m208w2014

MUSC 208 Winter 2014
John Ellinger, Carleton College

Lab 2 Octave: Octave Function Files

Setup

Open /Applications/Octave

The Working Directory

Type pwd on Unix did on Windows (followed by Return) at the Octave prompt to see
the full path of Octave's working directory.

octave-3.4.0:92> pwd
ans = /Users/je/m208

The full path name is /Users/je/m208. On the mac the top level of the hard drive is /.
There is a folder at the top level called Users. Inside that folder is my home folder je.
Inside that folder is the m208 folder. I created this ahead of time to hold all the octave,
chuck, and Pd files I've created for this class.

On windows the top level folder is C:\

When you work in the Terminal as we'll do in this class you should avoid using spaces in
file or folder names. There are two common naming systems used by programmers.

1. underscores: this_is_a _long_file_name
2. camel case: thisIsALongFileName

It's important when you work with Octave that you know where Octave's working
directory is, because that's where it will create and look for files.

Set the Working Directory

You need to be familiar with three commands to move around in Octave: cd, Is, and
pwd.

cd = Change Directory (folder)
Is = LiSt files
pwd = Print Working Directory.

m208w2014

Specifying Mac and Windows Pathnames in Octave

The Mac uses forward slashes to separate directories. The top level of the hard drive is
the first /. This example indicates that a folder named Volumes is at the top level of the
hard drive. Inside Volumes is a folder named MC16 with another folder inside MC16
named m208.

/Volumes/MC16/m208

Windows uses \ to separate directories. In the Octave Terminal on windows a
single \ is interpreted as an "escape" character so you need to separate directories
with a double backslash \. Also the top level hard drive is usually C:\ which
becomes C:\\. The example given above when translated to the Octave windows
terminal becomes:

C"\\Volumes\\MC16\\m208

The following picture illustrates file system navigation on a Mac. Comments are in red.
The first line changes Octave's working directory to the m208 folder on my USB thumb
drive.

octave-3.4.0:1> cd /Volumes/MC16/m208 cd means Change Directory

octave-3.4.0:2> 1s Is means vfiles

Lab2 there’s one directory called Lab 2

octave-3.4.0:3> cd Lab2 cd to the Lab2 folder (directory)

octave-3.4.0:4> 1s list files

ck m pd there are three folders

octave-3.4.0:5> cd m cd to the m folder (octave file suffix is .m)

octave-3.4.0:6> 1ls list all files in the m folder

add3.m allzeros.m oneAnd99zeros.m rampRiseFall50.m
allones.m noisel00.m onesAndMostlyZeros.m sinelOOsamplePeriod.m
allrandom.m onOf£50.m ramp0tol00.m

octave-3.4.0:7> cd ck cd to the ck folder

error: ck: No such file or directory oops, no ck folder in the m folder

octave-3.4.0:7> cd ../ck ../ means move to the parent folder of the current folder
octave-3.4.0:8> 1s list files in ck

EqualLoudnessTest.ck one file

octave-3.4.0:9> cd ../pd cd to the pd folder

octave-3.4.0:10> 1s list files

AliasingDemo.pd one file

octave-3.4.0:11> pwd pwd means Print Working Directory

ans = /Volumes/MC16/m208/Lab2/pd octave will now look for and save files in the pd directory
octave-3.4.0:12> cd ../m we really want to be in the m folder for Octave
octave-3.4.0:13> pwd prove it

ans = /Volumes/MC16/m208/Lab2/m yes

octave-3.4.0:14> 1s list files in the m directory

add3.m allzeros.m oneAnd99zeros.m rampRiseFall50.m
allones.m noisel00.m onesAndMostlyZeros.m sinelOOsamplePeriod.m
allrandom.m onOf£50.m ramp0tol00.m

octave-3.4.0:15> # thats the working directory for my Octave files

octave-3.4.0:15> you can now execute any file by typing its name without the .m

m208w2014

Functions with a single return value

Octave functions are plain text files that contain code to do one specific thing. These
functions can be used by in other Octave programs by simply calling the function

name. That keeps the main program neater because you can encapsulate commonly
used commands in separate files. Our first function will add any three numbers we tell it
to.

Create an Octave function file to add three numbers.

Enter this command after the > and type Return:
octave-3.4.0:3> edit add3.m

TextWrangler should open with this skeleton code already in place.

® TextWrangler File Edit Text View Search Go Window # $ Help
e OO % add3.m

T' ﬁ File Path v : ~/Downloads/m208_stuff/_labs/Lab2/m/add3.m

|} add3.m 3| {no symbol selected) =

|## Copyright (C) 2013 John Ellinger

#4

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or

(at your option) any later version.

#4

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

#4

You should have received a copy of the GNU General Public License

along with Octave; see the file COPYING. If not, see

<http://www.gnu.org/licenses/>.

W 00 N O N b W N -

T e B B R R
B - B B T N

add3

—
o o

Author: John Ellinger <je@jemac.mibac.lan>
Created: 2013-04-02

N NN
N O

function [ret] = add3 ()

NN
Soow

endfunction

m208w2014

The line numbers you see down the left side of the window can be turned on using the
"T" popup menu just under the Red close button at the top left of the window.

® TextWrangler File Edit
® OO0

T * File Path v : ~/Downloads/m208_s

»

Soft Wrap Text + {no sym
C) 2013
m is fre
¥ Show Page Guide e terms
Show Tab Stops ftware [

v Show Line Numbers N tion) ar

v Show Gutter
m is dics
Show Invisibles ' ANY WAF
LITY or

Use Typographer's Quotes Public

Auto-Expand Tabs

CErIr WIS rIeNIT ey haua Yar

Octave is very strict about matching the file name with the function name, they must be
the same.

m208w2014

- TextWrangler File Edit Text View Search Go Window #! $ Help

e 00

I b add3Jn|

T [®

I B I S

L ™ I -
W NN R W N D

19

File Path v : ~/Downloads /m208_stuff/_labs/Lab2/m/add3.m

L

1 add3.m S (no symbol selected) <

Copyright (C) 2013 John Ellinger
"
#8# This program is free software; you can redistribute it and/or modify
#% it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
#8 (at your option) any later version,
LL]
#8# This program is distributed in the hope that it will be useful,
#8 but WITHOUT ANY WARRANTY: without even the implied warranty of
#%# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
£
#% You should have received a copy of the GNU General Public License
#8 along with Octave; see the file COPYING. If not, see
#8 <http://www.gnu.org/licenses/>.
#8 add3
#% Autheor: John Ellinger <jefjemac.mibac.lan>

Created: 2013-04-02

function [ret] = add3 ()

endfunction

1. The file name at the top of the window.

2. ## add3. Comments you add below this line will appear when you type "help add3" at
the Octave prompt.

3. function [ret] = add3 (). You'll add your code between this line and the endfunction
statement.

In Octave you would add three numbers like this:
octave-3.4.0:4> 133 + 6537 + 440

ans 7110

or

octave-3.4.0:5> a = 133;
octave-3.4.0:6> b = 6537;
octave-3.4.0:7> c = 440;
octave-3.4.0:8> a+b+c
ans 7110

We'll use the second approach to create the code.

m208w2014

Create the code

Modify the code to read:

22 function ret = add3 (a, b, c¢)
23 [ret] =a + b + c;

24 endfunction

Note: ret, a, b, and c are made up variable names that will be used in the body of the
function. We could also have written:

22 function theSumOfThreeNumbersIs = add3 (numberl, number2, number3)
23 theSumOfThreeNumbersIs = numberl + number2 + number3;
24 endfunction

In general you want to use variable names that help make the code self documenting. In
this simple example a, b, and ¢ work fine and require less typing.

Now add the help message:

15 ## <http://www.gnu.org/licenses/>.

17 ## ret = add3 (a, b, c)
18 ## adds the three numbers a b ¢ and returns the result

3
20 ## Author: John Ellinger <je@jemac.mibac.lan>
21 ## Created: 2013-04-02

22 function ret = add3 (a, b, c¢)
23 [ret] =a + b + ¢;

24 endfunction

Save the file.

Testing

Return to the Octave prompt and ask for help:

m208w2014

octave-3.4.0:9> help add3
“add3’' is a function from the file /Users/je/Downloads/m208_stuff/_ labs/Lab2/m/add3.m

add3

Additional help for built-in functions and operators is
available in the on-line version of the manual. Use the command
“doc <topic>' to search the manual index.

Help and information about Octave is also available on the WWW
at http://www.octave.org and via the help@octave.org

mailing list.

octave-3.4.0:10> |

Let's use the function.

octave-3.4.0:14> add3(133, 6537, 440);
octave-3.4.0:15> add3(133, 6537, 440)
ans = 7110

Remember lines with an ending semicolon do not display output.
Try this:

octave-3.4.0:16>
octave-3.4.0:17>
octave-3.4.0:18>
octave-3.4.0:19>
x = 127
octave-3.4.0:20> y

y = 11.780

octave-3.4.0:21> z

z = 1.5690

octave-3.4.0:22> x+y+z

ans = 140.35

octave-3.4.0:23> average = (x+y+z)/9
average = 15.594

= add3(15, 45, 67);
add3(1.78, 22, -12);
= add3(1.0, .55, .019);

¥ N M
I

Error checking

As long as we call add3 with three numbers everything works. It's an error if we have
less than three. If we have more than three numbers the function works by using the
first three.

m208w2014

octave-3.4.0:24> add3(133, 6537)

error: “c¢' undefined near line 23 column 16

error: called from:

error: /Users/je/Downloads/m208_stuff/_ labs/Lab2/m/add3.m at line 23, column 6

We'll introduce error checking next time.

Functions with multiple return values

Create an Octave function file to return the sum, product,
and mean of three numbers.

Enter this command after the > and type Return:
octave-3.4.0:3> edit sumProdMean3.m

15
16
17
18
19
20
21
22
23
24
25
26
27

<htté://www.gnu.org/licenses/>.

sumProdMean3
sumProdMean3 (a, b, c) returns the sum, product, and mean of three numbers

Author: John Ellinger <je@jemac.mibac.lan>
Created: 2013-04-02

function [s, p, m] = sumProdMean3 (a, b, c)

s = a+t+b+c;

P = a*b*c;

m = s/3;
endfunction

Test help:

octave-3.4.0:40> help sumProdMean3
“sumProdMean3’' is a function from the file /Users/je/Downloads/m208_stuff/_ labs

an3.m

sumProdMean3
sumProdMean3 (a, b, c¢) returns the sum, product, and mean of three numbers

Test the function:

m208w2014

octave-3.4.0:41> [s,p,m] = sumProdMean3 (10, 15, 30)
s = 55

p = 4500

m= 18.333

octave-3.4.0:42> [s,p,m] = sumProdMean3(10, 15, 30);
octave-3.4.0:43> s

s = 55

octave-3.4.0:44> p

p = 4500

octave-3.4.0:45> m

m= 18.333

Lab 2 - Octave: Periodic Signals

Question 1: What does a waveform sound like if every
sample is 0?

Open /Applications/Octave

At the Octave prompt type this followed by return. From now on I'll assume you know
that you need to type return to execute the command.

octave-3.4.0:125> edit allzeros.m
A TextWrangler window will open titled allzeros.m.
Fill in the function body.

One method to create 44100 zeros would be:

SR = 44100;
n = 1:SR;
nT =n .* 0;
ret = nT;

A more compact version could be written as:
ret = [1:44100] .* 0;

Another way to do it is:
ret = zeros(1l, 44100);

m208w2014

To get help on the zeros function, enter:
help zeros

Here's an example that shows what happens.

octave-3.4.0:22> # square matrix
octave-3.4.0:22> zeros(4)
ans =

O 00O
0O 00O
0O 00O
O 00O

octave-3.4.0:23> # 1 row, 4 columns
octave-3.4.0:23> zeros(1,4)
ans =

0 0 0 0
octave-3.4.0:24> ¢ 4 rows, 1 column

octave-3.4.0:24> zeros(4,1)
ans =

o O 0O

Now execute these commands at the Octave prompt.

octave-3.4.0:10> wav = allzeros;
octave-3.4.0:11> wav(1:20)
ans =

o o o0 o0 o 0 0 0 0 o o o0 o0 o 0 0 0 0o 0 o0

octave-3.4.0:12> playsamples(wav);

What did you hear? The answer should be nothing.

10

m208w2014

A steady stream of zeros will not make the speaker membrane move in and out, so no
sound wave is produced.

Plot it.
octave:6> plot(wav(1 : 500));

X| Figure 1

0.5 fF -

-1

0 100 200 300 400 500
208,137, -0,338302

Question 2. What does a waveform sound like if every
sampleis 1?

At the Octave prompt execute this:
edit allones.m

Change the code you used in Question 1 to use ones instead of zeros. You could use:
ret = ones(1l, 44100);

Now execute these commands:

11

m208w2014

octave-3.4.0:26> wav = allones;
octave-3.4.0:27> wav(1:20)
ans =

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

octave-3.4.0:28> playsamples(wav);

What did you hear? The answer shold be two clicks.

The first 1 pushed the speaker membrane all the way out starting a positive pressure
wave of compressed air. The next 44,099 ones held the speaker membrane in its out
position. When the wave ended, the speaker membrane returned inwards creating a
negative pressure wave. The sudden discontinuities of the speaker membrane were
heard as clicks.

Plot it.
octave:17> plot(wav(1 : 500));

®00 \| Figure 1
1-1 1 L L] L]

1.05 | N

0.95 | -

0.9 L A L s
E— 100 200 300 400 500

278,004, 1,10377

12

m208w2014

Look at the Y axis limits. They range from 0.9 to 1.1 because of Octave autoscaling.

Let's change the Y axis limits. First look for help about axis using the lookfor command.

octave:18> lookfor axis

axis
caxis
feather

gca
loglogerr
semilogx
semilogxerr

semilogy
semilogyerr

xlabel
xlim

ylim

zlim
datetick
auplot
octave:19>

Set axis limits for plots.

Set color axis limits for plots.

Plot the ~ (U, V)' components of a vector field emanating from equidistant p
oints on the x-axis.

Return a handle to the current axis object.

Produce two-dimensional plots on double logarithm axis with errorbars.
Produce a two-dimensional plot using a logarithmic scale for the X axis.
Produce two-dimensional plots using a logarithmic scale for the X axis and
errorbars at each data point.

Produce a two-dimensional plot using a logarithmic scale for the Y axis.
Produce two-dimensional plots using a logarithmic scale for the Y axis and
errorbars at each data point.

Specify x-, y-, or z-axis labels for the current axis.

Get or set the limits of the x-axis of the current plot.

Get or set the limits of the y-axis of the current plot.

Get or set the limits of the z-axis of the current plot.

Add date formatted tick labels to an axis.

Plot the waveform data, displaying time on the X axis.

Then get specific help on the axis command.

octave:19> help axis
‘axis' is a function from the file /usr/local/Cellar/octave/3.6.4/share/octav
e/3.6.4/m/plot/axis.m

-- Function File: axis ()

-- Function File: axis ([X lo X hi])
I -- Function File: axis ([X_lo X hi Y lo Y hi])

Y hi
-- Function File: axis ([X 1o X hi Y 1o Y hi Z lo Z_hi])
-- Function File: axis (OPTION)
-- Function File: axis (..., OPTION)
-- Function File: axis (H, ...)
-- Function File: LIMITS = axis ()
Set axis limits for plots.

The argument LIMITS should be a 2-, 4-, or 6-element vector. The

We'll use the third one. Execute this.

octave:20> axis([0 500 -2 2]);

The Y axis should immediately change.

13

m208w2014

® OO \ Figure 1

1.5F .

0.5 N

_2 L s L s
0 100 200 300 400 500

310,686, 2.08606

Question 3. What does a waveform sound like when all
samples are random?

At the Octave prompt execute this:
edit allrandom.m

Change the code you used in Question 1 or 2 to use rand
ret = rand(1l, 44100);

Now execute these commands:

14

m208w2014

octave-3.4.0:127> wav = allrandom;
octave-3.4.0:128> length(wav)

ans = 44100

octave-3.4.0:129> wav(1:100)

ans =

Columns 1 through 8:

0.4265862 0.0499383 0.0045888 0.8633293 0.6396447 0.0777699 0.9059608 0.1986397
Columns 9 through 16:

0.2611531 0.6802464 0.5863600 0.4936277 0.1083623 0.0657752 0.5215081 0.6371048
Columns 17 through 24:

0.4711225 0.7512032 0.9367746 0.1620678 0.3231622 0.1965898 0.1670319 0.4215921
Columns 25 through 32:

0.6413130 0.1480023 0.7464444 0.0905297 0.9949723 0.7192969 0.2282198 0.8893306
Columns 33 through 40:

0.0345513 0.0416174 0.0959472 0.6217750 0.4077891 0.1024974 0.8277974 0.3054618
Columns 41 through 48:

0.8330227 0.8292638 0.6972918 0.3603887 0.5115804 0.5426709 0.2585607 0.2002402
Columns 49 through 56:

0.5916115 0.8817492 0.4428844 0.0256947 0.8097156 0.8761132 0.7829345 0.6371281
Columns 57 through 64:

0.1305806 0.7454377 0.8417498 0.1798228 0.4927523 0.2162750 0.9465306 0.8891874
Columns 65 through 72:

0.6076831 0.9393852 0.6404988 0.4494569 0.8503897 0.4795021 0.6215608 0.6492570
Columns 73 through 80:

0.5238225 0.9871107 0.8945542 0.9122400 0.4180767 0.4991818 0.5332238 0.1384914
Columns 81 through 88:

0.1796142 0.9863986 0.7131054 0.4812540 0.5881990 0.5045967 0.3397863 0.6460222
Columns 89 through 96:

0.7567690 0.2792097 0.7780263 0.2350570 0.8505868 0.7084707 0.3870974 0.7248190
Columns 97 through 100:

0.1381305 0.9786735 0.0649410 0.8557518

octave-3.4.0:130> playsamples(wav) ;
What did you hear? The answer sounds like noise or the static between radio stations.

Plot it. '
octave:22> plot(wav(1 : 500));

15

m208w2014

e OO \| Figure 1

1 T T T

oo m

0.6 |

[yt

[|

0 100 200 300 400 500
333,512, 1.01886

Question 4. What does a waveform sound like when every
100th sample is a 1 and all others are zero?

At the Octave prompt execute this:
edit oneAnd99zeros.m

Outline of steps

1. create a series of 100 zeros

2. set the first element to 1

3. repeat it 441 times to create one second of samples
4. return the 44100 samples at the end of the function

You can use the Octave command repmat to make multiple copies of a sequence (array,
vector, one dimensional matrix)

Read the octave help for repmat

16

Here's some examples
octave-3.4.0:74>

array =

1 2

octave-3.4.
ans =

ans =

octave-3.4.
ans =

e e
NNNN

ans =

e e
NNNN

3 4
0:75>
3 4
0:76>
3 4
0:77>
3 4
3 4
3 4
3 4
0:78>
3 4
3 4
3 4
3 4

array = 1:4

repmat (array,

repmat (array,

repmat (array,

repmat (array,

(4 1])

m208w2014

When you've finished coding and saving the oneAnd99Zeros.m file, execute these

commands:

17

octave-3.4.0:78> wav = oneAnd99zeros;
octave-3.4.0:79> length(wav)

ans = 44100

octave-3.4.0:80> wav(1:110)

ans =

Columns 1 through 24:

1 0o 0 o0 o o o o0 o
Columns 25 through 48:

0o o0 o o o0 O o0 o0 O
Columns 49 through 72:

0o o o o o O o o0 O
Columns 73 through 96:

0o o0 o o o o o o0 O
Columns 97 through 110:

0O 0 o0 o0 1 0O 0 o0 o

octave-3.4.0:81> playsamples(wav);

What did you hear? The answer is a sound with a pitch of 441 Hz.

m208w2014

The speaker membrane moves out on every 1 starting the positive pressure wave
followed immediately 99 zeros that create and a negative pressure wave. The positive

pressure is periodic 441 times in one second creating the pitch.

Plot it.
octave:30> plot(wav(1

octave:31> axis([0 500 -2 2

18

8 OO0

\ Figure 1

m208w2014

1.5F

0.5

-2

0 100 200

300

400

500

430,838, -0,535383

This is a basic synthesizer waveform called a pulse wave.

Question 5. What does a waveform sound like when the
first 50 samples are 1 and the second 50 are 0?

At the Octave prompt execute this:

edit onOff50.m

Outline

1. Create 50 1's.

2. Create 50 0's.

3. join them together
4. repeat 441 times.

Hint:

19

octave-3.4.0:18> a

octave-3.4.0:19> b

b =

0

octave-3.4.0:20> |

0 0

ans =

1

1 1

0

1

0

[1, 1, 1,
[0000]
b]

0O 0 0

1]

m208w2014

When you've finished coding and saving the onOff50.m file, execute these commands:

octave-3

.4.0:8> wav = onOff50;

octave-3.4.0:9> length(wav)
ans = 44100
octave-3.4.0:10> wav(1:110)

ans =

Columns

Columns

1 1

Columns

0 0

Columns

0 0

octave-3

What did you hear? The answer is a sound with a pitch of 441 Hz.

1 through 24:
1 1 1

25 through 48:
1 1 1

49 through 72:
0 0 0

73 through 96:

0 0o o0

1

1

0

0

97 through 110:

0 0 1

.4.0:11> playsamples(wav);

1

1

1

1 1
1 1
0 0
0 0
1 1

20

1 1 1
1 1 1
0o o0 0
0o o0 0
1 1 1

Plot it.

octave:27> plot(wav(1

500));

octave:28> axis([0 500 -2 2]);

e OO

\| Figure 1

m208w2014

2

1.5

0.5

-0.5

-1.5

-2

0

100

200

300

400

500

438,704,

This is a basic synthesizer waveform called a square wave.

1,39124

Question 6. What does a waveform sound like if every 100

samples rise uniformly in amplitude from 0 to 1?

At the Octave prompt execute this:
edit ramp@tol@0.m;

Outline

1. Define delta as 0.01;
1. Create the first 100 samples. n = 0:delta:1-delta. Because we're starting from zero, 100

21

m208w2014

samples end at 99.
2. repeat 441 times.

Hint: If you create a vector (array, sequence, list) with 2 semicolons, the middle number
is the increment between the beginning and end.

octave-3.4.0:44> ramp = 0:.1:1
ramp =

Columns 1 through 8:

0.00000 0.10000 0.20000 0.30000 0.40000 0.50000 0.60000 0.70000
Columns 9 through 11:

0.80000 0.90000 1.00000

Now execute these commands. format compact uses less whitespace in the display.

octave-3.4.0:162> wav = ramp0Otol00;
octave-3.4.0:163> length(wav)

ans = 44100

octave-3.4.0:164> format compact;
octave-3.4.0:165> wav(1:100)

ans =

Columns 1 through 9:

0.00000 0.01000 0.02000 0.03000 0.04000 0.05000 0.06000 0.07000 0.08000
Columns 10 through 18:

0.09000 0.10000 0.11000 0.12000 0.13000 0.14000 0.15000 0.16000 0.17000
Columns 19 through 27:

0.18000 0.19000 0.20000 0.21000 0.22000 0.23000 0.24000 0.25000 0.26000
Columns 28 through 36:

0.27000 0.28000 0.29000 0.30000 0.31000 0.32000 0.33000 0.34000 0.35000
Columns 37 through 45:

0.36000 0.37000 0.38000 0.39000 0.40000 0.41000 0.42000 0.43000 0.44000
Columns 46 through 54:

0.45000 0.46000 0.47000 0.48000 0.49000 0.50000 0.51000 0.52000 0.53000
Columns 55 through 63:

0.54000 0.55000 0.56000 0.57000 0.58000 0.59000 0.60000 0.61000 0.62000
Columns 64 through 72:

0.63000 0.64000 0.65000 0.66000 0.67000 0.68000 0.69000 0.70000 0.71000
Columns 73 through 81:

0.72000 0.73000 0.74000 0.75000 0.76000 0.77000 0.78000 0.79000 0.80000
Columns 82 through 90:

0.81000 0.82000 0.83000 0.84000 0.85000 0.86000 0.87000 0.88000 0.89000
Columns 91 through 99:

0.90000 0.91000 0.92000 0.93000 0.94000 0.95000 0.96000 0.97000 0.98000
Column 100:

0.99000

octave-3.4.0:166> playsamples(wav);

What did you hear? The answer is a sound with a pitch of 441 Hz with a different
timbre.

22

m208w2014

Plot it.

octave:33> plot(wav(1 : 500));
octave:34> axis([0 500 -2 2]);

® OO0 \ Figure 1
2 L] L) L] L]

-1.5 .

-2

0 100 200 300 400 500
397,071, 2,05418

This is a basic synthesizer waveform called a sawtooth wave.

Question 7. What does a waveform sound like if every 50
samples rise uniformly in amplitude from 0 to 1 and the
next 50 fall back to 0?

At the Octave prompt execute this:
edit rampRiseFall50.m;

Outline

23

m208w2014

1. Calculate the increment value to go from 0.0 to 1.0 in 50 samples. Call it delta.

2. Create the first fifty samples o0:delta:1

3. Create the remaining 50 samples. You'll need to go backwards using -delta. Don't
repeat the 1 on the way down.

Now execute these commands:

octave-3.4.0:71> wav = rampRiseFall50;
octave-3.4.0:72> length(wav)

ans = 44100

octave-3.4.0:73> wav(1:100)

ans =

Columns 1 through 9:

0.00000 0.02000 0.04000 0.06000 0.08000 0.10000 0.12000 0.14000 0.16000
Columns 10 through 18:

0.18000 0.20000 0.22000 0.24000 0.26000 0.28000 0.30000 0.32000 0.34000
Columns 19 through 27:

0.36000 0.38000 0.40000 0.42000 0.44000 0.46000 0.48000 0.50000 0.52000
Columns 28 through 36:

0.54000 0.56000 0.58000 0.60000 0.62000 0.64000 0.66000 0.68000 0.70000
Columns 37 through 45:

0.72000 0.74000 0.76000 0.78000 0.80000 0.82000 0.84000 0.86000 0.88000
Columns 46 through 54:

0.90000 0.92000 0.94000 0.96000 0.98000 0.98000 0.96000 0.94000 0.92000
Columns 55 through 63:

0.90000 0.88000 0.86000 0.84000 0.82000 0.80000 0.78000 0.76000 0.74000
Columns 64 through 72:

0.72000 0.70000 0.68000 0.66000 0.64000 0.62000 0.60000 0.58000 0.56000
Columns 73 through 81:

0.54000 0.52000 0.50000 0.48000 0.46000 0.44000 0.42000 0.40000 0.38000
Columns 82 through 90:

0.36000 0.34000 0.32000 0.30000 0.28000 0.26000 0.24000 0.22000 0.20000
Columns 91 through 99:

0.18000 0.16000 0.14000 0.12000 0.10000 0.08000 0.06000 0.04000 0.02000
Column 100:

0.00000

octave-3.4.0:74> playsamples (wav)

What did you hear? The answer is a sound with a pitch of 441 Hz with a different
timbre.

Plot it.

octave:36> plot(wav(1 : 500));
octave:37> axis([0 500 -2 2])

24

m208w2014

® OO \ Figure 1

1.5F .

-0.5 | o
-1 -
1.5 o
-2 I i " "
0 100 200 300 400 500

299,837, 2.07543

This is a basic synthesizer waveform called a triangle wave.

Question 8. What does a sine wave with a period of 100
samples sound like?

At the Octave prompt execute this:
edit sinel@@samplePeriod.m;

Outline

1. Define TWOPI = 2*pi;

2. The period of one cycle of a sine wave is TWO_PI;

3. Define delta as the increment value necessary to divide TWO_PI into 100 parts.
3. Create series n = 0 : delta : TWO_PI - delta; # 0-99 is 100 steps.

4. One pereiod = sin(n);

5. Repeat period 441 times.

25

m208w2014

Execute this code:

octave-3.4.0:152> wav = sinelOOsamplePeriod;
octave-3.4.0:153> length(wav)

ans = 44100

octave-3.4.0:154> wav(1:100)

ans =

Columns 1 through 9:

0.00000 0.06279 0.12533 0.18738 0.24869 0.30902 0.36812 0.42578 0.48175
Columns 10 through 18:

0.53583 0.58779 0.63742 0.68455 0.72897 0.77051 0.80902 0.84433 0.87631
Columns 19 through 27:

0.90483 0.92978 0.95106 0.96858 0.98229 0.99211 0.99803 1.00000 0.99803
Columns 28 through 36:

0.99211 0.98229 0.96858 0.95106 0.92978 0.90483 0.87631 0.84433 0.80902
Columns 37 through 45:

0.77051 0.72897 0.68455 0.63742 0.58779 0.53583 0.48175 0.42578 0.36812
Columns 46 through 54:

0.30902 0.24869 0.18738 0.12533 0.06279 -0.00000 -0.06279 -0.12533 -0.18738
Columns 55 through 63:

-0.24869 -0.30902 -0.36812 -0.42578 -0.48175 -0.53583 -0.58779 -0.63742 -0.68455
Columns 64 through 72:

-0.72897 -0.77051 -0.80902 -0.84433 -0.87631 -0.90483 -0.92978 -0.95106 -0.96858
Columns 73 through 81:

-0.98229 -0.99211 -0.99803 -1.00000 -0.99803 -0.99211 -0.98229 -0.96858 -0.95106
Columns 82 through 90:

-0.92978 -0.90483 -0.87631 -0.84433 -0.80902 -0.77051 -0.72897 -0.68455 -0.63742
Columns 91 through 99:

-0.58779 -0.53583 -0.48175 -0.42578 -0.36812 -0.30902 -0.24869 -0.18738 -0.12533
Column 100:

-0.06279

What did you hear? The answer is a sound with a pitch of 441 Hz with a different
timbre.

Plot it. N
octave:39> plot(wav(1 : 500)
octave:40> axis([0 500 -2 2]

26

m208w2014

® OO0 \| Figure 1
2 T T T T
1.5} -
1} -
0.5 | -
0 -
-0.5 F -
a1k -
s f .
2
0 100 200 300 400 500

403,987, 2,02337

This is a basic synthesizer waveform called a sine wave.

Question 9. What do 100 random samples sound like when
they are repeated over and over?

At the Octave prompt execute this:
edit noisel@0.m;

Outline
You can do it in one line:

function [ret] = noisel00 ()

ret = repmat(rand(1, 100), 1, 441);
endfunction

27

m208w2014

Execute this code:

octave-3.4.0:7> wav = noisel00;
octave-3.4.0:8> length(wav)

ans = 44100

octave-3.4.0:9> wav(1:110)

ans =

Columns 1 through 8:

0.9935502 0.2737149 0.1919758 0.9615369 0.1395210 0.3646722 0.1755401 0.5941906
Columns 9 through 16:

0.1825054 0.9125813 0.6093672 0.8596646 0.1041617 0.3837216 0.7522683 0.0912236
Columns 17 through 24:

0.4678029 0.8957740 0.6006018 0.5554513 0.3171908 0.3341472 0.6267440 0.5704044
Columns 25 through 32:

0.6792057 0.3451074 0.9394340 0.5892555 0.3878672 0.3618361 0.6830262 0.4502316
Columns 33 through 40:

0.9772417 0.7216628 0.6583418 0.4919254 0.0571763 0.1980651 0.4380504 0.8046154
Columns 41 through 48:

0.9805499 0.7382933 0.2957941 0.9778336 0.4017014 0.3270928 0.0146002 0.4921344
Columns 49 through 56:

0.6065277 0.3163401 0.4250290 0.3126163 0.3909213 0.4777542 0.9653179 0.1881613
Columns 57 through 64:

0.8137903 0.9290822 0.3574428 0.5309356 0.8607347 0.2854213 0.1438435 0.0327482
Columns 65 through 72:

0.7362324 0.6927067 0.3853467 0.3942685 0.5222611 0.7016789 0.1710537 0.0829819
Columns 73 through 80:

0.5644920 0.9868701 0.4892096 0.5509644 0.8962624 0.7675932 0.1560192 0.4914195
Columns 81 through 88:

0.4660655 0.7642065 0.9006957 0.2263458 0.6977150 0.6162237 0.4367169 0.1340299
Columns 89 through 96:

0.0887375 0.0856385 0.2158713 0.2736820 0.7106022 0.0076461 0.2352724 0.3951634
Columns 97 through 104:

0.8814811 0.9446910 0.4382075 0.4090498 |0.9935502 0.2737149 0.1919758 0.9615369
Columns 105 through 110:

0.1395210 0.3646722 0.1755401 0.5941906 0.1825054 0.9125813

What did you hear? The answer is a sound with a pitch of 441 Hz with a different
timbre.

Plot it.

octave:41> wav = noisel00;
octave:42> plot(wav(1 : 500));

28

m208w2014

e OO '\ Figure 1
2 | 1 | | 1 |

1.5F .

"I

-0.5 -

-1.5 -

-2

0 100 200 300 400 500
422,837, 1.96175

Plot The Six Basic Synthesis Waveforms in One Window

The Six basic waveforms you've created them

sine = sinel@@samplePeriod;
saw = ramp@tol00;

square = on0ff50;

triangle = rampRiseFall50;
pulse = oneAnd99zeros;
noise = allrandom;

Create a new function file called sixBasicWaveforms.m.

Write code to create and plot 500 samples each waveform in one window using

the [0 500 -1.2 1.2] for the axis of each subplot.

29

m208w2014

Hint:
octave:57> help subplot
and
octave:62> help title
e OO0 \| Figure 1
sine saw square
L] L) L] L] L] L]
1 -
0.5 = -
o - =1 -
-0.5 w -1 -0.5 .
-1 o = - -1 -
L L L L L L L L L L L L
0 100 200 300 400 500 0 100 200 300 400 500 100 200 300 400 500
triangle pulse noise
L] 1] L] 1] L] 1] L] L]
1 1 -
0.5 F 0.5 N
oF 1]
-0.5 1 -0.5pF -1 -0.5 .
At 41 1F 4 1 -
L L L L 1 L 1 L L L L 1
0 100 200 300 400 500 0 100 200 300 400 500 0 100200 300 400 500

-112,257,

5,05340

Bipolar and Unipolar Waveforms

If you look at the Y axis limits of the six waveforms you'll notice that the sine

wave 1s the only one that has both positive and negative values and 1s

symmetrical around zero. The sine wave is a bipolar waveform. The remaining

five are unipolar waveforms that have only positive values.

30

1k

_1-

0 100 200 300 400 500

-

0 100 200 300 400 500

m208w2014

0 100200 300 400 500

All audio waveforms on a synthesizer are bipolar, usually from -1 to +1.

Convert a Unipolar Waveform to a Bipolar Waveform

Here's the plan to convert the sawtooth wave. The others will be similar.

If you multiply every sample of the sawtooth wave by 2 and then subtract 1 its

amplitude will range from -1 to + 1;

See if you can do it.

31

m208w2014

e OO '\ Figure 1

Unipolar Bipolar

0.5 F - 0.5

0 100 200 300 400 500 0 100 200 300 400 500

80,3506, 1,25427

Listen to all six waveforms

Create a new function file play6.m

32

m208w2014

playé6

Author: John Ellinger <je@jemac.mibac.lan>
Created: 2014-01-07

function [ret] = play6 () # function return variable is called ret

sine = sinel0OOsamplePeriod;
saw = ramp0tol00;

square = onOff50;

triangle = rampRiseFall50;
pulse = oneAnd99zeros;
noise = allrandom;

convert the five unipolar waveforms to bipolar
saw = saw * 2 - 1;

square = square * 2 - 1;

triangle = triangle * 2 - 1;

pulse = pulse * 2 - 1;

noise = noise * 2 - 1;

lower the volume

sine = sin * 0.5;

saw *= 0.5; # shorthand for same thing
square *= 0.5;

triangle *= 0.5;
pulse *= 0.5;
noise *= 0.5;

create a half second of silence - rest
rest = zeros(1, 22050);

create a melody
ret = [sine rest saw rest square rest triangle rest pulse rest noise];

play it
playsamples(ret);

endfunction

Execute it.

octave:160> wav = playé6();

Save this as a .wav file

|octave:161> wavwrite(wav', 44100, 16, "sixSynthwaves.wav”);

The file will be saved in the Octave "working directory". Type pwd at the Octave prompt

33

m208w2014

to see the path.

octave-3.4.0:92> pwd
ans = /Users/je/m208

Type Is to make sure it's there.

octave:162> 1s

add3.m noise.m play6.m sixwaveforms.m
allones.m noisel00.m ramp0tol00.m X.m
allrandom.m onOf£50.m rampRiseFall50.m

allzeros.m oneAnd99zeros.m sinelOOsamplePeriod.m

=R st

Open sixSynthWaves.wav in Audacity

NEEDS new pict.

@00 . ' sixSynthWaves

2 L L
>
“—

: | e — ——
g p k| ovw A8 40 9 A -u’d
2k Yl bE« [me[@ 4k o[c] [&]]#]l] 4|2

| P! K

nijp/ | m « » | @

| Core Au... + 49| Built-in Line Output % 1} Soundflower (2¢h) :| 2 (Stereo...
-20 -10 4? 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 ‘
1 s 1 1 1 1 s 1 1 1 1 1 'y 1 1 1 1 1 3 1

X sixSynthWa w| 1.0
Mono, 44100Hz
32-bit float 0.5
Mute | Solo

Project Rate (H2): Selection Start: (_JEnd (®) Length Audio Position:
44100 8 ‘ __SnapTo 00h00m00.000s+ 00h00mMO00.000s« 00h00mMO00.000s+
Click and drag to select audio Yy

Click once in each block to set the cursor position. Then use the tool on the left outlined
in red to zoom in to view the waveform shape. Return to the full waveform view by
clicking the highlighted tool on the right.

34

m208w2014

You can estimate the frequency by counting samples. In this picture the sine wave wave
was zoomed to the sample level and one period of the wave was selected. At the bottom
of the window the Length button was selected and the popup menu underneath was set
to display samples. Because we know the sampling rate is 44100 samples per second
and one period is 100 samples the frequency is 44100/100 = 441 Hz.

{00000 -85 -
Tk bA o ¢ [m[@[wiwn ~]~] [B]] 2lls]2[L[>i o =

- Core Au... &)| Built-in Line Output | J®| Soundflower 2ch) 3| 2 (Stereo... %]

Project Rate (Hz): Selection Start: (_JEnd (s) Length Audio Position:
- 44100 @ ‘ _ISnap To 000,020,500 samples+] 000,000,100 samples» | 000,000,000 samples »

The general formula for finding the frequency at any sample rate is:

SampleRate

- samplesinOnePeriod

Examine the frequency spectrum of each block

Select each block and choose Plot Spectrum from the Analyze menu.
Sine wave

A pure sine wave is the only sound that consists of one and only frequency. All other
wave forms have multiple frequency components.

35

m208w2014

: .

-12d8
~18081
-24de-
-3008
-3608
-4208
-48de-
-5408
6008 -
-6608 1
-72d8-
~78081
-8408

rY

3Hz SHz 10Hz 20Hz 40Hz 100Hz 200Hz 400Hz 1000Hz 3000Hz 7000Hz 15000Mz
Cursor: 428 Hz (Ad) = -51 dB Peak: 441 Hz (A4) = -0.1 dB

Algorithm:| = Spectrum | Size: | 16384 ¢ || Export... | | Replot |
Function: | | Hanning window i Axis: | Log frequency $) || Close | (crids

y

Sawtooth wave

36

m208w2014

-12dB+
~-18d8B+
~24dB+
~30d8 -
~36d8+
~42d81
-48d

-54d8
-60d8
-66d8
-72d

~78d8
-84d8

| -Alil
3Hz SHz 10Hz 20Hz 40Hz 100Hz 200Hz 400Hz 1000Hz 3000Hz 7000Hz 15000Mz
Cursor: 422 Hz (G#4) = -67 dB Peak: 441 Hz (A4) = -4.0 dB

Algorithm: = Spectrum :| Size: | 16384 :| | Export.. | | Replot |
Function: | Hanning window :| Axis: | Log frequency ¢ | Close | () Grids
y:

Square wave

37

m208w2014

el s SR OO O A A S e —
0d8-
-m.
~-12dB+
~18d8 -
~24d8-
~-30d8+
~36d8 -
~42d8-
~48dB~
~S4d8 -
-60dB
~66d8 -
~72dB-
-78d8
~84d8 -

3Hz SHz 10Hz 20Hz 40Hz 100Hz 200Hz 400Hz 1oobnz 3000Hz 7000Hz 15000Mz
Cursor: 434 Hz (A4) = <22 dB Peak: 441 Hz (A4) = 2.0 dB

Algorithm: = Spectrum :| Size: | 16384 $| | Export.. | | Replot |
Function: | Hanning window : | Axis: | Log frequency ¢ | Close | (Grids
y

Triangle wave

38

m208w2014

3Hz SHz 10Hz 20Hz 40Hz 100Hz 200Hz 400Hz 1000Hz 3000Hz 7000Hz 15000Mz
Cursor: 434 Hz (Ad) = -26 dB Peak: 441 Hz (A4) = -1.9 dB

Algorithm: = Spectrum i Size: | 16384 ¢ | Export.. | | Replot |
Function: | Hanning window : Axis: | Log frequency ¢ | Close | (Grids
y

Pulse wave

39

m208w2014

3Hz SHz 10Hz 20Hz 40Hz 100Hz 200Hz 400Hz 1000Hz 3000Hz 7000Hz 15000Mz
Cursor: 434 Hz (A4) = -52 dB Peak: 441 Hz (A4) = -28.0 dB

Algorithm: = Spectrum : Size: 16384 $| | Export.. | | Replot |
Function: | Hanning window :| Axis: | Log frequency ¢ | Close | (Grids

P
Noise

40

m208w2014

Frequency Analysis

~33d8 1

3Hz SHz 10Hz 20Hz 40Hz 100Hz 200Hz 400Hz 1000Hz 3000Hz 7000Hz 15000Mz
Cursor: 434 Hz (A4) = -39 dB Peak: 432 Hz (A4) = -36.9 dB

Algorithm: = Spectrum Size: 16384 Export... Replot
Function: Hanning window + Axis: Log frequency s Close | Grids

It's the number, spacing, and amplitude of the frequency components that give each of
these 441 Hz sounds their different tone color or timbre.

41

m208w2014

Lab 2 - ChucK: Alias Demo

The Nyquist Frequency

A cornerstone theorem of digital sampling 1s known as the Nyquist-Shannon
theorem. It basically states that in order to accurately sample any signal whose
highest frequency is Fmax, the sampling rate must be at least twice that,
2*Fmax.

The range of human hearing is often stated as being within 20 Hz to 20000 Hz.
It would require a sampling rate of at least 40000 Hz to capture a 20000 Hz
signal. The standard audio CD rate of 44100 Hz leaves a bit of headroom. The

highest frequency that can accurately be captured at the audio CD rate is 22050
Hz.

The Nyquist frequency or Nyquist limit is the highest frequency that can be
accurately sampled and is equal to the Sample Rate divided by two, SR/2.

Aliasing happens when there are frequencies higher than half the sampling rate

present in the signal. In some cases aliasing can produce audible artifacts that
were not present in the original signal according to this formula:

aliasedFrequency = frequencyThatsTooHigh — sampleRate

For example if a frequency of 30000 Hz was present in the original signal that
was being sampled at the audio CD rate, it would be aliased to a signal at
-14100 1n the samples. Don't let negative frequencies bother you they sound
exactly like positive frequencies, they just start with a different phase.

Here's a ChucK demo that illustrates aliasing. Execute this code.

42

m208w2014

1 Define a sine oscillator

2 S1n0Osc s => dac;

3

4 st frequency to play 1s 34100 Hz, well above the audible range
5 => 1nt playFreq,

b

7 ending frequency 1s 54100 Hz, well above the audible range
8 => 1nt endFreq;

10 add 19099 Hz to playFreq each time through the loop

11 => 1nt deltaFreq;

12

13 while (playFreq < endFreq)

14 {

15

16 playFreq + deltaFreq => playFreq;
17 playFreq => s.freq;

18 print output to Console Monitor window \t 1s a TAB character

19 <<< ACtUOl’AllObed fr equency ", playFreq, “\t", playFreq - 4 >>>)
20 :second => now,; play for one secon

21 }

22

Lab 2 - ChucK: Equal Loudness Contours

A tone at a given decibel level with a low frequency may not be perceived as being at
the same loudness as a tone at the same decibel level but with a high frequency. Let's
test it in ChucK.

Open /Applications/miniAudicle

Type this code.

43

m208w2014

® OO0 EqualLoudnessTest.ck
!
—

_JJ | _—
Add Shred Replace Shred Remove Shred Ren
arguments

1 S1n0sc s => dac;

2 200 => s.freq;

e

Std.dbtorms(C 70) => s.gain;
l::second => now;

<

=2

J => §.gain;
200::ms => now;

~

9 1000 => s.freq;
Std.dbtorms(C 70) => s.gain;
11 l::second => now;

1

o

Line 1: Create a sine wave oscillator, s, and chuck it to dac (Digital Audio Converter =
speaker).

Line 2: chuck 200 (Hz) to the oscillator frequency.

Line 3: Convert 70 dB into amplitude to set the gain (volume) of the oscillator.

Std is a ChucK library that contains many Standard functions used in audio
processing. Two of these are Std.rmstodb that converts an amplitude in the range =1 to
its decibal value and the inverse Std.dbtorms that converts a decibal value in the range
100 to 0 (softest) to an amplitude value. Because the oscillator gain is expecting an
amplitude value from 0 to 1 we need to convert the dB value using Std.dbtorms.

You can look up functions in ChucK's standard library on this page: http:/
chuck.cs.princeton.edu/doc/program/stdlib.html

[function]: float rmstodb (float value);

= converts linear amplitude to decibels (dB)

[function]: float dbtorms (float value);

= converts decibles (dB) to linear amplitude

44

http://chuck.cs.princeton.edu/doc/program/stdlib.html
http://chuck.cs.princeton.edu/doc/program/stdlib.html

m208w2014

Line 4: Process audio for one second. You'll hear the sound.

Line 6-7: Silence for 200 milliseconds

Line 8: chuck 1000 (Hz) to the oscillator frequency.
Line 9: Convert 70 dB into amplitude to set the gain (volume) of the oscillator.
Line 10: Process audio for one second. You'll hear the sound.

I heard the 1000 Hz as distinctly louder than the 200 Hz tone.

The Equal Loudness Contour Chart

The Equal Loudness Contour Chart shows lines that represent the decibel levels
where frequencies are perceived to have the same volume.

The 60 phon line shows that a 200 Hz sine tone at 70 dB should sound as loud as a
1000 Hz sine tone at 60 dB.

45

m208w2014

130 +10
120 (estimated):;'g 0
110 -10
~100 - 20
- H
% 90 i -30
3 80 : - 40
T |70 -90
3|60 i - 60
2 50 -70
& 40 i - 80
o o
T 30 : -90
§ 20 -100
10 (threshold) -110
0 -120
-10 — g -130
10 100 1000 10k 100k

Equal-loudness contours (red) (from ISO 226:2003 revision)

Original ISO standard shown (blue) for 40-phons

Try it.

46

m208w2014

@00 - EqualLoudnessTest.ck

arguments

1 Sin0sc s => dac;

200 => s.freq;

Std.dbtorms(/0) => s.gain;
l::second => now;

0 => s.gain;
200::ms => now;

W e N s W N

1000 => s.freq;
Std.dbtorms(60) => s.gain; <--
l::second => now,

—
o

.
-

Done.

47

