
m208w2014

1

MUSC 208 Winter 2014
John Ellinger, Carleton College

Lab 3 - Audio Files
Lab 3 will introduce methods for playing and mangling an audio file. We'll use use the 
computer keyboard as our first HID (Human Interface Device) to trigger samples stored 
on disk. We'll use a little Audacity, a little Octave, and mostly ChucK/miniAudicle in this 
lab. We'll use several typical programming constructs: comments, types, variables, 
arrays, if-else logic, and looping constructs like while, until, do, and for loops. 

Setup

If you're doing these labs on your laptop, you must have Audacity, Octave, 
and miniAudicle installed and working. Otherwise work on an iMac in the 
lab.

Download and unzip m208Lab3.zip to create a m208Lab3 folder. Copy it to one of these 
locations:

Mac: Desktop folder
Win: C:\m208\m208Lab3 folder

Directions in this lab refer to the folder named m208Lab3 and assume it's in one of 
these two locations. If you use a different location you'll have to adapt future directions 
to your pathname. 

The m208Lab3 folder should contain these files:

Play The music208.wav File In Audacity

Open /Applications/Audacity and then open the music208.wav file and play it.



m208w2014

2

Lab 3 will play, manipulate, and mangle sounds in this audio file using Octave and 
ChucK. To get started you'll need to find the sample starting and ending number for 
each of the four words in the file, as well as the and total number of samples in the 
whole file. 

Find The Start, End, And Length Of The Entire File

Select the entire file, turn on the End radio button, and set the popup menu to display 
samples. 



m208w2014

3

You should see that the audio starts at sample zero and ends at sample number 108,861.

Knowing the sample rate is 44100 samples per second means every sample lasts 22.676 
µs. If you know the sample number start and end times you can calculate length of that 
selection in seconds. Audacity will do that for you. 

Tturn on the Length radio button and set the popup menu to display hours, minutes, 
seconds + milliseconds. 



m208w2014

4

You should see that the duration of the entire file is o hours, 0 minutes and 2.469 
seconds long

Clicks On Playback

Find Zero Crossings

A zero crossing occurs when the amplitude of a sound file crosses the x axis (time) at 
which point its amplitude is zero. An amplitude of zero produces no sound. Playback 
clicks are caused by amplitude discontinuities when audio segments join together at 
different amplitudes. Audio segments that join together at zero crossings are free from 
clicks on playback. You should always use the Find Zero Crossings command in 
Audacity when locating segment boundaries and copying audio segments. 

Shortcut: Select any section of audio and type Z



m208w2014

5

Close Up of Find Zero Crossings

Before 

After



m208w2014

6

Complete This Table Of Start Times, End Times, And Length

You don't have to be rigorously exact, one sample is only 22+ µs long. Save your results 
in a TextWrangler document so you can copy/paste them later.

Segment Start time in 
samples

End time in 
samples

Length in 
milliseconds

Music 208 (entire file) 0 108,861 2469
Music
Two

Oh

Eight

Find The Start and End Samples For The Word Two
Make sure the End radio button is selected. Select the word two and press the spacebar 
to play it. Position the cursor near either edge of the selection. When the cursor changes 
to a hand you can grab the edge to extend or shorten the selection. Type Z to set zero 
crossings and then read the start and end times in samples.

Find The Length In Milliseconds For The Word Two

Make sure the Length radio button is selected. Set the popup menu to "hh:mm:ss + 
milliseconds" and read the length.



m208w2014

7

Find the start and end times for "music", "oh", and "eight".

Make sure you've saved the times in a text file so you can copy/paste them later.

We're done with Audacity. Close and quit.



m208w2014

8

Play The Music208.Wav File In Octave

Start Octave

Start Octave and set the working directory to the m208Lab3 folder.

Set the working directory

cd FULL_PATH_NAME_OF_m208Lab3_FOLDER

The full pathname of the m208Lab3 folder will be similar to one of these 
examples:

Mac: /Users/labuser/Desktop/m208Lab3
The tilde (~) expands to the pathname of your home folder.

Win: C:\m208\m208Lab3

pwd

Type pwd to verify your Octave working directory is set correctly.

ls (Mac) or dir (Win)

Type ls (LiSt files) or dir to make sure Octave can find the music208.wav file.  If 
music208.wav does not show appear, you need to fix it before proceeding.

wavread and wavwrite

We used the wavwrite function in Lab2 to save an array of samples to a .wav file. The 
wavread function reads the samples found in a .wav file into an array that can be played 
with playsamples. The course Reference.html page has links to the WAV file format.

help wavread

Type help wavread to find out how this function is used. Of the five versions of the 
function listed, we'll use the three underlined in red.

http://acad.carleton.edu/courses/musc208-00-w14/Reference.html


m208w2014

9

Functions two and three use [...] for the function return value. This means repeat the 
parameters of the function listed above. Don't use function 1 because Octave defaults to 
a sample rate of 8000 and we're using 44100.

File Information

Use the third underlined function to get information about the file.

The Octave help file is misleading. The return value [samples, channels] would seem to 
indicate that the function will return a two element answer. What really happens is that 
samples is a two element array where samples(1) is the number of samples in the file 
and samples(2) is the number of channels. Channels is the sample rate. A mono file will 
have one channel and a stereo file will have two channels.



m208w2014

10

whos

You can verify the return value sizes with the who's command.

[wav, FS, BITS] = wavread('music208.wav')

The first underlined function is the one you'll typically use.



m208w2014

11

The wav array contains the samples, FS (Frequency of Sampling) is the sample rate, and 

BITS is number of bits used to store the amplitude, in this case216 . A bit depth of 16 can 
range from 0-65535, or from −32768-32767. In wav files these values are normalized to 
fall within a range of −1.0 to +1.0.

Play the music208.wav File

We can use the returned samples in the wav array to play the file.

Play The Word Two

You can use the second underlined function to play a section of wav file, in this example 
the word "two". 



m208w2014

12

Here's what the help file states:

The function return value […] indicates that the return value is the same as the one for 
the function listed above. Substituting [wav, FS, BITS] for […] and calling the function 
as shown in the help file results in a syntax error. 

Again the Octave help was misleading. You need to enclose N1 N2 in brackets.

We're done with Octave. Type exit at the Octave prompt and quit Terminal.



m208w2014

13

The ChucK SndBuf Object

SndBuf

The SndBuf object is the counterpart to Octave's wavread and wavwrite methods. In 
ChucK terminology, SndBuf is a ugen (Unit Generator), a class that generates or 
modifies sound. A class is a ChucK object that encapsulates data (in this case the 
samples in sound file) and contains methods (functions) that operate on those samples. 
Here's the ChucK documentation for SndBuf. http://chuck.cs.princeton.edu/doc/
program/ugen_full.html

[ugen]: SndBuf
▪ sound buffer ( now interpolating )
▪ reads from a variety of file formats
▪ see examples: sndbuf.ck

(control parameters)
• .read - ( string , WRITE only ) - loads file for reading
• .chunks - ( int, READ/WRITE ) - size of chunk (# of frames) to read on-

demand; 0 implies entire file, default; must be set before reading to take effect.
• .samples - ( int , READ only ) - get number of samples
• .length - ( dur, READ only ) - get length as duration
• .channels - ( int , READ only ) - get number of channels
• .pos - ( int , READ/WRITE ) - set position ( 0 < p < .samples )
• .rate - ( float , READ/WRITE ) - set/get playback rate ( relative to file's natural 

speed )
• .interp - ( int , READ/WRITE ) - set/get interpolation ( 0=drop, 1=linear, 

2=sinc )
• .loop - ( int , READ/WRITE ) - toggle looping
• .freq - ( float , READ/WRITE ) - set/get loop rate ( file loops / second )
• .phase - ( float , READ/WRITE ) - set/get phase position ( 0-1 )
• .channel - ( int , READ/WRITE ) - sel/get channel ( 0 < p < .channels )
• .phaseOffset - ( float , READ/WRITE ) - set/get a phase offset
• .write - ( string , WRITE only ) - loads a file for writing ( or not )

SndBufInfo.ck

Open /Applications/miniAudicle. Open SndBufInfo.ck in the m208Lab3 folder in 
miniAudicle. I wrote SndBufInfo.ck to return information about the music208.wav file. 

Start ChucK's Virtual Machine

Click the Start Virtual Machine button in the Virtual Machine window. 

http://chuck.cs.princeton.edu/doc/program/ugen_full.html
http://chuck.cs.princeton.edu/doc/program/ugen_full.html
http://chuck.cs.princeton.edu/doc/examples/basic/sndbuf.ck


m208w2014

14

Add Shred

Click the green plus sign (Add Shred) in the miniAudicle window to execute the ChucK 
code. Errors and text output will appear in the Console Monitor window. 

Houston, We've Got A Problem

The Console Monitor Window reports an error: "cannot sat file 'musc208.wav' means 
ChucK couldn't find the music208.wav file. All reported data values are wrong.



m208w2014

15

It's a working directory problem. You need to define the directory where miniAudicle 
searches for files.

Set the miniAudicle Working Directory 

Choose Preferences from the miniAudicle menu. Select the Miscellaneous tab, click the 
Select button and choose the m208Lab3 folder on the Desktop.



m208w2014

16

Run the program again and the correct values should appear.



m208w2014

17



m208w2014

18

Line By Line Code Commentary

Line 1. 
Two forward slashes indicate a single line comment. They can appear anywhere on 
within a line and all text to the right of the // will be ignored.

Line 2.
A SndBuf object reserves an area of memory to hold the data and functions known to the  
SndBuf class. The variable called buf represents one particular instance of a SndBuf 
object. Your code will call SndBuf functions and access SndBuf data through the buf 
variable. The buf variable is then chucked to dac, the speaker. 

Once buf is created you can call any of the SndBuf methods by adding a period after buf 
followed by the method name. For example buf.samples() will tell us how many discrete 
samples are in the file and buf.length() will tell us how long the sound lasts. 

Loading A Soundfile

Line 3.
The SndBuf class contains a method called read. When you want to load a sound file you 
call the read method in one of two ways:



m208w2014

19

"name_of_sound_file" => buf.read; 
or
buf.read(  "name_of_sound_file" );

Now that the soundfile has been chucked to buf.read, the other SndBuf methods have 
data to work with.

Multiline Comments

Lines 5-7. 
Multiline comments are enclosed between /* and */. Lines 5-7 show an alternative way 
of reading a sound file into but.

Debug Print Statements

Lines 9-19. 
Triple angle brackets are used to print the values of variables for debugging purposes. 
The output will appear in the Console Monitor window. You can freely mix text and 
values separated by commas between the brackets. Text enclosed in quotes will appear 
in the printout, values will be calculated and the result will be displayed in the Console 
Monitor window. Return characters are automatically added at the end of each 
<<< … >>> element.

\t, \n

The \t symbol prints a tab character to the Console Monitor window. Similarly the \n 
symbol prints a new line (return character), although it's not used here.

Types

The SndBuf object contains four variable types: int, float, dur, and string.

int - an integer, no decimal places
float - a number with decimal places
dur - a number with decimal places that represents time (time and dur will discussed 
later)
string - text enclosed in quotation marks

READ/WRITE

SndBuf methods are indicated as WRITE only, READ only, or READ/WRITE. The 
SndBuf rate method which we'll use later in this lab is explained like this. 

.rate - ( float , READ/WRITE ) - set/get playback rate ( relative to file's natural speed )



m208w2014

20

READ Method Syntax

READ methods are associated with the word get. When you want to "get" a value you 
use the READ syntax. READ statements appear to the left of the ChucK operator => end 
with parentheses, ().

// READ or get the current rate and chuck it to myRate
buf.rate() => float myRate;

WRITE Method Syntax

WRITE methods are associated with the word set. When you want to "set" a value you 
use the WRITE syntax. The two equivalent forms of a WRITE statement are shown 
below. The choice is yours.

// Option 1. The value is on the left side of the 
// ChucK operator => and the WRITE method does not
// end with parentheses, ()
1.67 => buf.rate;

// Option 2. The value to WRITE appears inside the 
// parentheses () and the ChucK operator => is not used
buf.rate( 1.67 );

Play the music208.wav File

Now that ChucK has read in the data from the music208.wav file, you can play it. 

In the lab examples you do not have to enter any lines beginning with two forward 
slashes //.  ChucK knows these lines are comments and will ignore them. The lab code 
comments are used to help explain what's happening. Your own code (especially in 
Homework and Projects) should use copious and meaningful comments. They help 
others (like your teacher) understand your code and they will help you remember what 
you were trying to do when you review the code in the future. Always choose names for 
functions and variables that are self documenting, and not short and obscure. Typing is 
cheap.

Enter this code and run the program.



m208w2014

21

Play the Word "Two"

The word two starts at sample 55867 and is 343 ms long.

Type comments at the beginning of lines 6 and 8.

Add lines 11-12 and run it.

Play The Word "Tutu"

Change lines 10-19 as follows:



m208w2014

22

Notice how the gain was lowered for the second syllable and was restored at the end.



m208w2014

23

ChucK Time and Duration

Portions of text from: http://chuck.cs.princeton.edu/doc/language/time.html

Time and duration are native types in ChucK. 

time represents an absolute point in time (from the beginning of ChucK time). 

dur represents a duration (with the same logical units as time).

By default, ChucK provides these preset duration values:

• samp : duration of 1 sample in ChucK time
• ms : duration of 1 millisecond
• second : duration of 1 second
• minute : 1 minute
• hour : 1 hour
• day : 1 day
• week : 1 week

ChucK can perform many time and duration calculations.

Find the Sample Rate and Period

Open a new file, enter this code, save it as TimeTests.ck, and run.

Output in the Console Monitor window.

http://chuck.cs.princeton.edu/doc/language/time.html


m208w2014

24

To prevent octave types like (string) from being printed modify lines 3-4 like this. Then 
delete original line 2, change line 5 to display period in milliseconds,  and add line 6. 
Save and run this code.

Notice how the empty string "" supresses the type (string) output.

Convert Times

Chuck can convert times between samples, milliseconds, seconds, minutes, hours, and 
days. Append this code, save, and run.



m208w2014

25

Time Math

ChucK tracks time at the sample level. Append this code, save, and run.

Fractions of a Sample

ChucK can track even time to the fraction of a sample. Append this code, save, and run.



m208w2014

26

Elapsed Time

Append this code, save, and run.



m208w2014

27

ChucK Control Structures

Portions of text from: http://chuck.cs.princeton.edu/doc/language/ctrl.html#while

ChucK includes standard control structures similar to those in most programming 
languages. A logic condition (true, false) is evaluated. A block is potentially executed 
based on whether the condition evaluates to true or false.  Blocks are separated either by 
semicolons or by curly brackets {}.

True and False in ChucK

The Chuck reserved words true and false are represented by integers. True is 1 and false 
is 0. Open a new miniAudicle window, enter and run this code.

while

The while statement body (code between the curly brackets) executes repeatedly as long 
as the while condition evaluates to true. Open a new miniAudicle window, enter, save, 
and run this code.

http://chuck.cs.princeton.edu/doc/language/ctrl.html#while


m208w2014

28

Line 7
Define an integer variable named count and set its value to 0.

Line 8
Repeatedly execute the while loop as long as the value of count is less than 5. Because 
count was initialized to zero in the preceding statement, the loop will execute.

Line 9
The opening { marks the beginning of the block of statements to be executed. 

Line 10
Print the value of count.

Line 11
Set the sample index number to sample 56183 and start playing from there.

Line 12
Play audio for 343 milliseconds.

Line 13
Add one to the value of count;

Line 14
The closing } marks the end of block of statements to be executed. Program flow returns 
to line 9 where the value of count will be evaluated again before processing the block of 



m208w2014

29

statements between { and }. When count equals 5 the while loop ends and the next line 
is executed.

Line 15
Print the value of count after the while loop has terminated.

Directions for All Following Examples

Lines 1-5 (above) remain the same. Delete all lines from 6 to end and replace with 
following examples.

break / continue

Break allows the program flow to jump out of a loop. Enter and run this code.

The while loop will first check the condition, and executes the body as long as the 
condition evaluates as non-zero. 

Line 9
The while (true) block will repeat forever. It's a very common idiom in ChucK. The only 
way to terminate is with a conditional break statement.

do / while

To execute the body of the loop before checking the condition, you can use a do/while 
loop. This guarantees that the body gets executed at least once. Execute this code.



m208w2014

30

The ChucK cast operator $

The cast operator is used when you need to convert a variable of one type to a different 
type. For example you may need to convert a float to an int, or an int to a float, etc.

until

The until statement is the semantic opposite of while. An until loop executes the body 
repeatedly until the condition evaluates as non-zero. Enter and run this code.



m208w2014

31

(1.025::second / 1::samp) $ int calculates how many samples are in 
1.025 seconds. Without the case to int, the calculation would produce a float result 
(number with decimal places). However, the buf.pos method requires an int for the 
sample index position and will cause an error if it's a float.

The net result of the cast is that ChucK interprets this line
56183 - (1.025::second / 1::samp) $ int => buf.pos;
 as:
56183 - 4502 => buf.pos;
do / until

The [until] loop will first check the condition, and executes the body as long as the 
condition evaluates to zero. To execute the body of the loop before checking the 
condition, you can use a do/until loop. This guarantees that the body gets executed as 
least once. Enter and run this code.



m208w2014

32

Note that there are two methods for playing one second of silence: Method 1 and 
Method 2. Multi line comments are indicated by /* … */.

Try it again with Method 2 which doesn't involve saving and restoring gain.



m208w2014

33

for

A for loop repeats the code body a specified number of times.  There are three 
parameters in every for loop 

for ( index_variable; condition; adjust_index_variable )

The index_variable keeps track of the current loop number. The condition tests the state 
of index_variable (true, false). If the condition is try,e the index variable is adjusted and 
the loop body is executed again with the new value of index_variable. I with some and is 
evaluated and incremented at each iteration. If the condition test is false the loop exits. 
Enter and run this code.



m208w2014

34

ix++, ix--

ix++ is equivalent to ix + 1
ix— is equivalent to ix - 1

continue

A continue statement forces the loop to begin a new iteration. Code lines following the 
continue statement are not executed. Enter and run this code.



m208w2014

35



m208w2014

36

ChucK Functions
In Lab2 you created Octave functions.

[ret] = function add3( num1, num2, num3)
ret = num1 + num2 + num3;

endfunction

The Octave function was saved in a separate text file named add3.m and could be called 
like this.

You can also write functions in ChucK. A single ChucK source file can contain multiple 
functions. Here's an example.



m208w2014

37



m208w2014

38



m208w2014

39

Sample Mangling

Change speed

Open a new miniAudicle window, enter, save it as "changeSpeed.ck", and run this code.

Problem
The slow speed only played the word music. 

When the speed is twice as fast every other sample is played, raising the pitch by one 
octave and shortening the duration by half. When the speed is twice as slow as each 
sample is played twice.

Create a playAtDifferentSpeed Function

Notice how similar the code for playing at different speeds are. All three speeds do this:

1. buf.pos to zero
2. set buf.rate
3. chuck buf.length to now



m208w2014

40

Only one parameter changes, buf.rate or speed of playback. You can write a function 
that takes one parameter for speed and plays the sound.

Speed and duration are inversely related. You can fix the duration problem by 
multiplying the total number of samples by the reciprocal of the speed. For example, two 
times the speed requires one half the samples and half speed requires twice as many 
samples. 

Play backwards

Try playing backwards at different rates.



m208w2014

41

Randomize

Enter and run this code.

Modify other parameters as you wish.

While it is running click "Add Shred" again and again.



m208w2014

42

HID (Human Interface Device) Keyboard

ASCII (American Standard Code For Information 
Interchange)

The ASCII standard assigns numerical codes to the letters and symbols found on the 
computer keyboard. It's one of the ways the computer translates the character you type 
on the keyboard to the symbol that appears on the screen.

http://upload.wikimedia.org/wikipedia/commons/1/1b/ASCII-Table-wide.svg

Open kb.ck

One of the numerous code examples that are included with ChucK and miniAudicle is 
kb.ck. You'll find it in the m208Lab3 folder you downloaded at the beginning of Lab 3.

Run kb.ck

Important: Activate either the Virtual Machine window or the Console Monitor 
window before you start typing so your typing does not affect your code in the code 
window.

http://upload.wikimedia.org/wikipedia/commons/1/1b/ASCII-Table-wide.svg


m208w2014

43

Type these for four characters m, 2, 0, and 8 (one letter followed by three numbers). The 
results will appear in the Console Monitor window as you type. The corresponding 
ASCII codes are are marked with a red dot in the table above.

Copy all of the code from kb.ck and paste it into a new window. Delete lines 27-32. 

sayMusic208.ck

Save kb.ck as "sayMusic208.ck". It should look like this.



m208w2014

44

You'll need the start time in samples and the length in ms for the words music, two, oh, 
eight, that you saved at the beginning of this lab.



m208w2014

45

Create The Sndbuf Object And Load The music208.wav File

Define Variables For The ASCII Values of M 2 0 8



m208w2014

46

Create Four Functions To Respond To Key Presses



m208w2014

47

Add These Lines To The While Loop

Run The Program

Remember to deactivate the code window before you start typing.

Type m, 2, 0, 8 and watch the Console Window for debugging statements. You should 
see this.



m208w2014

48

Complete The Four Functions 

Fill in the start times and durations labelled xxx with the values you obtained from 
Audacity.



m208w2014

49

Run The Program

It ran but there are four problems.

Problem 1 - Sound plays as soon as program runs

The music208 sound plays at the start of the program, before typing anything. There are 
at least two ways to prevent this.

1. Set the buf.gain to zero at the beginning. That would mean setting it to 1.o in every 
one of the four functions because we don't know which letter will be typed first.

2. A better solution is to set buf.pos to the end of the file. Add line 17 to your code and 
run the file again.

Problem 2 - Words start OK but don't end OK

The words start at the correct place but they don't end properly. The sound continues 
until the end of the file is reached.

Solution: Add the "buf.samples() => buf.pos;" as the last line in each of the four 
functions. This way when the specified duration is finished, but.pos is set to the end of 
the file.

It should work now. You should be able to make the computer say things like:

"music two oh eight"
""eight two oh music"
"oh music ate too"
etc.



m208w2014

50

Problem 3 - No layering of sounds

A new sound will not start until the current sound is finished. Try pressing M as fast as 
you can 5-10 times. There is a noticeable lag from when you finish typing until the 
sounds end.

Problem 4 - No polyphony

No polyphony, you can't play two different sounds at the same time. Try pressing any 
two keys simultaneously. The sounds come one after the other depending on which key 
was detected first.

Solutions

These problems can be solved in two steps.

1. Create a separate SndBuf object inside each of the four functions.
2. spork~ the functions

Spork ~

Sporking a function sends it off to execute in independently, simuleaneously, and in 
parallel with the main program. Other programming languages refer to this concept as 
forking, threading, or parallel processing. ChucK is known for its play on words and it's 
documentation calls fork, spork;  thread, shred; and scheduler, shreduler.  The tilde 
symbol (~) in spork~  must be present. It's part of  the ChucK language.

Create A Sndbuf Object Inside Each Of The Four Functions

Copy these three lines.



m208w2014

51

Then add comments in front of the each of them.

Paste the three lines at the beginning of each function. Set buf.pos to zero.



m208w2014

52

spork ~ Each of the Four Functions

Add "spork ~ " before each function call in the while loop.

Run It

Type any combination of m, 2, 0, 8 as fast as you want, simultaneously or separately, 
and ChucK will keep adding sounds layered on top of one another.

Further Enhancements

You could assign other keys to increase or decrease the gain, the playback rate, and play 
forwards or backwards.

Done with Lab 3.


