
m208w2014

1

MUSC 208 Winter 2014
John Ellinger, Carleton College

Lab 2 Octave: Octave Function Files

Setup
Open /Applications/Octave

The Working Directory

Type pwd on Unix did on Windows  (followed by Return) at the Octave prompt to see 
the full path of Octave's working directory. 

The full path name is /Users/je/m208. On the mac the top level of the hard drive is /. 
There is a folder at the top level called Users. Inside that folder is my home folder je. 
Inside that folder is the m208 folder. I created this ahead of time to hold all the octave, 
chuck, and Pd files I've created for this class.

On windows the top level folder is C:\

When you work in the Terminal as we'll do in this class you should avoid using spaces in 
file or folder names. There are two common naming systems used by programmers.

1. underscores: this_is_a _long_file_name
2. camel case: thisIsALongFileName

It's important when you work with Octave that you know where Octave's working 
directory is, because that's where it will create and look for files.

Set the Working Directory

You need to be familiar with three commands to move around in Octave: cd, ls, and 
pwd.

cd = Change Directory (folder) 
ls = LiSt files
pwd = Print Working Directory.



m208w2014

2

Specifying Mac and Windows Pathnames in Octave

The Mac uses forward slashes to separate directories. The top level of the hard drive is 
the first /. This example indicates that a folder named Volumes is at the top level of the 
hard drive. Inside Volumes is  a folder named MC16 with another folder inside MC16 
named m208.

/Volumes/MC16/m208

Windows uses \ to separate directories. In the Octave Terminal on windows a 
single \ is interpreted as an "escape" character so you need to separate directories 
with a double backslash \\. Also the top level hard drive is usually C:\ which 
becomes C:\\. The example given above when translated to the Octave windows 
terminal becomes:

C"\\Volumes\\MC16\\m208

The following picture illustrates file system navigation on a Mac. Comments are in red. 
The first line changes Octave's working directory to the m208 folder on my USB thumb 
drive. 



m208w2014

3

Functions with a single return value
Octave functions are plain text files that contain code to do one specific thing. These 
functions can be used by in other Octave  programs by simply calling the function  
name. That keeps the main program neater because you can encapsulate commonly 
used commands in separate files. Our first function will add any three numbers we tell it 
to.

Create an Octave function file to add three numbers.

Enter this command after the > and type Return: 
octave-3.4.0:3> edit add3.m

TextWrangler should open with this skeleton code already in place.



m208w2014

4

The line numbers you see down the left side of the window can be turned on using the 
"T" popup menu just under the Red close button at the top left of the window.

Octave is very strict about matching the file name with the function name, they must be 
the same.



m208w2014

5

1. The file name at the top of the window.
2. ## add3. Comments you add below this line will appear when you type "help add3" at 
the Octave prompt.
3. function [ ret ] = add3 (). You'll add your code between this line and the endfunction 
statement.
 
In Octave you would add three numbers like this:
octave-3.4.0:4> 133 + 6537 + 440
ans =  7110

or

octave-3.4.0:5> a = 133;
octave-3.4.0:6> b = 6537;
octave-3.4.0:7> c = 440;
octave-3.4.0:8> a+b+c
ans =  7110

We'll use the second approach to create the code.



m208w2014

6

Create the code

Modify the code to read:

Note: ret, a, b, and c are made up variable names that will be used in the body of the 
function. We could also have written: 

In general you want to use variable names that help make the code self documenting. In 
this simple example a, b, and c work fine and require less typing.

Now add the help message:

Save the file.

Testing

Return to the Octave prompt and ask for help:



m208w2014

7

Let's use the function.

Remember lines with an ending semicolon do not display output.

Try this:

Error checking

As long as we call add3 with three numbers everything works. It's an error if we have 
less than three. If we have more than three numbers the function works by using the 
first three.



m208w2014

8

We'll introduce error checking next time.

Functions with multiple return values

Create an Octave function file to return the sum, product, 
and mean of three numbers.

Enter this command after the > and type Return: 
octave-3.4.0:3> edit sumProdMean3.m

Test help:

Test the function:



m208w2014

9

 

Lab 2 - Octave: Periodic Signals

Question 1: What does a waveform sound like if every 
sample is  0?

Open /Applications/Octave

At the Octave prompt type this followed by return. From now on I'll assume you know 
that you need to type return to execute the command.

A TextWrangler window will open titled allzeros.m.

Fill in the function body.

One method to create 44100 zeros would be:

SR = 44100;
n = 1:SR;
nT = n .* 0;
ret = nT;

A more compact version could be written as:
ret = [ 1:44100 ] .* 0;

Another way to do it is:
ret = zeros(1, 44100);



m208w2014

10

To get help on the zeros function, enter:
help zeros

Here's an example that shows what happens. 

Now execute these commands at the Octave prompt.

What did you hear? The answer should be nothing. 



m208w2014

11

A steady stream of zeros will not make the speaker membrane move in and out, so no 
sound wave is produced.

Plot it.

Question 2. What does a waveform sound like if every 
sample is  1?

At the Octave prompt execute this:
edit allones.m

Change the code you used in Question 1 to use ones instead of zeros. You could use:
ret = ones(1, 44100);

Now execute these commands:



m208w2014

12

What did you hear? The answer shold be two clicks. 

The first 1 pushed the speaker membrane all the way out starting a positive pressure 
wave of compressed air. The next 44,099 ones held the speaker membrane in its out 
position. When the wave ended, the speaker membrane returned inwards creating a 
negative pressure wave. The sudden discontinuities of the speaker membrane were 
heard as clicks.

Plot it.



m208w2014

13

Look at the Y axis limits. They range from 0.9 to 1.1 because of Octave autoscaling.

Let's change the Y axis limits. First look for help about axis using the lookfor command.

Then get specific help on the axis command.

We'll use the third one. Execute this.

The Y axis should immediately change.



m208w2014

14

Question 3. What does a waveform sound like when all 
samples are random?

At the Octave prompt execute this:
edit allrandom.m

Change the code you used in Question 1 or 2 to use rand
ret = rand(1, 44100);

Now execute these commands:



m208w2014

15

What did you hear? The answer sounds like noise or the static between radio stations.

Plot it.



m208w2014

16

Question 4. What does a waveform sound like when every 
100th sample is a 1 and all others are zero?

At the Octave prompt execute this:
edit oneAnd99zeros.m

Outline of steps
1. create a series of 100 zeros
2. set the first element to 1
3. repeat it 441 times to create one second of samples
4. return the 44100 samples at the end of the function

You can use the Octave command repmat to make multiple copies of a sequence (array, 
vector, one dimensional matrix)

Read the octave help for repmat



m208w2014

17

Here's some examples

When you've finished coding and saving the oneAnd99Zeros.m file, execute these 
commands:



m208w2014

18

What did you hear? The answer is a sound with a pitch of 441 Hz.

The speaker membrane moves out on every 1 starting the positive pressure wave 
followed immediately 99 zeros that create and a negative pressure wave. The positive 
pressure is periodic 441 times in one second creating the pitch.

Plot it.



m208w2014

19

This is a basic synthesizer waveform called a pulse wave.

Question 5. What does a waveform sound like when the 
first 50 samples are 1 and the second 50 are 0?

At the Octave prompt execute this:
edit onOff50.m

Outline
1. Create 50 1's.
2. Create 50 0's.
3. join them together
4. repeat 441 times.

Hint:



m208w2014

20

When you've finished coding and saving the onOff50.m file, execute these commands:

What did you hear?  The answer is a sound with a pitch of 441 Hz.



m208w2014

21

Plot it.

This is a basic synthesizer waveform called a square wave.

Question 6. What does a waveform sound like if every 100 
samples rise uniformly in amplitude from 0 to 1?

At the Octave prompt execute this:
edit ramp0to100.m;

Outline
1. Define delta as 0.01;
1. Create the first 100 samples. n = 0:delta:1-delta. Because we're starting from zero, 100 



m208w2014

22

samples end at 99.
2. repeat 441 times.

Hint: If you create a vector (array, sequence, list) with 2 semicolons, the middle number 
is the increment between the beginning and end.

Now execute these commands. format compact uses less whitespace in the display.

What did you hear?  The answer is a sound with a pitch of 441 Hz with a different 
timbre.



m208w2014

23

Plot it.

This is a basic synthesizer waveform called a sawtooth wave.

Question 7. What does a waveform sound like if every 50 
samples rise uniformly in amplitude from 0 to 1 and the 
next 50 fall back to 0?

At the Octave prompt execute this:
edit rampRiseFall50.m;

Outline



m208w2014

24

1. Calculate the increment value to go from 0.0 to 1.0 in 50 samples. Call it delta.
2. Create the first fifty samples 0:delta:1
3. Create the remaining 50 samples. You'll need to go backwards using -delta. Don't 
repeat the 1 on the way down.

Now execute these commands:

What did you hear?  The answer is a sound with a pitch of 441 Hz with a different 
timbre.

Plot it.



m208w2014

25

This is a basic synthesizer waveform called a triangle wave.

Question 8. What does a sine wave with a period of 100 
samples sound like?

At the Octave prompt execute this:
edit sine100samplePeriod.m;

Outline
1. Define TWOPI = 2*pi;
2. The period of one cycle of a sine wave is TWO_PI;
3. Define delta as the increment value necessary to divide TWO_PI into 100 parts.
3. Create series  n = 0  : delta : TWO_PI - delta; # 0-99 is 100 steps. 
4. One pereiod = sin(n);
5. Repeat period 441 times.



m208w2014

26

Execute this code:

What did you hear?  The answer is a sound with a pitch of 441 Hz with a different 
timbre.

Plot it.



m208w2014

27

This is a basic synthesizer waveform called a sine wave.

Question 9. What do 100 random samples sound like when 
they are repeated over and over?

At the Octave prompt execute this:
edit noise100.m;

Outline
You can do it in one line:



m208w2014

28

Execute this code:

What did you hear?  The answer is a sound with a pitch of 441 Hz with a different 
timbre.

Plot it.



m208w2014

29

Plot The Six Basic Synthesis Waveforms in One Window

The Six basic waveforms you've created them 

sine = sine100samplePeriod;
saw = ramp0to100;
square = onOff50;
triangle = rampRiseFall50;
pulse = oneAnd99zeros;
noise = allrandom;

Create a new function file called sixBasicWaveforms.m.

Write code to create and plot 500 samples each waveform in one window using 
the [ 0 500 −1.2 1.2 ] for the axis of each subplot.



m208w2014

30

Hint:  

and

Bipolar and Unipolar Waveforms

If you look at the Y axis limits of the six waveforms you'll notice that the sine 
wave is the only one that has both positive and negative values and is 
symmetrical around zero. The sine wave is a bipolar waveform. The remaining 
five are unipolar waveforms that have only positive values.



m208w2014

31

All audio waveforms on a synthesizer are bipolar, usually from −1 to +1. 

Convert a Unipolar Waveform to a Bipolar Waveform

Here's the plan to convert the sawtooth wave. The others will be similar.

If you multiply every sample of the sawtooth wave by 2 and then subtract 1 its 
amplitude will range from −1 to + 1;

See if you can do it.



m208w2014

32

Listen to all six waveforms

Create a new function file play6.m



m208w2014

33

Execute it.

Save this as a .wav file

The file will be saved in the Octave "working directory". Type pwd at the Octave prompt 



m208w2014

34

to see the path.

Type ls to make sure it's there.

Open sixSynthWaves.wav in Audacity

NEEDS new pict.

Click once in each block to set the cursor position. Then use the tool on the left outlined 
in red to zoom in to view the waveform shape. Return to the full waveform view by 
clicking the highlighted tool on the right.



m208w2014

35

You can estimate the frequency by counting samples. In this picture the sine wave wave 
was zoomed to the sample level and one period of the wave was selected. At the bottom 
of the window the Length button was selected and the popup menu underneath was set 
to display samples. Because we know the sampling rate is 44100 samples per second 
and one period is 100 samples the frequency is 44100/100 = 441 Hz.

The general formula for finding the frequency at any sample rate is:

f = SampleRate
samplesInOnePeriod

Examine the frequency spectrum of each block

Select each block and choose Plot Spectrum from the Analyze menu.

Sine wave

A pure sine wave is the only sound that consists of one and only frequency. All other 
wave forms have multiple frequency components.



m208w2014

36

Sawtooth wave



m208w2014

37

Square wave



m208w2014

38

Triangle wave



m208w2014

39

Pulse wave



m208w2014

40

Noise



m208w2014

41

It's the number, spacing, and amplitude of the frequency components that give each of 
these 441 Hz sounds their different tone color or timbre.



m208w2014

42

Lab 2 - ChucK: Alias Demo

The Nyquist Frequency

A cornerstone theorem of digital sampling is known as the Nyquist-Shannon 
theorem. It basically states that in order to accurately sample any signal whose 
highest frequency is Fmax, the sampling rate must be at least twice that, 
2*Fmax.

The range of human hearing is often stated as being within 20 Hz to 20000 Hz. 
It would require a sampling rate of at least 40000 Hz to capture a 20000 Hz 
signal. The standard audio CD rate of 44100 Hz leaves a bit of headroom. The 
highest frequency that can accurately be captured at the audio CD rate is 22050 
Hz.

The Nyquist frequency or Nyquist limit is the highest frequency that can be 
accurately sampled and is equal to the Sample Rate divided by two, SR/2.

Aliasing happens when there are frequencies higher than half the sampling rate 
present in the signal. In some cases aliasing can produce audible artifacts that 
were not present in the original signal according to this formula:

aliasedFrequency = frequencyThatsTooHigh − sampleRate

For example if a frequency of 30000 Hz was present in the original signal that 
was being sampled at the audio CD rate, it would be aliased to a signal at 
−14100 in the samples. Don't let negative frequencies bother you they sound 
exactly like positive frequencies, they just start with a different phase.

Here's a ChucK demo that illustrates aliasing. Execute this code.



m208w2014

43

Lab 2 - ChucK: Equal Loudness Contours
A tone at a given decibel level with a low frequency may not be perceived as being at 
the same loudness as a tone at the same decibel level but with a high frequency. Let's 
test it in ChucK.

Open /Applications/miniAudicle

Type this code.



m208w2014

44

Line 1: Create a sine wave oscillator, s, and chuck it to dac (Digital Audio Converter = 
speaker).
Line 2: chuck 200 (Hz) to the oscillator frequency.
Line 3: Convert 70 dB into amplitude to set the gain (volume) of the oscillator.

Std is a ChucK library that contains many Standard functions used in audio 
processing. Two of these are Std.rmstodb that converts an amplitude in the range ±1 to 
its decibal value and the inverse Std.dbtorms that converts a decibal value in the range 
100 to 0 (softest) to an amplitude value. Because the oscillator gain is expecting an 
amplitude value from 0 to 1 we need to convert the dB value using Std.dbtorms.

You can look up functions in ChucK's standard library on this page: http://
chuck.cs.princeton.edu/doc/program/stdlib.html

http://chuck.cs.princeton.edu/doc/program/stdlib.html
http://chuck.cs.princeton.edu/doc/program/stdlib.html


m208w2014

45

Line 4: Process audio for one second. You'll hear the sound.
Line 6-7: Silence for 200 milliseconds

Line 8: chuck 1000 (Hz) to the oscillator frequency.
Line 9: Convert 70 dB into amplitude to set the gain (volume) of the oscillator.
Line 10: Process audio for one second. You'll hear the sound.

I heard the 1000 Hz as distinctly louder than the 200 Hz tone.

The Equal Loudness Contour Chart

The Equal Loudness Contour Chart shows lines that represent the decibel levels 
where frequencies are perceived to have the same volume.

The 60 phon line shows that a 200 Hz sine tone at 70 dB should sound as loud as a 
1000 Hz sine tone at 60 dB.



m208w2014

46

Try it.



m208w2014

47

Done.


