
1

Music 208 Winter 2014
John Ellinger, Carleton College

Introduction to Octave

Octave is a free open source software program for doing math, numerical analysis and Digital
Signal Processing (DSP). Octave is mostly compatible with a very expensive commercial
program called Matlab. It is also similar to Mathematica but easier to use for digital audio
experiments. There are thousands of web pages devoted to learning Octave and Matlab.

Every major audio editing program has DSP units that create and manipulate sounds. Later
in this course you'll be using effects like compressors, equalizers, limiters, delay lines, and
reverb. You'll have access to different types software synthesizers that use techniques like:
additive synthesis, subtractive synthesis, ring modulation, frequency modulation, and physical
modeling. All of these effects and synthesis techniques mathematically manipulate the
individual samples in a sound file. Audio sound files often consist of several thousand to
several million samples. Octave is especially good at this and will help you understand how
several effects and synthesis techniques work.

Start Octave

Mac 10.6 Use Octave.app in /Applications
Mac 10.7 Use Octave.app in /Applications or install using 10.8 method
Mac 10.8, 10.9 Start Octave from Terminal
Windows Start Octave from desktop shortcut

2

You'll be greeted with octave information and the octave prompt >. Octave runs in a Terminal
window as a command line program. You enter commands and press Enter to execute them.
Type commands one line at a time. Type Enter to execute the command. When you see this
text style type command directly into octave at the octave command prompt > and press enter.

Specifying Mac and Windows Pathnames in Octave

The Mac uses forward slashes to separate directories. The top level of the hard drive is
the first /. This example indicates that a folder named Volumes is at the top level of the
hard drive. Inside Volumes is a folder named MC16 with another folder inside MC16
named m208.

/Volumes/MC16/m208

Windows uses \ to separate directories. In the Octave Terminal on windows a
single \ is interpreted as an "escape" character so you need to separate directories
with a double backslash \\. Also the top level hard drive is usually C:\ which
becomes C:\\. The example given above when translated to the Octave windows
terminal becomes:

C"\\Volumes\\MC16\\m208

pwd
Octave should respond with your home directory.

VERY IMPORTANT: Always double check your working directory with pwd. That is the
directory Octave will use to read and write files. It simplifies things if you keep all your
Octave files in one directory on your USB flash drive.

Octave Prompt
The octave prompt > is prefixed by "octave:1." The prefix displays the application name and
the command number after the colon.

Comments
Comments in octave are prefixed by a % or #.

% this is a comment
this is also a comment

smb://Volumes//MC16//m208

3

Math Operators
All the usual math operators and functions are available.

Plus + 3 + 4

Minus - 3 - 4

Multiply * Shift-8 3 * 4

Divide / 3 / 4

Exponent Power ^ Shift-6 3 ^ 4

Grouping () (3 + 4) * 3

Addition, Subtraction, Multiplication, Division, Power
To add 1 plus 4, type 1+4 and press Enter. Spaces between the math operators are optional.

% addition, subtraction, multiplication, division, power
1+4
16-7.52
3*4
12/5
2^3

A Semicolon Suppresses Output
Sometimes you want to see a result immediately, sometimes you don't. If the command line
ends with a semicolon, Octave will not display the result.

octave-3.4.0:88> % a semicolon at the end of a line supreses output
octave-3.4.0:88> 7+3*10;
octave-3.4.0:89> % is the answer 100 or 37
octave-3.4.0:89> (7+3)*10
ans = 100
octave-3.4.0:90> 7+(3*10)
ans = 37
octave-3.4.0:91> 7+3*10
ans = 37

Octave calculates 7+3*10=37 because multiplication has a higher precedence that addition.
When you are not sure about the order Octave will evaluate an expression you can use
parentheses to make it clear.

Named Variables
You can assign a variable to an expression: <variableName> = <expression> Enter these
commands one at a time. Terminate each line with a semicolon except for line 3, a3 = 3 * 4.

4

Spaces between operators (+ - * /) are ok.

% named variables
a1 = 1 + 4;
a2 = 16-7.52;
a3 = 3 * 4
a4 = 100/37;
a5 = 2^3;
Variable Values Are Saved And Can Be Displayed Anytime
Enter these variable names one at a time. Do not end with a semicolon.

octave-3.4.0:75> a1
a1 = 5
octave-3.4.0:76> a2
a2 = 8.4800
octave-3.4.0:77> a3
a3 = 12
octave-3.4.0:78> a4
a4 = 2.7027
octave-3.4.0:79> a5
a5 = 8
octave-3.4.0:80> ((a1+a2)*(a3-a4))/a5
ans = 15.666

Text Strings

A sequence of text characters is called a string. You can assign a string to a variable.

% variables can contain strings (a series of characters)
str = "This is a message.";

octave-3.4.0:82> str
str = This is a message.

printf
The printf command originated in the C programming language and has been adopted by
many languages others including Octave. The basic format of a printf command is:

printf("string in quotes with format codes %d or %s or %f \n",
variable1, variable2, variable3);

• items prefixed by % are called format codes
• %d indicates a decimal integer
• %f indicates a float or a number with decimal places
• %s indicates a string of characters
• %x indicates to display a number in hexadecimal format (%X for uppercase

ABCDEF)

5

• the % format codes are enclosed in quotes, a comma follows the ending quote and
variables follow the comma

• the number of the % format codes inside the quotes must match the number of
variables listed after the quotes

• the order the % format codes appear corresponds to the order of the variables
• \n (backslash n) is a line break character
• \t (backslash t) is a tab character

Here's an example that uses all of the above format codes. The printf command will display
output even when terminated by a semicolon.

octave-3.4.0:92> % variables can be formatted using the printf command
octave-3.4.0:92> str = "The value of a3 is:";
octave-3.4.0:93> printf("%s\n\tinteger: %d\n\tfloat: %f\n\thex: %X\n", str,
a3, a3, a3);
The value of a3 is:

integer: 12
float: 12.000000
hex: C

Cancel A Command
Type Control-c.

Math Functions Useful In Digital Sound Processing (DSP)

% constants
pi;
2*pi;
e;
i;
% square root
sqrt(2);
% absolute value
abs(-53.2);

Trig Functions
% trigonometry
% angle in radians
sin(pi/8);
cos(3*pi/8);
% angle in degrees
sind(22.5);
cosd(90-22.5);
% arctangent, the angle in radians whose tangent is pi
4*atan(1); % equals pi

6

Powers And Logarithms
% powers and logarithms
% base 10
10^3; % ten to the third power
log10(1000);
% base 2
2^16 ;
log2(65536);
% natural
e^2;
log(7.3891);

Approximations

% round
round(1.5);
round(1.49999);
% use floor and ceiling (ceil) to round up or down
% round down
floor(1.5);
floor(1.49999);
% round up
ceil(1.5);
ceil(1.49999);

Complex Numbers

% complex numbers
z = 3+4i;

octave-3.4.0:95> magnitude = abs(z)
magnitude = 5
octave-3.4.0:96> phase = arg(z)
phase = 0.92730

The Octave Help System
Help

Execute help <command> to display help for that command.

7

Online Help
http://www.gnu.org/software/octave/doc/interpreter/

http://www.gnu.org/software/octave/doc/interpreter/Function-Index.html#Function-Index

Format
The format command controls the number of decimal places.

octave-3.4.0:109> % format
octave-3.4.0:109> format short
octave-3.4.0:110> pi
ans = 3.1416
octave-3.4.0:111> format long
octave-3.4.0:112> pi
ans = 3.14159265358979
octave-3.4.0:113> % reset
octave-3.4.0:113> format short
octave-3.4.0:114>

Recall History
You can use the up and down arrow keys at the octave prompt to recall previous commands.
Try it.

You can also execute the command history. Directions at bottom of screen f, b, q. Try it.

http://www.gnu.org/software/octave/doc/interpreter/
http://www.gnu.org/software/octave/doc/interpreter/Function-Index.html#Function-Index

8

Arrays, Lists, Vectors
The samples in a sound file stored sequentially as a long list of numbers. Some programming
languages call them arrays, others call them lists, Octave calls them vectors. Octave has
functions for these common operations:

⁃ creation
⁃ deletion
⁃ inserting
⁃ retrieving
⁃ removing
⁃ replacing
⁃ resizing
⁃ querying current size
⁃ reading and writing
⁃ copying

Vectors
Octave vectors are one dimensional rows or columns of numbers.

You can create a vector three ways:

1. enclose numbers in brackets
2. as two numbers separated by a colon
3. as three numbers separated by colons

Each case will be discussed below.

1. Create a Vector by enclosin numbers separated by spaces and
enclosed in brackets [].
octave-3.4.0:114> % you can create lists of numbers by specifying the numbers
(vectors)
octave-3.4.0:114> xRowV = [1 3 5.67 4 2];
octave-3.4.0:115> % a row vector
octave-3.4.0:115> xRowV
xRowV =

 1.0000 3.0000 5.6700 4.0000 2.0000

octave-3.4.0:116>

9

Column Vector
By typing a semicolon after each element you'll create a column vector.

% column vector
xColV = [1; 3; 5.67; 4; 2];
xColV =

 1.0000
 3.0000
 5.6700
 4.0000
 2.0000

An apostrophe turns a row vector into a column vector and vice versa.

octave-3.4.0:121> xRowV'
ans =

 1.0000
 3.0000
 5.6700
 4.0000
 2.0000

octave-3.4.0:122> xColV'
ans =

 1.0000 3.0000 5.6700 4.0000 2.0000

2. Create a vector with two numbers separated by a colon
The array begins with the first number, increments by one, and ends with the last number

octave-3.4.0:123> xRowV = 1:10
xRowV =

 1 2 3 4 5 6 7 8 9 10

octave-3.4.0:125> xColV = [1:10]'
xColV =

 1
 2
 3
 4

10

 5
 6
 7
 8
 9
 10

3. Create a vector using three numbers separated by colons
The array begins with the first number, increments by the second number, and ends with the
last number.

octave-3.4.0:126> xRowV = 1:2:20
xRowV =

 1 3 5 7 9 11 13 15 17 19

octave-3.4.0:127> xRowV = 2:2:20
xRowV =

 2 4 6 8 10 12 14 16 18 20

octave-3.4.0:128> xRowV = 10:-1:1
xRowV =

 10 9 8 7 6 5 4 3 2 1

octave-3.4.0:130> xRowV = 0:.075:1
xRowV =

 Columns 1 through 8:

 0.00000 0.07500 0.15000 0.22500 0.30000 0.37500 0.45000
0.52500

 Columns 9 through 14:

 0.60000 0.67500 0.75000 0.82500 0.90000 0.9750

octave-3.4.0:131> xRowV = 0:1/7:1
xRowV =

 0.00000 0.14286 0.28571 0.42857 0.57143 0.71429 0.85714
1.00000

11

Find The Number Of Elements In A Vector

octave-3.4.0:132> length(xRowV)
ans = 8
Copy A Vector

octave-3.4.0:135> xRowV = [1 3 2 4 5];
octave-3.4.0:136> yColV = xRowV';
octave-3.4.0:137> yColV
yColV =

 1
 3
 2
 4
 5

Add A Constant To Every Element

octave-3.4.0:138> % add a number to each element in the vector
octave-3.4.0:138> yRowV = xRowV;
octave-3.4.0:139> yRowV = xRowV + 3
yRowV =

 4 6 5 7 8

octave-3.4.0:140> % equivalent result using the += operator
octave-3.4.0:140> yRowV = xRowV;
octave-3.4.0:141> yRowV += 3
yRowV =

 4 6 5 7 8

Multiply Every Element By A Constant

octave-3.4.0:142> % multiply every element by a constant
octave-3.4.0:142> yRowV = xRowV;
octave-3.4.0:143> yRowV = xRowV * 3
yRowV =

 3 9 6 12 15

octave-3.4.0:144> % equivalent result using the *= operator

12

octave-3.4.0:144> yRowV = xRowV;
octave-3.4.0:145> yRowV *= 3
yRowV =

 3 9 6 12 15

Find The Sum, Product, And Average Of Every Element In A Vector
Because sum and prod are built in functions they cannot be used as variable names.

octave-3.4.0:146> summ = sum(xRowV);
octave-3.4.0:147> prd = prod(xRowV);
octave-3.4.0:148> average = summ / length(xRowV);
octave-3.4.0:149> printf("sum = %f, product = %f, average = %f\n", summ, prd,
average);
sum = 15.000000, product = 120.000000, average = 3.000000

Add Or Subtract Two Vectors Element By Element

octave-3.4.0:150> x = [1 2 3];
octave-3.4.0:151> y = [4 5 6];
octave-3.4.0:152> x+y
ans =

 5 7 9

If you try to add a row vector to a column vector you’ll get an error.

octave-3.4.0:153> x = [1 2 3];
octave-3.4.0:154> y = [4; 5; 6];
octave-3.4.0:155> x+y
error: operator +: nonconformant arguments (op1 is 1x3, op2 is 3x1)

This can be fixed using the transpose operator ‘ (single quote)
octave-3.4.0:155> x+y'
ans =

 5 7 9

octave-3.4.0:156> x'+y
ans =

 5
 7
 9

13

The two vectors must also be the same size.

octave-3.4.0:157> x = [1 2 3];
octave-3.4.0:158> y = [4 5 6 7];
octave-3.4.0:159> x+y
error: operator +: nonconformant arguments (op1 is 1x3, op2 is 1x4)

The Obvious Way to Multiply Two Vectors May Not Be What You
Expect
If you try to multiply two vectors you’ll get an error.

octave-3.4.0:159> x = [1 2 3];
octave-3.4.0:160> y = [4 5 6];
octave-3.4.0:161> x*y
error: operator *: nonconformant arguments (op1 is 1x3, op2 is 1x3)
If you transpose the one of the vectors you’ll get an an answer, but it not be what you were
expecting.

octave-3.4.0:161> x*y'
ans = 32

You got the dot product of the two vectors. The dot product is the sum of element by element
multiplication and is rarely used in digital audio.

octave-3.4.0:166> x*y'
ans = 32
octave-3.4.0:167> dot(x,y)
ans = 32
octave-3.4.0:168> x(1)*y(1)+x(2)*y(2)+x(3)*y(3)
ans = 32

Multiply Two Vectors Element By Element
In audio calculations you normally want element by element multiplication of two vectors.
These are rules you need to be aware of:

1. Both vectors must be row vectors or both vectors must be column vectors.
2. The two vectors have to be the same size.
3. Use the .* operator to multiply element by element.

octave-3.4.0:169> x .* y
ans =

 4 10 18

14

Row .* Column doesn't work

octave-3.4.0:177> xRowV = [1 2 3]
xRowV =

 1 2 3

octave-3.4.0:178> yColV = [4 5 6]'
yColV =

 4
 5
 6

octave-3.4.0:179> xRowV .* yColV
error: product: nonconformant arguments (op1 is 1x3, op2 is 3x1)

Element by element operations also work with these operators:

./

.^

You Can Access Any Element Of A Vector By Enclosing Its Index
Position In Parentheses
Important: The first element of the list is index 1.

octave-3.4.0:179> x = [6 5 4 3 2 1];
octave-3.4.0:180> x(1) * x(4)
ans = 18

You Can Access A Range Of Elements Using The Colon Operator

octave-3.4.0:182> x(4:6) * pi
ans =

 9.4248 6.2832 3.1416

If You Try To Access An Element Outside The Vector's Range You'll
Get An Error

octave-3.4.0:183> x(0)
error: subscript indices must be either positive integers or logicals
octave-3.4.0:183> x(7)

15

error: A(I): index out of bounds; value 7 out of bound 6
Array Indexes Must Be Integers

octave-3.4.0:183> x(4.2)
error: subscript indices must be either positive integers or logicals

Find The Minimum And Maximum Values In A Vector

octave-3.4.0:183> x = [4 57 3 -5.23 4 -6.1 17 36 -6];
octave-3.4.0:184> mx = max(x)
mx = 57
octave-3.4.0:185> mi = min(x)
mi = -6.1000

Find The Minimum And Maximum Values In A Vector And Their Index
Position

octave-3.4.0:186> [mx,ix] = max(x)
mx = 57
ix = 2
octave-3.4.0:187> x(ix)
ans = 57
octave-3.4.0:188> [mi,ii] = min(x)
mi = -6.1000
ii = 6
octave-3.4.0:189> x(ii)
ans = -6.1000

Merge Two Vectors And Sort Them

octave-3.4.0:193> x = 10:-2:2;
octave-3.4.0:194> y = [3:2:11 -1 -3];
octave-3.4.0:195> z = [x y]
z =

 10 8 6 4 2 3 5 7 9 11 -1 -3

octave-3.4.0:196> sorted = sort(z)
sorted =

 -3 -1 2 3 4 5 6 7 8 9 10 11

16

Powers Of Two
Here are three ways to display the first 16 powers of 2.

% another way way
% for loop
for n=0:16

2^n;
endfor
% nicely formatted way
for n=0:16

printf("2^%d = %d\n", n, 2^n);
endfor

Method 1 - uses the .^ operator for element by element raising to a power.

% powers of 2
n = [0:16];
% note the use of .^ for element by element power of 2
p = 2 .^ n;
p'

Method 2 - uses the power function power(X,Y) returns X raised to the Y power.

power(2,n)

Method 3 - uses a for loop to iterate over the second line 16 times.

% for loop
for n=0:16; 2^n endfor

Method 3 - uses printf for better formatting.

octave-3.4.0:210> for n=0:16; printf("2^%d = %d\n", n, 2^n); endfor
2^0 = 1
2^1 = 2
2^2 = 4
2^3 = 8
2^4 = 16
2^5 = 32
2^6 = 64
2^7 = 128
2^8 = 256
2^9 = 512
2^10 = 1024
2^11 = 2048

17

2^12 = 4096
2^13 = 8192
2^14 = 16384
2^15 = 32768
2^16 = 65536
Digital Audio Times And The Format Command
Create the sample times at the CD audio rate.

octave-3.4.0:225> % digital audio example
octave-3.4.0:225> % Sample Rate
octave-3.4.0:225> SR = 44100;
octave-3.4.0:226> % Sample Period
octave-3.4.0:226> T = 1/SR;
octave-3.4.0:227> % duration of 2.5 seconds
octave-3.4.0:227> dur = 2.5 * SR;
octave-3.4.0:228> % create the sample indexes
octave-3.4.0:228> n = 0:T:dur;
error: invalid range
octave-3.4.0:228> % display the sample times for the first two tenths of a
millisecond octave-3.4.0:228> sampleTimes = [0:T:0.0002]
sampleTimes =

 Columns 1 through 6:

 0.0000e+00 2.2676e-05 4.5351e-05 6.8027e-05 9.0703e-05
1.1338e-04

 Columns 7 through 9:

 1.3605e-04 1.5873e-04 1.8141e-04

Times are displayed in scientific format, 2.267e-05 means 2.267*10−5
.

Octave has a format command. Type help format to see the options. Here’s two examples.

format short g

octave-3.4.0:233> format short g
octave-3.4.0:234> sampleTimes = [0:T:0.0003]
sampleTimes =

 Columns 1 through 6:

 0 2.2676e-05 4.5351e-05 6.8027e-05 9.0703e-05 0.00011338

18

 Columns 7 through 12:

 0.00013605 0.00015873 0.00018141 0.00020408 0.00022676 0.00024943

 Columns 13 and 14:

 0.00027211 0.00029478

format compact

octave-3.4.0:235> format compact
octave-3.4.0:236> sampleTimes = [0:T:0.0003]
sampleTimes =

 Columns 1 through 6:
 0 2.2676e-05 4.5351e-05 6.8027e-05 9.0703e-05 0.00011338
 Columns 7 through 12:
 0.00013605 0.00015873 0.00018141 0.00020408 0.00022676 0.00024943
 Columns 13 and 14:
 0.00027211 0.00029478

Type format without any parameters to return to the default setting.

Recalling The Past
The history command shows you what you’ve been doing. In this example 10 means display
the 10 most recent lines. If I had not included the 10, history would have displayed 1351
previous commands.

octave-3.4.0:237> history 10
 1342 sampleTimes = [0:T:0.0002]
 1343 format short g
 1344 sampleTimes = [0:T:0.0002]
 1345 sampleTimes = [0:T:0.001]
 1346 sampleTimes = [0:T:0.0003]
 1347 format short g
 1348 sampleTimes = [0:T:0.0003]
 1349 format compact
 1350 sampleTimes = [0:T:0.0003]
 1351 history 10

Saving Your Work
Octave has a feature for saving your work to a file using the diary command.

diary 'filename' (toggles diary on and off)

19

Turn the diary on and save to a file m208diary.txt in the current working directory.

octave-3.4.0:238> diary 'm208diary.txt';

