency.

m208w2014

Create the Pythagorean Scale Class

Enter this code.

// PythagoreanScaleClass.ck
// John Ellinger Music 208 Winter 2014

// IMPORTANT declare a public class so other files can use it
public class PythagoreanScale(Class

{

float f@; // Harmonic Series fundamental frequency
float scale[8]; // eight notes in the scale

// initialize the fundamental frequency
function void init(float fundamentalFrequency)

{

fundamentalFrequency => f0;

buildScale();
}
function float notel()
{
return f@; // this is the only one that's correct
}
function float note8()
{
// notel up octave
return f@ * 2.0;
}
function float note5()
{
// notel up fifth
return f@ * 3.0 / 2.0;
}
function float note4()
{

// notel up fourth

return f@ * 4.0 / 3.0;

}

function float note2()

{

// note5 down fourth
return note5(Q) * 3.0 / 4.0;

}

function float note6()

{

// note2 up fifth

return note2() * 3.0 / 2.0;

}

function float note3()

{

// noteS5 down fourth
return notee() * 3.0 / 4.0;

}

function float note7() // new

{

// note3 up fifth

return note3() * 3.0 / 2.0;

}

// construct each note of the scale
function void buildScale()

{
notel() =>
note2() =>
note3() =>
note4() =>
note5() =>
note6() =>
note7() =>
note8() =>

}

scale[?];
scale[1];
scale[/];
scale[:];
scale[4];
scale[5];
scale[6];
scale[/];

10

m208w2014

m208w2014

function void printFreqs()

{
for (U => int 1ix; ix < scale.cap(); ix++)
{
<<< 1x, "\t", scale[ix], "\t", Std.ftom(scale[ix]) >>>;
}
}

function void playOneNote(1int note, dur tmOn, dur tmOff)
{
SinOsc s => Envelope e => dac;
// logic OR symbol 1s ||
if ((note < ©) |l (note > scale.cap()))
<<< "BAD note index number:\t", note >>>;

else
{
scale[note] => s.freq;
e.keyOn();
tmOn => now;
e.keyOff(Q);
tmOff => now;
}
s =< e =< dac; // disconnect
}
function void playScale(dur noteDur)
! for (U => int 1ix; ix < scale.cap(); ix++)
{ playOneNote(1ix, noteDur * ©.Z, noteDur * 0.2);
}
}

} // end class

Run and test the class. When it runs cleanly (no errors) stop the virtual machine.
The class itself doesn't do anything yet. Because the PythagoreanScaleClass was
declared public, it can be used by other source files. We need create a new
source file to test it. Keep the PythagoreanScaleClass window open.

11

m208w2014

PythagoreanScaleTest.ck

Open a new ChucK file and enter this code. This new file will be used to test the
PythagoreadScaleClass class.

" PythagoreanScaleTest. ck

" John Ellinger Music 208 Winter 2014

" create an instance of the class

PythagoreanScaleClass psc;

" call the init (initialize) method to set @
" this must be called before any other class methods

psc.init(Std.mtof(D));

'/ print the scale frequencies in Hz

psc.printFreqgs();

'/ play the scale
psc.playScale();
Ready to Test
Stop the Virtual Machine.
Start the Virtual Machine.

Important: Run the PythagoreanScaleClass.ck file first. Anytime you change
code in the public class, stop and restart the Virtual Machine.

Run the PythagoreanScaleTest.ck file second. If there are no errors in the
PythagoreanTest.ck file you should hear scale played and see the following
output.

Output

12

® 00

m208w2014

Console Monitor

261
294
331
348
392
441
496
523

s B L g I O R AN e

6@
62
64
64
67
69
71
72

Walalalalals
.039168
8752608
.9560450
.019554
.B58650
897758
.006868

[chuck]{¥M): sporking incoming shred: 1 (PythagoreanScaleClass.ck)...

[chuck]{¥M): sporking incoming shred: 1 {PythagoreanScaleTest.ck)...
625565
328761
.119856
.834887
438348
493141
6797584
251131

Notice that Pythagorean ratios do not result in integer valued MIDI note

numbers in column three.

13

m208w2014

Equal Temperament

As appealing as the Pythagorean system of simple tuning ratios seemed, it did not work
in practice, especially on keyboard instruments. Problems arose when you tried to play
songs to a different keys. Some early keyboards divided the black keys into two parts, for
example one half for F sharp and the other half for G flat.

The Equal Temperament tuning system we use today was established during the 18th
and early 19th centuries. Equal Temperament divides the octave into twelve equal half
steps. On the piano the only intervals that are perfectly in tune are octaves, everything
else is equally out of tune.

The frequency ratio between half steps is :
1
212

In order to calculate the pitch of any note you need a reference frequency and you need
to know how many half steps distant it is from that reference. The standard reference
pitch is A 440 Hz (called A440) and is MIDI note number 69.

MIDI Note Number To Frequency

We've used this formula before. MIDI note number 69 (A440) as our reference pitch
and "mnn" stands for MIDI Note Number.

m—69

frequency = 440 * 212

, where m is the MIDI note number.

It's exactly what the ChucK method Std.mtof(60) does.

14

m208w2014

Equal Temperament Scale Class

Enter this code.

// EqualTempScaleClass
// John Ellinger Music 208 Winter 2014

// IMPORTANT declare a public class so other files can use it
public class EqualTempScaleClass

{

float midiNotel; // Harmonic Series fundamental frequency
float scale[8]; // eight notes in the scale

// initialize the fundamental frequency
function void init(float midiNum)

{
midiNum => midiNotel;
buildScale();
}
function float notel()
{
return midiNotel; // this is the only one that's correct
}
function float note2()
{
return midiNotel + Z;
}
function float note3()
{
return midiNotel + 4;
}
function float note4()
{
return midiNotel + 5;
}

16

function float note5(0)

{
}

return midiNotel + 7;

function float note6()

{
}

return midiNotel + 9;

function float note7() // new

{
}

return midiNotel + 11;

function float note8()

{
}

// construct each note of the scale
function void buildScale()

{

}

function void printFreqs()

{

return midiNotel + 17;

notel() =>
note2() =>
note3() =>
note4() =>
note5() =>
noteo() =>
note7() =>
note8() =>

for (U => int 1ix; ix < scale.cap(); ix++)

{

scale[7];
scale[1];
scale[/];
scale[2];
scale[4];
scale[5];
scale[6];
scale[/];

m208w2014

<<< 1x, "\t", scale[ix], "\t", Std.mtof(scale[ix]) >>>;

}

16

m208w2014

function void playOneNote(1int note, dur tmOn, dur tmOff)
{
SinOsc s => Envelope e => dac;
// logic OR symbol 1is
if ((note < ©) |l (note > scale.cap()))
<<< "BAD note index number:\t", note >>>;

else
{
Std.mtof(scale[note]) => s.freq;
e.keyOn();
tmOn => now;
e.keyOff();
tmOff => now;
}
S =< e =< dac; // disconnect
}
function void playScale(dur noteDur)
{
for (U => int 1ix; ix < scale.cap(); ix++)
{
playOneNote(1ix, noteDur * ©.Z, noteDur * 0.2);
}
}
} // end class

Run and test the class. When it runs cleanly (no errors) stop the virtual machine.
The class itself doesn't do anything yet. Because the EqualTempScaleClass was
declared public, it can be used by other source files. We need create a new
source file to test it. Keep the EqualTempScaleClass window open.

EqualTempScaleTest.ck

Open a new ChucK file and enter this code. This new file will be used to test the
PythagoreadScaleClass class.

17

m208w2014

" EqualTempScaleClass.ck
’ John Ellinger Music 208 Winter 2014

’ create an instance of the class
EqualTempScaleClass psc;

" call the init (initialize) method to set f0
// this must be called before any other class methods
psc.init(Std.mtof(60));

'/ print the scale frequencies in Hz
psc.printFreqgs();

'/ play the scale
psc.playScale();

Ready to Test

Stop the Virtual Machine.

Start the Virtual Machine.

Important: Run the EqualTempScaleClass.ck file first. Anytime you change
code in the public class, stop and restart the Virtual Machine.

Run the EqualTempScaleTest.ck file second. If there are no errors in the
EqualTempTest.ck file you should hear scale played and see the following
output.

Output

8 O O Console Monitor

[chuck]{¥M): sporking incoming shred: 1 (EqualTempScaleClass.ck)...
[chuck]{¥M): sporking incoming shred: 1 (EqualTempTest.ck)...

a 66 .0600606 261 .625565

62 .060606 293.664763

64 600000 329.627557

65 .060606 349.226231

67 .000006 391.995436

69 .0000600 448 .000008

71 .060606 493.833301

72 .0006006 523.251131

=] AW N

Notice that the MIDI note numbers are integers but the frequencies in column
three differ from the Pythagorean ratio frequencies.

18

m208w2014

Pythagorean And Equal Tempered Scales Compared

If you play the two scales simultaneously pitch differences between the individual notes
will be heard as beats. Beats per second is a rough approximation to frequency
difference in Hz. Create this code.

PyETScalesCompare.ck

'/ PyEtScalesCompare.ck
’ John Ellinger, Music 208, Spring2013

’ create an instance of the PythagoreanScale(Class
PythagoreanScale(Class psc;
psc.init(Std.mtof(60));

// create an instance of the EqualTempScaleClass
EqualTempScaleClass etsc;
etsc.init();

'/ play both scales simultaneously
for (U => int ix; ix < psc.scale.cap(); ix++)

{
psc.scale[ix] => float fPY;

Std.mtof(etsc.scale[ix]) => float fET;

spork ~ psc.playOneNote(ix, 5000::ms, 100::ms);
spork ~ etsc.playOneNote(ix, 5000::ms, 100::ms);
L0V :ms => now;

’ Qutput Compare the MIDI (EqualTemp) notes to Pythagorean
<<< ix+1, fET, fPY, fET - fPY >>>;
}

Ready to Test
Stop the Virtual Machine.
Start the Virtual Machine.

Important: Run the PythagoreanScaleClass.ck file and the
EqualTempScaleClass.ck file. Order does not matter here.

19

m208w2014

Run the PyEtScalesCompare.ck file next. If there are no errors in the you

should hear the notes of each scale played together.

Output

The output compares the difference between Equal Temperament (MIDI notes) and
Pythagorean ratios. As you can see the only interval that is in tune between the two
scales are notes 1 and 8, the unison (fundamental frequency) and the octave.

Note 4 is the only note that is sharp. Notes 2, 3, 5, 6, 7 are flat.

8 OO

Console Monitor

1

Lu S Bm U 3 B R N AN

261.
293.
329.
349.
391.
448.
493.
523.

[chuck](YM):

[chuck](¥M):
[chuck](¥M):

625565
664765
627557
228231
995436
alalalala]a)
883301
251131

sporking incoming shred: 1 {PythagoreanScaleClass.ck)...

sporking incoming shred: 1 (EqualTempScaleClass.ck)...
sporking incoming shred: 1 {PyETScales.ck)...

261 .625565 6.000000

294 .,328761 -0.663993

331.119856 -1.492299

348.834087 0.394144

392.438348 -0.442912

441 .493141 -1.493141

496.679784 -2.796433

523.251131 0.800000

20

m208w2014

Why Equal Temperament?

The Equal Temperament system we use today is one of many tuning systems
that have tried to reconcile the pure Pythagorean ratios of the Octave (2:1) and
the Fifth (3:2). Here's the problem in a nutshell using the piano keyboard as an

example.

Start on the lowest C on the piano and continue up for 8 octaves until you reach
the highest C on the piano. If you call the frequency of the lowest C f; then the
ending frequency is f*27.

Seven Octaves on the Piano From C1 to C8

81
L >
) - £ E
¢ Cl C2 C3 C4 C5 Co C7 CS8
(o °
i)

8|

qilll

Now do the same thing tuning by fifths, a 3:2 ratio. After 12 fifths you'll reach
the B#7 on the piano which should sound the same as C8, but it won't. If the
3

12
starting frequency is_f, then the ending frequency is f* (—) .
2

Twelve Fifths on the Piano ending with B#7

~
(-
—

G2 D2 A2 E3 B3 F#4 C#5 G#5 D#o6 A#6 E#7 B#H7

9 o = - - -

allll
all

21

m208w2014

The Comma Of Pythagoras

The difference by which (3/2)"12 exceeds 2”7 is known as the comma of Pythagoras.

(3)12
22) _ comma of Pythagoras =1.01364

—=
2
Enter and run this code to hear and see the difference.

// commaOfPythagoras.ck
// John Ellinger Music 208 Winter 2014

Math.pow(2, 7) => float sevenOctaves;
Math.pow(2.0/2.0, 12) => float twelveFifths;

twelveFifths - sevenOctaves => float diff;
twelveFifths / sevenOctaves => float comma;

Std.mtof(24) * sevenOctaves => float hiC; // highest (8 on piano
Std.mtof(24) * twelveFifths => float hiBsharp; // Pythagorean
B# !'= (8

Sin0Osc sOctave => dac; // 7 octave sine wave
SinOsc sFifth => dac; // 12 fifths sine wave
hiC => sOctave.freq;

hiBsharp => sFifth.freq;

0.4 => sOctave.gain;
0.0 => sFifth.gain;
1000::ms => now;

0.0 => sOctave.gain;
0.4 => sFifth.gain;
1000::ms => now;

0.4 => sOctave.gain;

0.4 => sFifth.gain;
1000::ms => now;

22

m208w2014

<<< ================ >>>

<<< "twelveFifths\t", twelveFifths >>>;
<<< "sevenOctaves\t", sevenOctaves >>>;
<<< "difference\t", diff >>>;

<<< "comma\t", comma >>>;

<<< "HiC\t", hiC >>>;

<<< "HiBsharp\t", hiBsharp >>>;

<<< "HiC*comma\t", hiC * comma >>>;

Output

® OO Console Monitor
[chuck]{¥M): sporking incoming shred: 1 (commaOfPythagoras.ck)...

twelveFifths 129.746338
sevenOctaves 125.000000
difference 1.746338
COmma 1.813643

HiC 4186.889845
HiBsharp 4243.119375
HiC*comma 4243.119375

One method of tuning the piano is to tune all octaves perfectly and then flatten
each fifth in the cycle of fiths shown above by 1/11 of a comma. That way the
cycle of fifths will end on the same frequency as the cycle of octaves. Piano
tuners found that the when the interval of a fifth is flattened so that it beats 3
times every 5 seconds, that was the right amount.

On the guitar, every fret is positioned in Equal Temperament half steps with the
12t fret being the Octave and the 7t fret the fifth. Many guitar players use a
method of tuning in harmonics where they play the harmonic on the fifth fret of
a lower string and compare it to the harmonic on the seventh fret of the next
higher string. If the harmonics match they think it's in tune. Mathematically it's
not. The 5% fret harmonic is two octaves above the the open string and the 7t
fret harmonic is one octave plus a fifth above the open string. The harmonics
produce the pure Pythagorean ratios, the frets produce Equal Temperament
ratios. When the harmonic method of tuning is used over all six strings the

errors COI'l’lpOlll’ld themselves.

23

m208w2014

String Ensembles and Choral groups often use pure ratios in their performances
g g P P P
because they are not bound by Equal Temperament. A violinist trained to
Y y &g p
produce pure intervals sometimes has trouble adjusting their intonation when

playing with a piano.

24

m208w2014

Cents

The audio unit used for measuring small differences in frequency is called a cent. By
definition there are 1200 cents in one octave. A half step is to 100 cents. This is the
general formula to find the cents difference between any two frequencies.

1
centDifference =1200 *log, %

Enter and run this code.

// cents.ck

// John Ellinger Music 208 Winter 2014

function float calcCentDifference(float f1, float f2)
{

}

return 1200 * Math.log2(f1 / f2);

// Run some tests

// Half step == 100 cents

<<< "Half step\t", calcCentDifference(Std.mtof(c1),
Std.mtof(60)) >>>;

// Octave == 1200 cents
<<< "Octave\t", calcCentDifference(Std.mtof(/2), Std.mtof(t0)) >>>;

// Difference between Harmonic Series G4 and Piano G4
Std.mtof(67) => float pianoG4;

Std.mtof(36) * 6 => float hsG4; // starting from (2, G4 is 6th
harmonic

<<< "pianoG4\t", pianoG4 >>>;

<<< "hsGA\t\t", hsG4 >>>;

<<< calcCentDifference(pianoG4, hsG4), "\"negative means pianoG4 is flat\"" >>>;

// One cent 1.000578

<<< "One cent =", Math.pow(2, 1.0/1200) >>>;

440 => float a440;

440 * 1.000578 => float a440@plusOneCent;

<<< "ad440 and a440 plus one cent differ by", a44@plusOneCent - a44@, "Hz" >>>;

25

m208w2014

Output

e O O Console Monitor

[chuck]{¥M): sporking incoming shred: 1 (cents.ck)...
Half step 160.000000

Octave 1266 .600008

pianoG4 391.995436

hsG4 392.438348

-1.956560081 "negative means pianoG4 is flat"

One cent = 1.86860573

a448 and a448 plus one cent differ by 8.254328 Hz

26

m208w2014

Calculate the Cents Difference Between Notes of the
Pythagorean and Equal Tempered Scales

Add a for loop to the end of the ETPythScales.ck program that calculates the
cent difference between the P_ythagorean and Equal Tempered scales.

from PyEtScalesCompare.ck
for (U => int 1ix; ix < psc.scale.cap(); ix++)
{

psc.scale[ix] => float fPY;

Std.mtof(etsc.scale[ix]) => float fET;

spork ~ psc.playOneNote(ix, 5000::ms, 100::ms);
spork ~ etsc.playOneNote(ix, 5000::ms, 100::ms);
5100 :ms => now,;

'/ Output Compare the MIDI (EqualTemp) notes to Pythagorean
<<< ix+1, fET, fPY, fET - fPY >>>;

// Write compare cents code here
<<< ix+1, fET, fPY, fET - fPY >>>;

Console Monitor

[chuck]{¥M): sporking incoming shred: 1 {ETPythScales.ck)...
PyEL[8] 4468.8680600 440.000000 freq diff 6.600000
PyEL[1] 495.000000 493.863301 freq diff 1.116699
PyEL[2] 556.375000 B54.366262 freq diff 2.589738
PyEL[3] 586.666667 587.329536 freq diff -B.662369
PyEL[4] 660.000000 659.256114 freq diff ©.744386
PyEL[5] 74Z.5600000 739.988845 freq diff 2.511155
PyEL[6] 835.312560 830.689395 freq diff 4.783165
PyEL[7] 850.000000 g60.000008 freq diff ©.600000
cents diff A .6860608

cents diff 3.9106082

cents diff 7.820003

cents diff -1.9558601

cents diff 1.9556681

cents diff 5.865083

cents diff 9.7756004

cents diff A .660660

27

