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Introduction

This thesis has four main elements: dynamics, algebraic number theory (in function fields), group

theory, and probability. The dynamics provides inspiration for the problem, the algebraic num-

ber theory allows an important reformulation, the group theory does the heavy lifting, and the

probability theory synthesizes the group theory into a form that solves the problem. Chapter 1

gives the dynamical background, Chapter 2 the number-theoretic translation, and Chapter 3 the

group-theoretic results. Chapter 4 deals almost solely with probability, while Chapter 5 applies the

probability to give a solution to the problem.

In this introduction, we sketch of the origins of the problem, state the problem, and give a

detailed outline of our solution. The origins of the problem and the first stages of the solution lie

in the field of algebraic dynamics, which can be broadly defined as the study of function iteration

over algebraic/arithmetical sets, such as algebraic number fields and rings, polynomial rings, finite

fields, p-adic fields, algebraic curves, etc. This relatively new field evolved naturally from the field

of complex dynamics, whose roots stretch back to the work of Julia and Fatou in the early 1900s.

Complex dynamics enjoyed an explosion of deep results in the 1980s; one could note in particular

Benoit Mandelbrot’s popularization of the remarkable set that bears his name, Dennis Sullivan’s

No Wandering Domains theorem [36], and Curt McMullen’s proof of the nonexistence of generally

convergent algorithms in degree larger than three [23].

In the 1990s, some attention began to turn to p-adic analogues of the blossoming complex theory.

Michael Herman and Fields medalist Jean-Christophe Yoccoz [17] had already gone in this direction

with their 1983 paper on a non-Archimedean version of Siegel’s linearization theorem [34]. Rob

Benedetto proved a partial analogue of the No Wandering Domains theorem in 2000 [6] and Juan

Rivera-Letelier, a student of Yoccoz, fleshed out much of the theory of p-adic Fatou and Julia sets

in the early part of the 2000s [29, 30]. An unexpected impetus for exploring p-adic dynamics has

come from physicists, who began to explore what the world looked like through p-adic eyes. The

first paper whose title contained the phrase “p-adic dynamics” appeared in the Physics literature in

1989 [37].
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The work presented in this thesis stems from a question regarding the degree to which p-adic

dynamics and complex dynamics are analogous. This question deals with the p-adic analogue of the

complex Mandelbrot set. The complex Mandelbrot set, defined to be

M = {c ∈ C : 0 has a bounded orbit under iteration of z2 + c}

not only created a stir among researchers, but its striking images reached an audience far beyond the

mathematical community. It has assumed a place as one of the most widely recognized mathematical

objects. Thus the p-adic analogue of M , at first blush, seems to promise a similar treasure trove of

complexity. This promise unfortunately proves false, as the analogous set is simply the closed unit

disk (for p 6= 2).

Peering into the set more closely, however, reveals a particular subset that is more interesting.

It is the subset of parameter values c such that z2 + c is hyperbolic; see below for a definition of

hyperbolicity and see (1) for a definition of the set. Its complex analogue has been much studied

[1, 14, 19, 22]. This complex analogue is a large subset of M , accounting for at least 96% of the area

[11], and is conjectured to be the interior of M [24]. The problem this thesis sets out to resolve is

to determine the “size” of the hyperbolic subset of the p-adic Mandelbrot set. We show that it is in

a certain sense a measure zero subset, contrasting sharply with the complex case.

The first hurdle is to say what is meant by size: there is no suitable notion of measure on the

p-adic analogue of C because it is not locally compact. The way around this, and the first step in

the solution of the above problem, is to use the reduction homomorphism to translate the problem

into one of dynamics over Fp. In Fp we define density measures closely related to the well-known

Dirichlet density and natural density (see e.g. [20]). The proof then follows a path through algebraic

number theory, then the Galois theory of function fields, and eventually into the realm of stochastic

processes, where it reaches its conclusion. This method of proof appears to be highly unusual, and

may be fruitful in answering other density questions regarding dynamically defined sets. We now

give a detailed outline of the argument.

In Chapter 1 we begin with some definitions and background. We call a rational function hy-

perbolic if all its critical points are attracted to attracting cycles (see page 8 for definitions of these

terms). Hyperbolic maps have many nice properties, and are the subject of the biggest unsolved

conjecture in complex dynamics (see page 9 for a statement and [24] for more detail). The map

z2 + c has critical points at infinity and 0, and infinity is an attracting fixed point. Therefore z2 + c

is hyperbolic if and only if 0 is attracted to an attracting cycle. Thus the set

H(C) = {c ∈M : 0 is attracted to an attracting cycle of z2 + c} (1)

is the hyperbolic subset of M . We examine the analogous set defined over the field Cp, which is the
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smallest complete, algebraically closed extension of Qp; it is therefore the p-adic analogue of C. Let

Mp be the natural analogue of M over Cp. It’s easily seen that Mp = {c ∈ Cp : |c| ≤ 1} provided

that p 6= 2. (Proposition 1.2). Throughout this discussion, we take p to be a prime different from 2.

However, the subset

H(Cp) = {c ∈Mp : 0 is attracted to an attracting cycle of z2 + c}

is not so easily characterized. Letting φ : {|c| ≤ 1} → Fp be the reduction homomorphism (see

(1.2)), we establish in Corollary 1.6 that H(Cp) = φ−1(H(Fp)), where

H(Fp) = {α ∈ Fp : 0 is periodic under iteration of x2 + α}.

(Note that by periodic we mean that the orbit of 0 is a cycle; some authors refer to this as purely

periodic.) We define two notions of density for subsets of Fp, called Dirichlet density and natural

density, that are closely related to the densities of the same names defined for subsets of primes

in Fp[x]. We denote Dirichlet density by δ and natural density by D (see (1.6) and (1.7) for the

definitions). Our main result (Theorem 1.7) is that δ(H(Fp)) = 0, and its proof is the principal goal

of all of our subsequent work. We also establish, using a similar method, a companion result: we

show D(H(Fp)) = 0 for p ≡ 3 mod 4, and we conjecture that D(H(Fp)) = 0 holds for all p 6= 2.

In Chapter 2, we take the first steps toward a proof by giving two translations of the problem.

Although the definition of H(Fp) says that the forward orbit of 0 under iteration of x2 +α is a cycle,

we focus in Section 2.1 on the inverse orbit of 0 under x2 + α. Clearly for any α ∈ Fp the forward

orbit of 0 under iteration of x2 + α is contained in Fp(α). If 0 is periodic, however, this forward

orbit coincides with one branch of the inverse orbit of 0 in Fp, and thus 0 has nth preimages in

Fp(α) for each n ≥ 1. We show (Proposition 2.1) that the converse is also true. Therefore, setting

fα = x2 +α, and denoting by f−nα (0) the set of nth preimages of 0 (in Fp) under iteration of fα, we

have
H(Fp) = {α ∈ Fp : f−nα (0) ∩ Fp(α) 6= ∅ for all n ≥ 1}.

We can therefore define a sequence of sets

In = {α ∈ Fp : f−nα (0) ∩ Fp(α) 6= ∅} (2)

that serve as progressively better “approximations” of H(Fp) in the sense that In ⊇ In+1 and

H(Fp) =
⋂
n In. We show that if δ(In) exists for all n and lim

n→∞
δ(In) = 0, then δ(H(Fp)) = 0.

In Section 2.2, we prove that δ(In) exists and give a method of computing it using the Galois

groups of certain algebraic extensions of Fp(x). Our main tool in this endeavor is the Tchebotarev

Density theorem for function fields. In order to use it, we find a set of primes in Fp[x] that is
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expressible in terms of the Artin symbol (see page 25 for a definition), and whose Dirichlet density

(in the sense of (2.3)) is equal to δ(In). Note that the set f−nα (0) consists of the roots of fnα , and

thus f−nα (0)∩Fp(α) 6= ∅ if and only if the factorization of fnα over Fp(α) contains at least one linear

term. There is a thus a close relationship between In and the following set of primes in Fp[x]:

In = {p ⊆ Fp[x] : fnx has a linear factor mod p},

where fx = y2 + x ∈ Fp(x)[y]. Indeed, we show that δ(In) = δ(In), where this second Dirichlet

density is the usual one for sets of primes in a function field (2.3). We then use some standard

arguments in algebraic number theory to show that In differs by only finitely many primes from a

set of primes defined in terms of the Artin symbol (2.14). This allows us to apply the Tchebotarev

Density theorem. Let Kn be the splitting field of fnx over K = Fp(x), and Gn = Gal (Kn/K). In

Theorem 2.18 we show that δ(In) exists for all n and equals

1
#Gn

# {g ∈ Gn : g fixes at least one root of fnx } . (3)

The same statement hold for D(In), provided that the extensions Kn/K are geometric for all n (see

Definition 2.14), a statement we conjecture to hold for p 6= 2 but which we can only show when

p ≡ 3 mod 4 (Corollary 3.40). To illustrate Theorem 2.18, we give here a few values of δ(In). We

can describe the n = 1 case completely: the roots of fx are {
√
−x,−

√
−x}, which we label {a1, a2}.

Clearly we have G1 = {e, (a1 a2)}, whence δ(I1) = 1/2. In Example 2.19, page 29, we work out

the case n = 2, showing that δ(I2) = 3/8. Only with significantly more work (Theorem 3.2, (5.28),

and Corollary 5.11) can we show δ(I3) = 39/128. Moreover we note in Chapter 3 (see the discussion

on page 56) that for n > 7, δ(In) may depend on the prime p, and cannot in general be easily

computed.

In Chapter 3 we undertake an analysis of the groups Gn. We do this through the study of

Hn = Gal (Kn/Kn−1). In (3.2), we show that Kn is obtained from Kn−1 by adjoining the square

roots of 2n−1 elements. Thus |Hn| ≤ 22n−1
, and we call Hn maximal if this inequality is an equality.

One principal result of the chapter is that for all p 6= 2, Hn is maximal for n squarefree, and

if p ≡ 3 mod 4 then Hn is maximal for all n (Theorem 3.2). The other result that is of central

importance in later chapters is Corollary 3.23 at the end of Section 3.2 (see below for explanation).

In Section 3.1, we prove some basic properties about fnx , and we introduce the polynomials

pn ∈ Fp[x], defined by p1 = x and pn = p2
n−1 + x for n ≥ 2, which play an important role. We

show that the discriminant of fnx is a product of powers of pi for i ≤ n (Proposition 3.9) and use

this to prove that Gn is not alternating, i.e. composed of even permutations (Corollary 3.10). In

Section 3.2 we examine the center of Gn. We note that Gn is a 2-group, and we establish a series of

propositions about 2-groups acting on certain sets. This culminates in Theorem 3.22, which states
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that if Gn is not alternating then a certain permutation of the roots of fnx must lie in Gn. Indeed,

as shown in Corollary 3.23, this permutation must lie in Hn, proving that Hn is nontrivial for all n.

In Section 3.3 we use abelian Kummer Theory to show that Hn is maximal if and only if pn is

a square in Kn−1 (Theorem 3.27). This relies heavily on Corollary 3.23. In Section 3.4 we use the

work of the previous sections to show that Hn is maximal if and only if a certain element Φn ∈ Fp[x]

is a not a square in K = Fp(x) (Theorem 3.38). Specifically, Φn is the primitive part of pn:

Φn =
∏
d|n

(pd)µ(n/d).

One can easily show that the degree of Φn is odd when n is squarefree (Corollary 3.30), establishing

the maximality of Hn for squarefree n. When n is not squarefree one cannot rule out the possibility

that Φn is a square in K. However, the facts that Φn is separable over Q for all n (see the proof

of Theorem 3.2, page 54) and the degree of Φn grows like 2n suggest this is unlikely. We thus

conjecture that Hn is maximal for all n. In section 3.5 we adapt an argument of Stoll [35] to show

that if p ≡ 3 mod 4 then Hn is maximal for all n.

The results of Chapter 3 provide some insight into the structure of Hn and therefore Gn, but

there is no obvious way to use them to compute the limit as n → ∞ of the expression in (3). In

Chapters 4 and 5 we build a stochastic process where the main results of Chapter 3 have a natural

interpretation. The tools of the theory of stochastic processes then allow us to prove this process is

eventually 0 with probability 1, and this is enough to establish Theorem 1.7.

Chapter 4 focuses on proving the process we seek exists and fleshing out definitions and standard

results from the theory of stochastic processes. In Section 4.1 we recall that a discrete-time stochastic

process (or simply process for short) is a sequence {Xn}n≥0 of random variables defined on a common

probability space. We consider only processes whose random variables take positive-integer values.

Such a process can be thought of as a game of chance, with Xn denoting a gambler’s score at turn

n. We prove that there exists a process where the probability of the gambler having score t at turn

n is determined by the structure of Gn. Specifically,

P(Xn = t) =
1

#Gn
# {g ∈ Gn : g fixes t roots of fnx } (4)

We actually prove an even stronger property (see (4.3)). From (4) and the remark immediately

before (3) it follows that

δ(In) = P(Xn > 0). (5)

For more on why probability theory is a relatively natural tool in this context, see the introduction

to Chapter 4 on page 59.
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The main work of section 4.1 is to show that a process satisfying (4) exists. We call this process

the Galois process of the iterates of f , or GP(f) for short. (Because there is no possibility of

ambiguity, we drop the x from previous notation and simply write f = y2 + x.) In Section 4.2 we

give some probabilistic background, including definitions of martingales and Markov chains and one

version of the basic martingale convergence theorem (Theorem 4.9). In Section 4.3 we present the

basic theory of branching processes, which not only is useful in Chapter 5 but also illustrates some

of the definitions of Section 4.2.

In Chapter 5 all of the threads come together. In Section 5.1 we use Corollary 3.23, which

guarantees the existence of a certain type of element in each Hn, to establish that GP(f) is a

martingale. Thus GP(f) is the first known example of a class of processes we call Galois martingales

(see the remark on page 80), giving some justification for the first two words of this thesis’ title.

The martingale convergence theorem then shows that with probability 1 the sequence {Xn(ω)}n≥0

is eventually constant (where ω is any element in the underlying probability space).

In Section 5.2 we compute, under the assumption thatHn is maximal, the conditional distribution

of Xn given Xn−1 = t for any value of t. Thus, using the metaphor of the gambler, when n is such

that Hn is maximal we have explicit information about the probability that the gambler’s score goes

from t to t′ at turn n. Using Theorem 3.2, which says that Hn is maximal when n is squarefree, we

show that for any t ≥ 1 and m ≥ 1,

P (Xn = t for all n ≥ m) = 0.

This is Theorem 5.8. It quickly follows that GP(f) converges to 0 with probability 1. We deduce

from this in Section 5.3 that lim
n→∞

P(Xn > 0) = 0, and then from (5) and the remark following

(2) we conclude that δ(H(Fp)) = 0, which proves Theorem 1.7. Finally, we show that under the

assumption that Hn is maximal for all n, GP(f) is a particularly simple branching process. We also

give explicit values for δ(In) under this assumption (see (5.28) and Corollary 5.11).



Chapter 1

A Subset of the p-adic Mandelbrot

Set

The complex Mandelbrot set M(C) is obtained by considering the polynomials fc(z) = z2 +c, where

c is a complex number. Writing fnc for the nth iterate of fc, we define M(C) as the set of parameter

values c such that the orbit of 0 remains bounded:

{c ∈ C : fnc (0) 6→ ∞ as n→∞}.

There are several equivalent characterizations of the Mandelbrot set; see [8] for details. We’re

interested in the related set

H(C) = {c ∈ C : fc has an attracting cycle in C}.

We recall that a cycle of a rational function R is a collection of points ζ1, . . . , ζn such that

R(ζi) = ζi+1 for 1 ≤ i ≤ n − 1 and R(ζn) = ζ1. This is equivalent to each ζi being a root of

Rn(z) − z, where Rn is the nth iterate of R. We refer to any point in a cycle as periodic. Some

authors use the phrase purely periodic to describe such points, so as to underline the distinction with

points that are not in a cycle but map into one under iteration, often called preperiodic.

Throughout this thesis, we apply the term periodic only to points that lie in a cycle

We say that the cycle ζ1, . . . , ζn has period n. If, moreover, each ζi is a root of Rn(z) − z but

not of Rm(z)− z for any m < n, we say the cycle has primitive period n (some authors use the term

exact period n). This is equivalent to each ζi being a root of Rn(z) − z but not of Rm(z) − z for

any m dividing n. Note also that the cycle ζ1, . . . , ζn has primitive period n if and only if the ζi are

distinct.

7
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Figure 1.1: M , the complex Mandelbrot set. Also this thesis’ coolest picture.

The above cycle is attracting if we have |(Rn)′(ζi)| < 1 for any i (this is equivalent to the

inequality holding for all i). It is super-attracting if |(Rn)′(ζi)| = 0 for any i. Each point ζi of an

attracting cycle lies in an open set with the following property: for any u ∈ Ui, Rnm(u) → ζi as

n→∞ (see [5]). We refer to the largest such Ui as the immediate basin of attraction of ζi. The union

of the sets U1, . . . , Un is called the immediate basin of attraction for the attracting cycle ζ1, . . . , ζn.

The relation between H(C) and M(C) arises from the following Theorem (see e.g. [5, Sec. 9.3]):

Theorem 1.1. Let R be a rational function of degree at least two. Then the immediate basin of

attraction for each attracting cycle of R contains a critical point of R.

Thus every attracting cycle must attract a critical point. Let’s return to the case of fc. Its only

critical points are 0 and ∞, with the latter being fixed for all c. So if fc has an attracting cycle, it

must attract the only nonfixed critical point, namely 0. Thus the orbit of 0 approaches the cycle,

and in particular remains bounded. This shows that H(C) ⊂M(C). Indeed, we have

H(C) = {c ∈M(C) : 0 is attracted to an attracting cycle of z2 + c}.

However, H(C) is a proper subset of M(C), as can be seen by taking c = −2: under z2− 2, after

two iterations 0 lands on the fixed point 2, which is not attracting. Thus there can be no attracting

cycles, but on the other hand fnc (0) 6→ ∞.

Notice that if c ∈ H(C), then every critical point of fc is attracted to an attracting cycle.

Rational functions with this property are known as hyperbolic [24]. If c ∈ M(C) −H(C), then the

only attracting cycle of fc is infinity (which is a fixed point), yet the critical point 0 does not go to

infinity. Hence H(C) consists of all c in M(C) for which fc is hyperbolic. We thus refer to H(C) as

the hyperbolic subset of M(C).



9

We can visualize pieces of H(C) by setting

H(C)(i) = {c ∈ C : fc has an attracting cycle of primitive period i in C}.

Then H(C)(1) is the cardioid at the center of M(C), and H(C)(2) is the circle immediately to its

left; see Figure 1.1. The set H(C)(3) consists of three disjoint open disks tangent to the cardioid.

Subsequent H(C)(i) are also disjoint unions of open disks, and the disks are increasingly smaller and

more numerous (see [8, p.316] or, more colorfully, [9, Chapter 17] ).

We are interested in the relative size of H(C) to M(C). Both H(C) and M(C) are Lebesgue

measurable, and the measure of H(C) exceeds 1.503 while the measure of M(C) is less than 1.562

[11]. Thus the hyperbolic subset H(C) accounts for nearly all of the measure of M(C). In [24] it is

conjectured that H(C) is the interior of M(C). Indeed, this is a special case of the famous conjecture

that hyperbolic maps are dense in the set of rational functions of degree n – the biggest unsolved

conjecture in complex dynamics – and even this simplest possible special case remains open. Since

H(C) is suspected of being the interior of M(C), it is reasonable to suppose that H(C) accounts

for all of M(C) except a set of measure 0. But the boundary ∂M(C) is a complicated creature:

Shishikura ([33]) has shown that it has Hausdorff dimension 2, and some believe that it has positive

2-dimensional Lebesgue measure. At any rate, it is true that H(C) is at least a very large subset of

M(C).

In this thesis we consider the relative size of the hyperbolic subset of the natural p-adic analogue

of the Mandelbrot set. The p-adic equivalent of the complex numbers is Cp, the smallest complete,

algebraically closed extension of Qp. We use only the following information about Cp (see [31] for

details):

1. There is a unique absolute value |·| on Cp that extends the p-adic absolute value on Qp.

This absolute value satisfies the ultrametric inequality |x+ y| ≤ max {|x| , |y|}. Moreover, if

|x| 6= |y|, then

|x+ y| = max {|x| , |y|}. (1.1)

2. The ultrametric inequality implies that the closed unit disk D = {x ∈ Cp : |x| ≤ 1} is a

subring of Cp. The open unit disk U = {x ∈ Cp : |x| < 1} is the unique maximal ideal in D.

The quotient D/U is isomorphic to Fp, the algebraic closure of the finite field with p elements.

There is thus a natural homomorphism

φ : D → Fp (1.2)

called the reduction homomorphism. Following convention, we sometimes denote φ(x) by x.
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We can extend φ to a mapping from P1(Cp) to P1(Fp) by setting φ(x) = ∞ for any x with

|x| > 1.

For c ∈ Cp, we set fc(x) = x2 + c. We define the p-adic Mandelbrot set M(Cp) in the obvious

way:

M(Cp) = {c ∈ Cp : fnc (0) 6→ ∞ as n→∞} .

We also define

H(Cp) = {c ∈ Cp : fc has an attracting cycle in Cp}.

We wish to show that in fact

H(Cp) = {c ∈M(Cp) : 0 is attracted to an attracting cycle of z2 + c}, (1.3)

whence H(Cp) is legitimately the hyperbolic subset of M(Cp), i.e., the subset consisting of all of the

hyperbolic maps.

However, Theorem 1.1 does not hold in general in the p-adic setting. For instance, the map

f(x) = xp has an infinite number of attracting cycles, yet only two critical points. Thus we have to

do a bit of work to show that H(Cp) ⊂M(Cp) and that fc is hyperbolic for all c ∈ H(Cp). First we

determine M(Cp), a task whose easiness contrasts sharply with its complex equivalent.

Proposition 1.2. For all p, we have M(Cp) = D.

Proof: First take |c| > 1, and consider fc. We show by induction that |fnc (0)| = |c|2
n−1

. This is

clear for n = 1. For the induction step, assume n > 1 and note that

|fnc (0)| =
∣∣fc(fn−1

c (0))
∣∣ =

∣∣(fn−1
c (0))2 + c

∣∣ .
By the inductive hypothesis, we have

∣∣(fn−1
c (0))2

∣∣ = |c|2
n−1

, and this is greater than |c| since n > 1

and |c| > 1. Thus by (1.1) we have
∣∣(fn−1

c (0))2 + c
∣∣ = |c|2

n−1

. This finishes the induction, and we

now have |fnc (0)|→∞ as n→∞, so c 6∈M(Cp). Thus M(Cp) ⊆ D.

Now suppose that c ∈ D, i.e. |c| ≤ 1. Then |fc(0)| ≤ 1, and if we suppose that
∣∣fn−1
c (0)

∣∣ ≤ 1,

then

|fnc (0)| =
∣∣(fn−1

c (0))2 + c
∣∣ ≤ max

{∣∣(fn−1
c (0))

∣∣2 , |c|} ≤ 1,

by the ultrametric inequality. Thus |fnc (0)| ≤ 1 for all n, so we have c ∈M(Cp). Hence M(Cp) = D.

�

We next show that if p 6= 2, then c 6∈ M(Cp) implies c 6∈ H(Cp). Before doing this, we state a

useful equation that follows from the chain rule. Let K be a field, x ∈ K, and fc = x2 + c ∈ K[x].
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In the following we take f0
c to be the identity:

(fnc )′(x) =
n−1∏
i=0

f ′c(f
i
c(x)) = 2n

n−1∏
i=0

f ic(x) (1.4)

Moreover, if x1, . . . , xn is a cycle in K under fc, then for any k with 1 ≤ k ≤ n we have

(fnc )′(xk) = 2n
n−1∏
i=0

xi (1.5)

Proposition 1.3. Suppose that p 6= 2 and |c| > 1. Then fc has no attracting cycles in Cp.

Proof: We show first that all points x0 whose absolute value is not
√
|c| are attracted to infinity. If

|x0| >
√
|c|, then by (1.1) we have

∣∣x2
0 + c

∣∣ =
∣∣x2

0

∣∣ > |c|, so |fc(x0)| > |c|. Using the same argument

as in the proof of Proposition 1.2 one can show that lim
n→∞

fnc (x0) =∞. Now take |x0| <
√
|c|. Then

|fc(x0)| = |c|, so
∣∣f2
c (x0)

∣∣ = |c|2 > |c|. The argument of the preceding paragraph then applies to

show that lim
n→∞

fnc (x0) =∞.

The orbit of any cycle is bounded, and so must remain within the set {x0 ∈ Cp : |x0| =
√
|c|}.

Let x1 belong to a cycle of fc. Then using (1.4) and p 6= 2 we have

|(fnc )′(x1)| =
n−1∏
i=0

∣∣f ic(x1)
∣∣ = |c|

n
2 > 1.

Hence the cycle to which x1 belongs is not attracting. �

This Proposition shows that H(Cp) ⊆M(Cp) for p 6= 2. When p = 2 this is not true. Indeed, if

we take 1 < |c| < 4 then one can easily show that the fixed points x1, x2 of fc both have absolute

value
√
|c|, which is less than 2. Hence |f ′c(xi)| = |2xi| < 1. This is only one of many respects in

which the case p = 2 differs from other primes, and we prefer to focus on behavior of typical primes.

Hence from now on we assume p 6= 2.

It remains to show for p 6= 2 that H(Cp) 6= M(Cp), and we also wish to show that fc is hyperbolic

for c ∈ H(Cp). Both of these statements follow from a theorem of Rivera-Letelier [28], which we

state below

First we develop some terminology. A rational function R ∈ Cp(x) may be considered as a map

P1(Cp)→P1(Cp). We can represent it in homogeneous coordinates as

R([x, y]) = [f(x, y), g(x, y)],

where f and g are relatively prime homogeneous polynomials with coefficients in D, and deg(f) =

deg(g) = d = deg(R). We can also assume that at least one coefficient of f or g has absolute value

1. We set R([x, y]) =
[
f(x, y), g(x, y)

]
, where f and g are the functions obtained by applying the
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reduction homomorphism to each coefficient of f and g, respectively. We call R the reduction of R;

note that R is a map P1(Fp)→P1(Fp). We say R has good reduction if deg(R) = deg(R), i.e. if the

only common zero of f and g in Fp × Fp is (x, y) = (0, 0).

Note that any monic polynomial with coefficients in D must have good reduction. Hence fc has

good reduction if c ∈M(Cp).

We make one more observation before stating the theorem. Since D/U ∼= Fp, we can write D as a

disjoint union of open balls of radius 1. Indeed, for α ∈ Fp, define Bα = φ−1(α) = {x ∈ Cp : x = α},

and note that for any α ∈ Fp and any x0 such that x0 = α we have Bα = {x ∈ Cp : |x0 − x| < 1}

(this follows from the ultrametric inequality). We then have

D =
⋃
α∈Fp

Bα.

Theorem 1.4 (Rivera-Letelier [28]). Suppose R ∈ Cp(x) has good reduction, and for each α ∈

P1(Fp), set Bα = φ−1(α) = {c ∈ P1(Cp) : c = α}. Then

1. R(Bα) = BR(α) for all α ∈ P1(Fp).

2. Bα contains a point of an attracting cycle if and only if α is periodic under R and (R
k
)′(α) = 0,

where k is the primitive period of α. In this case Bα contains a unique periodic point β and

Bα is the immediate basin of attraction of β.

3. If p does not divide deg(R) then the immediate basin of attraction of any attracting cycle of R

contains a critical point.

We can quickly derive several corollaries from Part 3 of Theorem 1.4. First, it follows immediately

that fc is hyperbolic for c ∈ H(Cp). Second, we may show H(Cp) 6= M(Cp) just as in the complex

case by taking c = −2. Under f−2 = x2 − 2, 0 lands on the fixed point 2 after one interation, and

|f ′−2(2)| = |4| = 1 since p 6= 2. Thus the critical point 0 is not attracted to an attracting cycle, so

f−2 has no attracting cycles in Cp. Finally, using the same argument as in the complex case, we

have that fc is not hyperbolic if c ∈M(Cp)−H(Cp).

Theorem 1.4 also shows that we may obtain a great deal of information about fc from its reduction

fc.

Corollary 1.5. Let c ∈ D. Then fc has a unique attracting cycle if 0 is periodic under iteration of

fc and no attracting cycles otherwise. Moreover, if 0 is periodic of primitive period n under iteration

of fc, then the unique attracting cycle of fc has primitive period n.

Proof: The fact that fc has at most one attracting cycle follows immediately from part 3 of Theorem

1.4. We now show that fc has an attracting cycle of order n if and only if 0 is periodic of primitive

period n under iteration of fc. This is sufficient to prove the Corollary.
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Suppose first that fc has an attracting cycle of order n, and let x1, . . . , xn be the points in this

cycle. Since |c| ≤ 1, all points outside D are attracted to infinity, so the cycle must lie in D. We

then have by (1.5),

|(fnc )′(x1)| =
n−1∏
i=0

|xi| .

Since the cycle is attracting, this expression is less than 1. However, because the cycle is in D,

|xi| ≤ 1 for each i. Hence |xj | < 1 for some j, so xj = 0. By part 2 of Theorem 1.4, no two xi can

be in the same Bα, so the reductions x1, . . . , xn are distinct. Thus x1, . . . , xn is a cycle under fc

containing 0.

Now suppose that α1, . . . , αn is a cycle of order n under fc and that αj = 0. Using (1.5) gives us

(fnc )′(αk) = 2n
n−1∏
i=0

αi

for any k. Since αj = 0, this product is 0 for all k, so by part 2 of Theorem 1.4 each Bαi
contains a

point xi of an attracting cycle. By part 3 of Theorem 1.4 there can be at most one attracting cycle

of fc, so x1, . . . , xn is an attracting cycle. Each xi is in a different ball Bαi , and thus the points of

the cycle are distinct. �

Corollary 1.5 gives us a tidy characterization of H(Cp). It says that one may determine if some

c ∈M(Cp) belongs to H(Cp) by examining only the behavior of fc. Specifically,

c ∈ H(Cp)⇐⇒ Bc ⊂ H(Cp)⇐⇒ 0 is periodic under iteration of x2 + c.

Let us set

H(Fp) = H(Cp) = {α ∈ Fp : 0 is periodic under x2 + α};

we call H(Fp) the hyperbolic locus of Fp. We have the following relation between H(Fp) and H(Cp):

Corollary 1.6. Let φ : D→Fp be the reduction homomorphism. Then

H(Cp) = φ−1(H(Fp)) =
⋃

α∈H(Fp)

Bα.

We note that H(Fp) is not empty, as it clearly contains 0. It is also not all of Fp, since we may

choose α = −2 ∈ Fp. Under x2 +α, 0 maps to the fixed point 2 after two iterations, and 2 6= 0 since

p 6= 2. Hence −2 6∈ H(Fp) for all p ≥ 2.

We now focus our attention on the relative size of the hyperbolic subset H(Cp) ⊆ M(Cp). The

field Cp is not locally compact (see e.g. [31]), so one cannot define a Haar measure on it, and thus we

must look elsewhere for a notion of size. Corollary 1.6 provides us with a solution: use the reduction

homomorphism to move the problem to Fp.
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In Fp, there are two notions of density that interest us. We refer to the first as the Dirichlet

density, as it corresponds to the density measure of that name in number fields and function fields.

For its definition we need a bit of terminology. Given α ∈ Fp, let degα = [Fp(α) : Fp], and define

N(α) to be pdegα. If S ⊆ Fp, we define the Dirichlet density δ(S) to be

δ(S) = lim
s→1+

∑
α∈S (degα)−1N(α)−s∑
α∈Fp

(degα)−1N(α)−s
. (1.6)

The second notion of density is called natural density and is more immediately satisfying. It,

too, corresponds to similarly named densities in number fields and function fields. Intuitively, as

k grows, Fpk offers progressively better “approximations” of Fp. We therefore define the natural

density D(S) of S ⊆ Fp to be

D(S) = lim
k→∞

#{S ∩ Fpk}
pk

. (1.7)

Clearly for a given S neither δ(S) nor D(S) need necessarily exist. If D(S) exists then a quick

computation shows that δ(S) exists and that the two are equal. On the other hand, there are

easily described sets that have Dirichlet density but no natural density. Dirichlet density is the less

intuitive of the two and much harder to calculate, but it is more flexible and applies to many more

sets.

Because of the connection between H(Fp) and H(C), we call δ(H(Fp)) the hyperbolic density of

M(Cp). The main business of this thesis is to show:

Theorem 1.7. For all p 6= 2, δ(H(Fp)) = 0.

We also show that D(H(Fp)) = 0 when p ≡ 3 mod 4, and conjecture that this holds for all p

(see the remarks following the proof of Theorem 1.7 on page 85). In the next chapter we begin the

perhaps unexpectedly far-reaching journey of proving these statements. For now, though, we take a

look at a few concrete pieces of H(Fp) and from these determine the analogues in H(Cp) of some of

the previously mentioned pieces of the complex Mandelbrot set.

Pursuing an analogy with the complex case, we make the following definitions:

H(Cp)(i) = {c ∈ Cp : x2 + c has an attracting cycle of primitive period i}

H(Fp)(i) = {α ∈ Fp : x2 + α has a super-attracting cycle of primitive period i}

Clearly H(Cp) is the disjoint union of the H(Cp)(i) and H(Fp) is the disjoint union of the H(Fp)(i).

By Corollary 1.5 we have for every i,

H(Cp)(i) = φ−1(H(Fp)(i)) =
⋃

α∈H(Fp)(i)

Bα. (1.8)
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For α ∈ Fp, we set fα(x) = x2 + α. We then have for all p,

H(Fp)(1) = {α ∈ Fp : fα(0) = 0} = {0}

H(Fp)(2) = {α ∈ Fp : f2
α(0) = 0 and fα(0) 6= 0} = {α ∈ Fp : α2 + α = 0 and α 6= 0} = {−1}

By (1.8) we then have H(Cp)(1) = B0 and H(Cp)(2) = B−1. Note that H(Cp)(1) is the p-adic

equivalent of the main cardioid of the complex Mandelbrot set, whileH(Cp)(2) is the p-adic equivalent

of the circle immediately to the left of the cardioid.

For any i, H(Fp)(i) is the set of α ∈ Fp such that f iα(0) = 0 and fkα(0) 6= 0 for all k | i with k < i.

We can restate this by setting ft = x2 + t and considering the polynomials in t resulting from the

evaluation of f it (x) at x = 0. This family of polynomials plays an important role in Chapter 3, and

we thus define

pi(t) = f it (0).

We then have that H(Fp)(i) consists of all α ∈ Fp that are roots of pi but not also roots of pk for

some k | i with k < i. We say that such α have primitive Mandelbrot period i. This notion plays an

important role in Section 3.4; here we content ourselves with a few examples. Note that p1 = t and

p2 = t2 + t, and since these polynomials split completely over Q their roots are the same for all p.

Hence H(Cp)(1) and H(Cp)(2) do not depend on p. When i ≥ 3 the roots of pi depend on the prime

p. Indeed, p3 = t4 + 2t3 + t2 + t, and the roots of p3/p1 = t3 + 2t2 + t+ 1 are those with primitive

Mandelbrot period 3. When p = 3 we must move to a degree 3 extension of Fp in order to get all

the roots of p3. When p = 5 a degree 2 extension will do, while when p = 101 we have the three

roots 4, 37, and 58 in Fp.

One could hope to gain information about δ(H(Fp)) by analyzing the size of the extension of Fp
necessary to contain H(Fp)(i). However, this question seems complicated, as there may be points of

very high primitive Mandelbrot period even in Fp.

Thus we will take a different approach to determining δ(H(Fp)). Although the sets H(Fp)(i) are

defined by looking at the forward orbit of 0 under x2 + α, our technique is to examine the inverse

orbit. We lay out the details in the next chapter.
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Chapter 2

Two Reformulations of the

Problem

In Chapter 1, we defined the hyperbolic density of the p-adic Mandelbrot set M(Cp) to be δ(H(Fp)),

where δ is the Dirichlet density (see (1.6)) and

H(Fp) = {α ∈ Fp : 0 is periodic under x2 + α}

Our main task is to show Theorem 1.7, namely δ(H(Fp)) = 0. In this chapter we give two refor-

mulations of the problem of determining δ(H(Fp)) and D(H(Fp)) (see (1.7)). First, by considering

the inverse orbit of 0 under x2 + α, we relate these quantities to the densities of certain subsets of

Fp that are invariant under the action of Gal (Fp/Fp) (see (2.1) and Corollary 2.6). We then show

that these sets have densities equal to the densities (in an appropriate sense – see (2.3) and (2.4)) of

certain sets of primes in the ring Fp[x]. These sets of primes turn out to have a nice characterization

in terms of the Artin symbol (see page 25 for a definition). Thus we may apply the Tchebotarev

Density theorem to reduce our original problem to purely Galois-theoretic considerations.

Before diving in, we make a notational remark: For this entire chapter we take p to be a prime

number different from 2.

2.1 The Inverse Orbit of Zero

Let α ∈ Fp, and set fα = x2 + α. We begin with the simple observation that the forward orbit of 0

under fα, defined to be {fnα (0) : n = 1, 2, 3, . . .}, is contained in Fp(α). The same is not true of the

17
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inverse orbit of 0, i.e. the set

{β ∈ Fp : fnα (β) = 0 for some n ≥ 1}.

Indeed, for many α there is an n such that no root of fnα is contained in Fp(α). Dynamically, this

means that 0 has no nth preimages in Fp(α). We now show that the collection of α for which there

is no such n is precisely H(Fp).

Proposition 2.1. Let α ∈ Fp, and for each n ≥ 1 let f−nα (0) be the set of roots of fnα in Fp. Let S

be any finite subset of Fp containing Fp(α). Then α ∈ H(Fp) if and only if

f−nα (0) ∩ S 6= ∅

for all n ≥ 1.

Proof: Suppose first that α ∈ H(Fp), so that 0 has a periodic forward orbit c1, c2, . . . , cm−1, cm = 0.

Then f jα(0) = cj for j = 1, . . . ,m − 1, and fmα (0) = 0. Clearly this entire orbit lies in Fp(α), and

thus in S. For any n > 0, we may choose l with m ≥ lm− n > 0, and this gives

0 = f lmα (0) = fnα (f lm−nα (0)) = fnα (clm−n).

Thus clm−n ∈ f−nα (0), showing that f−nα (0) ∩ S is nonempty.

Conversely, suppose that f−nα (0) ∩ S is nonempty for all n ≥ 1. Then for each n ≥ 1 we may

find a root bn of fnα in S. Since S is finite, there must exist n1 < n2 such that bn1 = bn2 . Thus

fn2
α (bn1) = fn2

α (bn2) = 0. Combining this with fn1
α (bn1) = 0 yields

fn2−n1
α (0) = fn2−n1

α (fn1
α (bn1)) = fn2

α (bn1) = 0.

Hence 0 is periodic under fα. �

Corollary 2.2. H(Fp) = {α ∈ Fp : f−nα (0) ∩ Fp(α) 6= ∅ for all n ≥ 1}.

Proof: Put S = Fp(α) in Proposition 2.1. �

Corollary 2.3. For any k ≥ 1 we have

H(Fp) ∩ Fpk = {α ∈ Fpk : f−nα (0) ∩ Fpk 6= ∅ for all n ≥ 1}.

Proof: If α ∈ H(Fp) ∩ Fpk , then put S = Fpk in Proposition 2.1. Since Fp(α) ⊆ Fpk , we have

f−nα (0) ∩ Fpk 6= ∅ for all n ≥ 1. To show the reverse inclusion, if α ∈ Fpk and f−nα (0) ∩ Fpk 6= ∅ for

all n ≥ 1, then Proposition 2.1 gives that α ∈ H(Fp). �
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Using the characterizations given in Corollaries 2.2 and 2.3, we now describe supersets of H(Fp),

which we use later in this chapter to give upper bounds for δ(H(Fp)) and D(H(Fp)). For each n ≥ 1,

define

In = {α ∈ Fp : f−nα (0) ∩ Fp(α) 6= ∅} (2.1)

Note that α ∈ In if fα has an nth preimage that is “simple” in the sense that it is contained

in Fp(α) rather than an extension. These sets play a crucial role in much of the rest of this thesis.

This is because they may be thought of as successively better “approximations” of H(Fp), as the

next Proposition shows.

Proposition 2.4. For each n ≥ 1 we have In ⊇ In+1, and H(Fp) =
⋂
n≥1 In.

Proof: let α ∈ In+1, and take β ∈ Fp(α) such that fn+1
α (β) = 0. Then fnα (fα(β)) = 0, so fα(β)

is a root of fnα , and because β ∈ Fp(α) it follows that fα(β) ∈ Fp(α). Therefore α ∈ In. That

H(Fp) =
⋂
n≥1 In follows immediately from Corollary 2.2. �

We wish to use Proposition 2.4 to connect δ(In) and δ(H(Fp)) on the one hand, and D(In) and

D(H(Fp)) on the other. To do this, we need a basic property of Dirichlet and natural density, which

we give in the following proposition.

Proposition 2.5. Let S, T1, T2, . . . be subsets of Fp, and suppose that S ⊆ Ti for each i. Suppose

also that δ(Ti) exists and lim
i→∞

δ(Ti) = 0. Then δ(S) exists and equals zero. A similar statement

holds for natural density.

Proof: Define

aS(s) =
∑
α∈S (degα)−1N(α)−s∑
α∈Fp

(degα)−1N(α)−s
.

Define similar functions aTi(s) in the obvious way. Since S ⊆ Ti and all sums involved are positive

wherever they are defined, it follows immediately that aS(s) ≤ aTi
(s) for s > 1. Taking lim sups

and using the assumption that δ(Ti) exists gives

lim sup
s→1+

aS(s) ≤ lim sup
s→1+

aTi
(s) = lim

s→1+
aTi

(s) = δ(Ti).

Since lim
i→∞

δ(Ti) = 0 and aS(s) ≥ 0 for s > 1, it follows that lim sups→1+ aS(s) = 0. Therefore

lims→1+ aS(s) = 0, proving that δ(S) = 0.

For the natural density version, S ⊆ Ti implies that #(S ∩ Fpk) ≤ #(Ti ∩ Fpk). Dividing by pk

and taking lim sups as k →∞ gives

lim sup
k→∞

#(S ∩ Fpk)
pk

≤ lim sup
k→∞

#(Ti ∩ Fpk)
pk

= lim
k→∞

#(Ti ∩ Fpk)
pk

= D(Ti).
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Because lim
i→∞

D(Ti) = 0, it follows that lim sup
k→∞

#(S ∩ Fpk)/pk = 0, whence D(S) = 0. �

Corollary 2.6. Suppose that for all n ≥ 1, δ(In) exists and lim
n→∞

δ(In) = 0. Then δ(H(Fp)) = 0.

Similarly, if D(In) exists for all n ≥ 1 and lim
n→∞

D(In) = 0, then D(H(Fp)) = 0.

Proof: Immediate from Proposition 2.5 and the fact that H(Fp) =
⋂
n≥1 In (Proposition 2.4). The

natural density case is similar. �

In order to show that δ(In) and D(In) exist and to study them, we use the Tchebotarev Density

theorem for function fields. However, this theorem deals with the densities of sets of prime ideals in

the ring Fp[x], and so cannot be directly applied to In. We thus wish to relate In to a set of primes

in Fp[x], and this is our task for the remainder of this section. In the next section we elaborate on

the application of Tchebotarev’s theorem.

Recall that In = {α ∈ Fp : f−nα (0) ∩ Fp(α) 6= ∅}. The condition f−nα (0) ∩ Fpk 6= ∅ is equivalent

to the polynomial fnα (y) ∈ Fp(α)[y] having a root in Fp(α). This, in turn, is equivalent to the

factorization of fnα (y) over Fp(α) having a linear term. Now the minimal polynomial of α over Fp is

some irreducible πα ∈ Fp[x], and it generates a prime ideal pα. There is an obvious isomorphism

φ : Fp[x, y]/pα
∼−→ Fp(α)[y],

and φ−1(fnα (y)) = fnx (y), where fx = y2 + x ∈ Fp[x, y]. Thus fnα (y) has a linear factor in Fp(α) if

and only if fnx has a linear factor mod pα. We sum up this discussion in the following equation:

In = {α ∈ Fp : fnx has a linear factor mod pα}. (2.2)

Note that (2.2) shows that whether α belongs to In depends only on its minimal polynomial

πα. Thus α ∈ In if and only if all its conjugates are in In; another way of saying this is that In is

invariant under the action of Gal (Fp/Fp).

We wish to relate the density of a Galois-invariant subset of Fp with the density of a corresponding

set of primes in Fp[x]. To be able to do this we need a notion of density of a set of primes in Fp[x].

There are two such notions, called Dirichlet and natural density, and they are quite similar to the

definitions we have given for subsets of Fp. Put A = Fp[x], let P be the set of primes in A, and

recall that if p ∈ P , then Np = pdeg p. Given a set T ⊆ P , we define

δ(T ) = lim
s→1+

∑
p∈T Np−s∑
p∈P Np−s

, (2.3)

D(T ) = lim
k→∞

#{p ∈ T : deg p = k}
#{p ∈ P : deg p = k}

. (2.4)
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The relationship of these notions of density is the same as in the case of subsets of Fp (see discussion

on page 14). Indeed, we now show that these notions of density are essentially the same as the ones

we defined for subsets of Fp, only restricted to Galois-invariant subsets. Recall that for α ∈ Fp, we

defined pα to be the ideal (πα), where πα is the minimal polynomial for α over Fp. Recall also that

we defined degα = [Fp(α) : Fp] (see (1.6)) and N(α) = pdegα.

Lemma 2.7. Let S ⊆ Fp be invariant under the action of Gal (Fp/Fp), and let

T = {p ∈ P : p = pα for some α ∈ S}.

Then ∑
α∈S

(degα)−1N(α)−s =
∑
p∈T

Np−s

and

#(S ∩ Fpk) = k ·#{p ∈ T : deg p = k}+O(pk/2).

Proof: Consider the map ψ : Fp → P that takes α to pα. The Galois invariance of S is equivalent

to S being the full inverse image of T under ψ. We thus have

∑
α∈S

(degα)−1N(α)−s =
∑
p∈T

∑
α∈ψ−1(p)

(degα)−1N(α)−s. (2.5)

Now for any α ∈ ψ−1(p) we have degα = deg πα = deg pα = deg p. Thus N(α) = Np. Hence

the inner sum in the right-hand side of (2.5) is repeated addition of the same quantity, and the

right-hand side becomes
∑

p∈T Np−s. This proves the first statement of the Lemma.

To prove the second statement, we use the fact that Fpk consists of all α ∈ Fp with degα dividing

k. This gives

S ∩ Fpk = ψ−1({p ∈ T : deg p | k}).

Because S = ψ−1(T ) and the preimage of p ∈ T contains deg p elements, the above equation gives

#(S ∩ Fpk) =
∑
j|k

j ·#{p ∈ T : deg p = j}

= k ·#{p ∈ T : deg p = k}+
∑

j|k,j<k

j ·#{p ∈ T : deg p = j} (2.6)

For each j there are at most pj/j irreducible polynomials over Fp of degree j (because all such

polynomials must split in Fpj ). Since j | k, j < k implies j ≤ k/2, the right-hand sum in (2.6) is

O(pk/2). �
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Proposition 2.8. Let S ⊆ Fp be invariant under the action of Gal (Fp/Fp), let P be the set of all

primes in Fp[x], let

T = {p ∈ P : p = pα for some α ∈ S},

and suppose that δ(T ) exists. Then δ(S) = δ(T ), where the the left-hand side is the Dirichlet density

for subsets of Fp defined in (1.6) and the right-hand side is the Dirichlet density for subsets of P

defined in (2.3). If moreover D(T ) exists, then D(S) = D(T ), with the two densities being the

natural densities defined in (1.7) and (2.4), respectively.

Proof: To prove the Dirichlet density part of the Proposition, apply the first statement of Lemma

2.7 twice, once to the numerator in the expression for δ(S) and once to the denominator (take

S = Fp). This gives ∑
α∈S(degα)−1N(α)−s∑
α∈Fp

(degα)−1N(α)−s
=

∑
p∈T Np−s∑
p∈P Np−s

.

Taking limits as s→ 1+ and using the existence of δ(T ) completes the proof.

To show the natural density component of the Proposition, divide both sides of the second

statement of Lemma 2.7 by pk to get

#(S ∩ Fpk)
pk

=
1
pk

(
k ·#{p ∈ T : deg p = k}+O(pk/2)

)
. (2.7)

The prime number theorem for polynomials over Fp [32, Theorem 2.2] states that

k ·#{p ∈ P : deg p = k} = pk +O(pk/2).

Thus the right-side of (2.7) is equal to

k ·#{p ∈ T : deg p = k}+O(pk/2)
k ·#{p ∈ P : deg p = k}+O(pk/2)

.

Taking limits as k →∞ then proves what we want. �

We apply Proposition 2.8 to the set In, which by (2.2) satisfies

In = {α ∈ Fp : fnx has a linear factor mod pα}.

Recall that pα is the ideal generated by the minimal polynomial of α, so that each p ∈ P is pα for

deg p values of α. Define

In = {p ∈ P : fnx has a linear factor mod p}, (2.8)

and note that In = {p ∈ P : p = pα for some α ∈ In}. By Proposition 2.8 we have that δ(In) = δ(In)

provided the latter exists, and similarly for natural densities. We then get the following immediate

consequence of Corollary 2.6:
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Proposition 2.9. Suppose that δ(In) exists for each n ≥ 1 and that lim
n→∞

δ(In) = 0. Then

δ(H(Fp)) = 0. Similarly, if D(In) exists for each n ≥ 1 and lim
n→∞

D(In) = 0, then D(H(Fp)) = 0.

With Proposition 2.9 we have succeeded in reducing our original density question to one involving

the density of a set of primes in Fp[x]. In the next section we apply the Tchebotarev Density theorem

to show that δ(In) exists and to obtain a concrete expression for it in terms of Galois-theoretic

information.

2.2 Applying the Tchebotarev Density Theorem

The Tchebotarev Density theorem for function fields gives the density of certain sets of primes in

Fp[x]. These sets can be described in terms of the Artin symbol, which we define on page 25. We

must therefore show that In (see (2.8)) has the same density as a set of primes whose Artin symbol

has a certain image. That is the main goal of this section. We close the section with a statement

of Tchebotarev’s theorem and apply it to give a formula for δ(In) in purely Galois-theoretic terms.

By Proposition 2.8, this also gives a similar formula for D(In).

We use the following notation throughout this section: put A = Fp[x], K = Fp(x), and let P be

the set of primes in A. Let fx = y2 + x ∈ K[y], β a root in K of fnx , L = K(β), and B the integral

closure of A in L. We begin by giving a set I ′n ⊆ P that differs from In by only finitely many primes

and has a characterization in terms of ideal factorizations in B. This is mostly accomplished in the

next Proposition, whose proof comes straight out of standard algebraic number theory.

Proposition 2.10. Let L,K,B, and A be as above. With at most finitely many exceptions, every

prime p in A satisfies these properties:

1. pB = P1P2 · · ·Pr, where the Pi are distinct primes of B. For each i, denote by d(Pi/p) the

residue class degree [B/Pi : A/p].

2. f = f1f2 · · · fr, where f is the image of fnx (y) in Fp[x, y]/p, and the fi are distinct irreducible

polynomials in Fp[x, y]/p with deg fi = d(Pi/p).

Proof: We present this argument in detail, although all its components can be found in any standard

number theory text such as [20]. We begin by noting that DL/K(A[β]) = c2DL/K(B) for some c ∈ A.

Since L = K(β), A[β] is an A-module of full rank. Therefore DL/K(A[β]) 6= 0, whence c 6= 0.

We now set S = A − p, which is a multiplicative set. As usual, denote S−1A by Ap and S−1B

by Bp. Since any basis for an A-module M is also a basis for the S−1A-module S−1M , we have

DL/K(Ap[β]) = c2DL/K(Bp).
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If c2 is a unit in Ap, it follows from a basic property of discriminants (see [20] Ch. 3) that

Ap[β] = Bp. (2.9)

Clearly c2 is a unit in Ap as long as p does not divide the principal ideal (c). Since c 6= 0, this holds

for all but finitely many p in A.

We now use the fact that

pB = Pe1
1 · · ·P

e1
1 ⇐⇒ pBp = Qe1

1 · · ·Qer
r (2.10)

where Pi and Qi are primes of B and Bp, respectively, with identical residue class degrees. Since

only finitely many p ramify in B, we may assume that (2.9) and statement 1 of the Proposition both

hold (this omits only finitely many p from consideration). It follows from (2.10) and statement 1

that pBp = Q1Q2 · · ·Qr, where the Qi are distinct primes in Bp. Using (2.10) once again, we see

that it now suffices to show that the degrees of the irreducible factors of f in Fp[x, y]/p correspond

to the residue class degrees of the Qi.

Let fi be an irreducible factor of f , and let γ be a root of fi. There is a natural surjective ring

homomorphism

Ap[β]→ (Ap/pAp) [γ].

The image of this map is isomorphic to Fpk(γ), so its kernel is a maximal ideal Q of Ap[β] = Bp.

Clearly Q ⊇ pAp, so Q ∩Ap = pAp. On the other hand, by (2.9) we have

Bp/Q = (Ap[β])/Q ∼= (Ap/pAp) [γ],

so we have [Bp/Q : Ap/pAp] = deg fi.

Hence for each irreducible factor fi of f , there is an ideal of Bp lying over pAp with residue class

degree deg fi. Moreover, these ideals are the only ones lying over pAp, because the sum of their

residue class degrees is
∑
i deg fi = deg f = [L : K]. Finally, because pBp is unramified, the fi must

be distinct. �

In light of Proposition 2.10, we define

I ′n = {p ∈ P : pB is divisible by a prime of residue class degree 1}. (2.11)

Proposition 2.10 shows that In and I ′n differ by at most finitely many primes, and it is an easy

exercise to show that both Dirichlet and natural density do not change if one alters a set by finitely

many primes. We now wish to express I ′n in terms of the Artin symbol.

To define the Artin symbol, we move from considerations of the field L = K(β) to the splitting

field Kn of fnx over K. We show in chapter 3 that fnx is irreducible and separable over K (see
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Proposition 3.3). Therefore Kn/K is a Galois extension, and we denote its Galois group by Gn. We

engage in the standard abuse of language whereby “primes of [some extension of K]” is a shorthand

for “primes in the integral closure of A in [some extension of K].”

The Artin symbol maps an unramified prime p in A to a conjugacy class of Gn. To describe

which conjugacy class, we state several basic results and refer the reader to [32] for proofs. For each

prime p of A and each g ∈ Gn, g permutes the primes of Kn above p. Moreover, the action of Gn on

these primes is transitive [32, Proposition 9.2]. If a prime Q of Kn lies above p, the stabilizer of Q

under this action, i.e. {g ∈ Gn : g(Q) = Q}, is called the decomposition group of Q over p, denoted

Z(Q/p). We denote by J the Galois group of B/Q over A/p ∼= Fpdeg p . If Q2 - p, then it is shown

[32, Theorem 9.6] that

Z(Q/p) ∼= J.

By the theory of finite fields, J is cyclic of order [B/Q : A/p] = d(Q/p), the residue class degree of

Q. Moreover, J is generated by the Frobenius automorphism φp that maps x ∈ B/Q to xdeg p. We

denote by (Q,Kn/K) the element of Z(Q/p) whose image in J is φp. We note that

|(Q,Kn/K)| = |Z(Q/p)| = d(Q/p). (2.12)

We call (Q,Kn/K) the Artin symbol of Q; note that it is a single element of Gn. The price of

pushing our definition down to p is that we must replace the single element by a conjugacy class:

Proposition 2.11. For any g ∈ Gn, (gQ,Kn/K) = g(Q,Kn/K)g−1.

Proof: : See [32], Proposition 9.10

From this proposition and the transitivity of the action of Gn on the primes over p, it follows

that the set {(Q,Kn/K) : Q above p} fills out a conjugacy class in Gn. We denote this conjugacy

class by (p,Kn/K), and call it the Artin symbol of p.

Each g ∈ Gn permutes the roots of fnx , and this permutation can be decomposed into disjoint

cycles. Moreover, conjugation preserves the lengths of the cycles in this decomposition: if g(β1) = β2,

then hgh−1 maps h(β1) to h(β2). Therefore the conjugacy class (p,Kn/K) consists of elements with

identical cycle decompositions. The next result relates the lengths of the cycles in this decomposition

to the factorization of pB. Thus the characterization we seek of I ′n (see (2.11)) in terms of the Artin

symbol is achieved.

Proposition 2.12. Let A = Fp[x], K = Fp(x), fx = y2 +x, and L = K(β) where β is a root of fnx .

Let B be the integral closure of A in L, Kn the splitting field of fnx over K, and Gn the Galois group

of Kn/K. Suppose that p is an unramified prime in A with pB = P1 · · ·Pr, where Pi is a prime

in B. Then any element of (p,Kn/K) acts on the roots of fnx (y) as a product σ1 · · ·σr of disjoint

cycles, with σi having length d(Pi/p).
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Proof: Suppose L = K(β1) for some root β1 of fnx . Let β2, . . . , βm be the other roots, so that the

set of roots of fnx is Rn = {β1, . . . , βm}. Suppose g ∈ (p,Kn/K), and let σ1 · · ·σr be the disjoint

cycle decomposition of g as a permutation of Rn. Fix i with 1 ≤ i ≤ r, and let |σi| be the length of

the cycle σi. We show that there is a prime Pi in B lying over p such that d(Pi/p) = |σi|.

Let βj be an element of the cycle σi. Since fnx is irreducible (Proposition 3.3), the action of Gn on

Rn is transitive, so we may choose a ti ∈ Gn such that ti(βj) = β1. Then hi = tigt
−1
i ∈ (p,Kn/K),

and hi maps ti(g−1(βj)) to ti(βj) = β1. Thus the disjoint cycle decomposition of hi is σ′1 · · ·σ′r,

where β1 ∈ σ′i and |σ′i| = |σi|.

Let Qi be a prime of Kn with (Qi,Kn/K) = hi. Denote by Pi the prime in B lying under

Qi, and note that both Qi and Pi lie over p. By the multiplicativity of degrees in towers of field

extensions we have

d(Qi/p) = d(Qi/Pi)d(Pi/p). (2.13)

Note that by (2.12) we have d(Qi/p) = |hi| and d(Qi/Pi) = |Z(Qi/Pi)|. Defining V to be the Galois

group of Kn/L, it is shown in Proposition 9.8 of [32] that |Z(Qi/Pi)| = |Z(Qi/p) ∩ V | = |〈hi〉 ∩ V |.

From this and (2.13) we have

d(Pi/p) =
|hi|

|〈hi〉 ∩ V |
.

Since L = K(β1), V is simply the stabilizer of β1 in Gn. Since β1 ∈ σ′i, we have h|σ
′
i|

i ∈ V and

hli /∈ V for l < |σ′i|. Thus 〈hi〉 ∩ V =
〈
h
|σ′i|
i

〉
. Also, because σ′i is a cycle in the decomposition of

hi, we have that |σ′i| divides |hi|, whence
∣∣∣h|σi|
i

∣∣∣ = |hi| / |σ′i|. Putting all this together yields

d(Pi/p) =
|hi|∣∣∣∣〈h|σ′i|i

〉∣∣∣∣ =
|hi|

|hi| / |σ′i|
= |σ′i| = |σi| ,

which completes the proof. �

We now relate I ′n to another set of primes in A. Let PU ⊆ P be the set of primes of A unramified

in Kn. We say that (p,Kn/K) fixes a root of fnx if every g (equivalently any g) in (p,Kn/K) fixes

a root of fnx . Consider the set

I ′′n = {p ∈ PU : (p,Kn/K) fixes a root of fnx }. (2.14)

It is clear from (2.11) and Proposition 2.12 that I ′′n differs from I ′n by only finitely many primes (the

primes in A that ramify in Kn). Hence δ(I ′′n) = δ(I ′n) = δ(In) and similarly for natural density.

We are at last in a position to use the Tchebotarev Density theorem. There are two versions of

the theorem, one dealing with Dirichlet density and the other with natural density. We state the

Dirichlet version first, specializing to the case of importance to us.
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Theorem 2.13 (Tchebotarev, first form). Let K = Fp(x), fx = y2 + x, Kn/K the splitting

field of fnx , and PU the set of primes of K unramified in Kn. Put Gn = Gal (Kn/K), and let C be

a conjugacy class in Gn. Then

δ({p ∈ PU : (p,Kn/K) = C}) =
#C
#Gn

.

As one might guess, the second version of Tchebotarev’s theorem deals with natural density. In

its simplest form it requires that the Galois extension be geometric, that is, that it not contain any

nontrivial extension of the constant field (which is Fp in our case). More precisely:

Definition 2.14. Let F be a field, and let L be an extension of F (x). The algebraic closure E of F

in L is called the constant field of L; equivalently, E = F ∩ L. If E = F then we call the extension

L/F (x) geometric.

Theorem 2.15 (Tchebotarev, second form). Let K = Fp(x), fx = y2 + x, Kn/K the splitting

field of fnx , and PU the set of primes of K unramified in Kn. Put Gn = Gal (Kn/K), and let C be

a conjugacy class in Gn. Assume that Kn/K is geometric. Then

# {p ∈ PU : deg p = k and (p,Kn/K) = C} =
#C
#Gn

pk

k
+O

(
pk/2

k

)
.

For partial proofs of these theorems and references to complete treatments, see [32, Ch. 9]. We

make two remarks. First, Theorem 2.15 implies that

D({p ∈ PU : (p,Kn/K) = C}) =
#C
#Gn

. (2.15)

To prove this, all that is needed is a slight alteration of the argument in the proof of Proposition 2.8

where we showed that D(S) = D(T ). Second, it is a fact of the universe that if the extension Kn/K

is not geometric, then the natural density in (2.15) does not exist in general. This follows from

the general natural density form of Tchebotarev’s theorem (see [12]1). Unfortunately, it is no easy

matter to find the exact constant field in a complicated extension. In the next chapter, we show:

Proposition 2.16. Let K = F (x), where F is a field of characteristic 0 or p ≡ 3 mod 4. Put

fx = y2 + x ∈ K[y], and let Kn/K the splitting field of fnx . Then Kn/K is geometric.

See Corollary 3.40 for a proof. We make the following conjecture, which has so far eluded proof:

Conjecture 2.17. Proposition 2.16 holds for all F of characteristic 6= 2.

We now complete the main task of this section, and indeed this chapter:
1This article by Fried is rather opaque. It seems to me there is an opening for a nice expository piece on the
nuances of the general theorem.
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Theorem 2.18. Let K = Fp(x), fx = y2 + x, and Kn/K the splitting field of fnx . Set Gn =

Gal (Kn/K), and let

In = {α ∈ Fp : f−nα (0) ∩ Fp(α) 6= ∅},

where fα = x2 + α. Then

δ(In) =
1

#Gn
# {g ∈ Gn : g fixes at least one root of fnx } . (2.16)

If in addition Kn/K is geometric, then D(In) exists and also equals the expression in (2.16).

Proof: Recall that we defined I ′′n = {p ∈ PU : (p,Kn/K) fixes a root of fnx }, and we showed (see

the discussion after (2.14) and (2.11)) that δ(I ′′n) = δ(In), where In is a set satisfying δ(In) = δ(In)

(see Proposition 2.8 and equation 2.8).

Using this and Theorem 2.13, and denoting by C the collection of conjugacy classes of Gn each

of whose elements fixes at least one root of fnx , we have

δ(In) = δ(I ′′n) =
∑
C∈C

#C
#Gn

=
1

#Gn

∑
C∈C

#C.

Now g ∈ Gn fixes a root of fnx if and only if every element of its conjugacy class does the same.

Thus g ∈
⋃
C∈C C if and only if g fixes at least one root of fnx . Equation (2.16) follows.

For the natural density case, the same chain of reasoning implies that D(In) = D(I ′′n), and by

equation (2.15) and the geometricity of Kn/K it follows that D(I ′′n) exists. Therefore D(In) exists,

whence it must equal δ(In). �

Theorem 2.18 provides a key ingredient in the proof of Theorem 1.7, which is our main result.

Corollary 2.6 states that to show δ(H(Fp)) = 0, it is enough to show that lim
n→∞

δ(In) = 0. Theo-

rem 2.18 in turn reduces this problem to one involving only the structure of certain Galois groups,

which we examine in Chapter 3. However, Theorem 2.18 is of interest in its own right.

Consider the case where Kn/K is geometric, which is provably true in many cases (see Corollary

3.39 and the remarks following). Theorem 2.18 then gives the natural density of In, i.e.

lim
k→∞

#In ∩ Fpk

pk
.

Thus for large k, the proportion of α ∈ Fpk such that 0 has at least one “simple” nth preimage

under fα stabilizes, and its limit is given by purely Galois-theoretic information. By “simple” we

mean that it is not necessary to pass to an extension of Fp(α). By the prime number theorem for

Fp[x] [32, Theorem 2.2], the above proportion is approximately equal, for large k, to the proportion

of α ∈ Fpk that have an nth preimage under fα in Fpk . These proportions are easy to compute, and
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doing so shows that k does not have to be very large to get results that are extremely close to the

predicted limits (see the table on page 89).

We give an illustration of this discussion in the example below.

Example 2.19. Consider the case n = 2. We prove in Chapter 3 that K2/K is geometric (for all

p 6= 2). Let us label the roots of f2
x = (y2 + x)2 + x as follows:√

−x+
√
−x ←→ 1

−
√
−x+

√
−x ←→ 2√

−x−
√
−x ←→ 3

−
√
−x−

√
−x ←→ 4

It follows from Theorem 3.2 that under this labeling G2 is a subgroup of S4 of order 8 that contains

{e, (1 2), (3 4), (1 2)(3 4)} as well as four elements that interchange the sets {1, 2}, {3, 4} and

therefore have no fixed points. Let k be large, and for α ∈ Fpk , let iα be the number of 2nd

preimages of 0 (under fα) in Fpk . Since e, (1 2), and (3 4) all have fixed points, Theorem 2.18

shows that iα > 0 for about 3/8 of the α ∈ Fpk . In fact, we obtain more information: iα = 4 for

about 1/8 of the α ∈ Fpk , and iα = 2 for about 1/4 of the α ∈ Fpk .
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Chapter 3

The Structure of Gn

In Chapter 2 we gave a method for proving our main result (Theorem 1.7), which states that

δ(H(Fp)) = 0 for p 6= 2. Corollary 2.6 reduced the problem to showing that lim
n→∞

δ(In) = 0, where

In is the set of α ∈ Fp such that 0 has an nth preimage in Fp(α) under iteration of fα = x2 +α, i.e.,

In = {α ∈ Fp : f−nα (0) ∩ Fp(α) 6= ∅}.

Theorem 2.18 then reduced the determination of δ(In) to properties of the Galois group Gn of the

splitting field over K = Fp(x) of the nth iterate of y2 + x, specifically

δ(In) =
1

#Gn
# {g ∈ Gn : g fixes at least one root of fnx } . (3.1)

In this chapter we illuminate enough of the structure of Gn to make significant progress towards

finding lim
n→∞

δ(In).

In order to prove certain results that we need (particularly Corollary 3.39), it is necessary to

work in greater generality than the previous two chapters. We let F be any field of characteristic

6= 2, and set K = F (x) and A = F [x]. Put f(y) = y2 + x ∈ K[y] (we drop the subscript x of the

previous chapter), and denote the nth iterate of this polynomial by fn. Let Kn be the splitting field

of fn over K, and let Gn = Gal (Kn/K). This notation is in force throughout this chapter (although

we restate it occasionally when stating important theorems).

This chapter contains an examination of the structure of Gn, which we approach through a

study of the subgroups Hn = Gal (Kn/Kn−1). This is a natural object of study, since Gn has a

composition series with quotients Hm,m ≤ n. It turns out that Kn is obtained from Kn−1 by

adjoining the square roots of 2n−1 different elements (see (3.2)). Thus Hn is isomorphic to an mn-

fold direct product of Z/2Z, where mn ≤ 2n−1. If mn = 2n−1, we say Hn is maximal. We make the

following conjecture:

31
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Conjecture 3.1. For arbitrary F of characteristic 6= 2, Hn is maximal for all n.

If Conjecture 3.1 holds, then one can give a formula for the quantity in (3.1). Indeed, we show

in Chapter 5 using the theory of branching processes (see Corollary 5.11 and the comments on the

preceding page), that Conjecture 3.1 implies that 1− lim
k→∞

δ(In) is equal to the nth iterate of 1
2 + 1

2z
2

evaluated at z = 0. One can easily show that this approaches 1 as n goes to infinity, which would

prove Theorem 1.7.

We remark that in general Gn is isomorphic to a subgroup of each of the following groups (which

are themselves isomorphic): the n-fold wreath product of Z/2Z, a Sylow 2-subgroup of S2n , and the

automorphism group of the complete binary tree of height n. If Hm is maximal for each m ≤ n,

then Gn is isomorphic to the full group in each of these three settings. Thus Conjecture 3.1 would

give very explicit information about Gn for all n.

Unfortunately, our attempts to prove Conjecture 3.1 in full generality encounter serious obstacles,

which we discuss immediately following Theorem 3.38. However, we do show the following:

Theorem 3.2. For arbitrary F of characteristic 6= 2, Hn is maximal for squarefree n. Moreover,

if F has characteristic 0 or characteristic p ≡ 3 mod 4 then Hn is maximal for all n.

We note that the characteristic 0 case of Theorem 3.2 has already been proved by Odoni [26], who in

fact handles a much larger class of iterative-type towers. The proof of Theorem 3.2 is the main aim

of this chapter. In subsequent chapters we parlay Theorem 3.2 into a proof of Theorem 1.7, though

using means far more complicated than would be necessary if Conjecture 3.1 could be proven.

The methods that lead to a proof of Theorem 3.2 also allow us to show that if Hm is maximal

for all m ≤ n, then Kn/K is geometric (Corollary 3.39). Using Theorem 2.18 and Theorem 3.2, this

allows us to show that D(In) exists and equals the expression in (3.1) in the case charF = 0 and

charF = p ≡ 3 mod 4.

This chapter unfolds in five parts. First, we give some elementary results on the polynomials fn

and the sequence {fn(0) : n = 1, 2, 3, . . .}. In the second part, we prove that a specific permutation

of the roots of fn must be in Gn, a result that plays a vital role in subsequent chapters. In the third

and fourth parts we give a series of results that show that the maximality of Hn depends on whether

a certain element of F [x] is a square. This quickly leads to a proof of the first two statements of

Theorem 3.2. To handle the case charF = p ≡ 3 mod 4 in Theorem 3.2, we give in section five an

adaptation of a clever trick of Stoll [35] originally used to show that Galois groups of iterates of

x2 + 1 are maximal over Q.
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3.1 Preliminaries

We let F be any field of characteristic 6= 2, and set K = F (x) and A = F [x]. Put f(y) = y2 + x ∈

K[y], and denote the nth iterate of this polynomial by fn. In this section we give some properties

of fn. Our first one is fundamental:

Proposition 3.3. For each n, fn(y) is irreducible over K.

Proof: We show by induction that each fn is a monic Eisenstein polynomial with respect to the

prime (x) ⊂ A. Clearly f is a monic Eisentein polynomial with respect to (x). Now suppose the

same is true of fn−1, i.e. fn−1(y) = yd+x(ad−1y
d−1 + · · ·+a1y+a0) with ai ∈ A and x not dividing

a0. Then

fn = (fn−1(y))2 − x

= y2d + xyd(ad−1y
d−1 + · · ·+ a0) + x2(ad−1y

d−1 + · · ·+ a0)2 − x

= y2d + x
[
yd(ad−1y

d−1 + · · ·+ a0) + x(ad−1y
d−1 + · · ·+ a0)2 − 1

]
.

The constant term of the polynomial in the brackets is xa2
0 − 1, and since x clearly does not divide

this, we have that fn is a monic Eisenstein polynomial with respect to (x). �

Note that it is possible to show that many quadratic polynomials over various fields have the

property proved for f above: every iterate is irreducible [2, 3].

Since deg fn = 2n, which is not divisible by p, Proposition 3.3 implies that fn is also separable

(any inseparable irreducible polynomial must have degree a power of the characteristic). Thus Gn

acts as a transitive group of permutations on the set of 2n roots of fn, which we denote

Rn = {roots of fn}.

These facts play important roles in the rest of the chapter.

It is an easy matter to write outRn explicitly in terms ofRn−1. SupposeRn−1 = {β1, . . . , β2n−1},

and note that fn(y) = fn−1(f(y)) = fn−1(y2 + x). Thus for 1 ≤ i ≤ 2n−1 the roots of y2 + x = βi

are in Rn, whence

Rn =
{
±
√
−x+ β1, . . . ,±

√
−x+ β2n−1

}
. (3.2)

This shows that Kn is obtained from Kn−1 by adjoining the square roots of 2n−1 elements, whence

Hn is isomorphic to a direct product of Z/2Z of rank at most 2n−1. Since Gi/Hi ∼ Gi−1 for all

1 ≤ i ≤ n, it follows that |Gn| = Πn
i=1 |Hi|, which proves the following:

Proposition 3.4. Gn is a 2-group.
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Though we will not need it in the sequel, we can use induction to come up with an explicit

description of Rn:

Rn =

{
±

√
−x±

√
−x± · · · ±

√
−x

}
,

where there are n root signs.

Another useful property of fn is this:

Proposition 3.5. For each n, fn is a polynomial in y2.

Proof: Clear for n = 1. For n ≥ 2, first note that by the definition of fn, we have fn(y) =

fn−1(f(y)) = fn−1(y2 − x). By induction, fn is a polynomial in y2. �

We now establish some relations among elements of A = Fp[x] of the form fn(0). These elements

turn out to encode important information about the groups Hn. We give them a more succinct

name:

Definition 3.6. For each n, let pn = fn(0) ∈ A.

Clearly p1 = x. Moreover, we have pn = fn(0) = (fn−1(0))2 + x = (pn−1)2 + x, and more

generally

pn = fn−i(pi) (3.3)

for all n ≥ 2 and 1 ≤ i ≤ n− 1.

The polynomial σn(x)− x (σ ∈ F [x]) and pn have some similarities. The roots of σn(x)− x are

all points periodic under σ with period dividing n; they have been studied by Morton and Patel in

[25]. On the other hand, c ∈ F is a root of pn if and only if fnc (0) = 0, where fc = y2 + c. Thus the

roots of pn consist of all c ∈ F such that the period of 0 under iteration of fc divides n. This implies

that if an irreducible q ∈ A divides pn, then it must also divide pmn for any m ≥ 1. The following

fundamental property of pn gives us much more:

Proposition 3.7. Let q ∈ A be irreducible, and suppose ordq(pn) = e ≥ 1. Then for every m ≥ 1,

we have ordq(pmn) = e.

Proof: Induction on m. The proposition is trivial if m = 1. Now suppose inductively that

ordq(p(m−1)n) = e. By (3.3) we have pmn = f (m−1)n(pn). Proposition 3.5 tells us f (m−1)n(y) is

a polynomial in y2, so we can write

f (m−1)n(y) = y2g(y) + f (m−1)n(0) = y2g(y) + p(m−1)n,

for some g(y) ∈ K[y]. Hence putting y = pn we have

pmn = p2
ng(pn) + p(m−1)n.
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Now ordq
[
(pn)2(g(pn))

]
≥ 2e, and by our inductive hypothesis ordq(p(m−1)n) = e. Since e ≥ 1, the

first summand vanishes to higher order at q than the second, so we conclude ordq(pmn) = e. �

Since p1 = x, Proposition 3.7 shows that ordx(pm) = 1 for all m ≥ 1. This gives us a useful

corollary:

Corollary 3.8. For each n, pn is not a square in K.

Here are the first few elements of the sequence {pn}, along with their factorizations in Z[x]:

n pn factorization in Z[x]

1 x x

2 x2 + x x(x+ 1)

3 x4 + 2x3 + x2 + x x(x3 + 2x2 + x+ 1)

4 x8 + 4x7 + 6x6 + 6x5 + 5x4 + 2x3 + x2 + x x(x+ 1)(x6 + 3x5 + 3x4 + 3x3 + 2x2 + 1)

We close this section of preliminary results with a computation of Disc fn. The answer turns out

to be essentially a product of powers of pi for 1 ≤ i ≤ n.

First we set some notation: let β1, . . . , β2n−1 be the roots of fn−1, and let ±αi be the roots of

y2 + x = βi. Thus the roots of fn are ±α1, . . . ,±α2n−1 . Order these roots as follows:

α1,−α1, α2,−α2, . . . , α2n−1 ,−α2n−1 .

By definition Disc (fn) is the product of all of the (rk − rl)2, where rk and rl are respectively the

kth and lth roots in the above list and k < l. Thus Disc (fn) has a factor of (αi − (−αi))2 = (2αi)2

for i = 1, . . . , 2n−1, and a factor of

(αi − αj)2(αi + αj)2(−αi − αj)2(−αi + αj)2 = (α2
i − α2

j )
4

for all 1 ≤ i < j ≤ 2n−1. Thus we have

Disc (fn) =

2n−1∏
i=1

4α2
i

 ∏
1≤i<j≤2n−1

(α2
i − α2

j )

4

= 22n

2n−1∏
i=1

α2
i

∏
i<j

(x+ βi − (x+ βj))

4

= 22n

2n−1∏
i=1

α2
i

Disc (fn−1)2. (3.4)
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Note that
∏2n−1

i=1 α2
i is just the product of all of the roots of fn, which is ±fn(0); since fn has even

degree the sign is positive. By definition pn = fn(0), so from equation (3.4) we have

Disc fn = 22n

pnDisc (fn−1)2. (3.5)

Proposition 3.9. For each n we have

Disc (fn) = 22mn

n∏
i=1

(pi)2
n−i

= 22mnpn

(
n−1∏
i=1

(pi)2
n−i

)2

(3.6)

where m1 = 1 and mn = 2n−1 + 2mn−1 for n > 1.

Proof: We induct on n. The proposition is clear for n = 1. Suppose we have

Disc (fn−1) = 22mn−1

n−1∏
i=1

(pi)2
n−1−i

.

Then by (3.5),

Disc (fn) = 22n

pn Disc (fn−1)2

= 22n+4mn−1pn

n−1∏
i=1

(pi)2·2
n−1−i

= 22(2n−1+2mn−1)
n∏
i=1

(pi)2
n−i

.

�

Finally we have a corollary that pertains to the structure of Gn. We say that Gn is alternating

if it is comprised entirely of even permutations of Rn.

Corollary 3.10. For each n, Gn is not alternating.

Proof: It is a standard fact from algebra (see e.g. [10, Proposition 14.34]) that the Galois group

of the splitting field of a separable polynomial is alternating if and only if the discriminant of the

polynomial is a square in the base field. From Proposition 3.9 we see that the squarefree part of

Disc fn is pn. However by Corollary 3.8, pn is not a square in K for any n. �

We return to the discussion of pn in section 3.4



37

3.2 On the Center of Gn

As in the previous section, let charF 6= 2,K = F (x), f = y2 + x, and fn be the nth iterate of f .

Let Kn be the splitting field of fn over K, and put Gn = Gal (Kn/K). In this section we consider

Gn as a group of permutations on the roots Rn of fn. We show that each element of Gn actually

induces a permutation on a collection of 2-element subsets of Rn. This information allows us to

show that the center of Gn must contain a particular permutation of Rn. From this it follows that

Hn is nontrivial, which is the main result of this section.

We begin with a bit of standard theory of permutation groups (see e.g. [40]).

Definition 3.11. Let G be a group acting on a set S. A block of G is a subset ∆ of S with the

property that for each σ ∈ G, either σ(∆) = ∆ or σ(∆) ∩∆ = ∅. If ∆ is a block of G, then we call

{σ(∆) | σ ∈ G} a complete block system (CBS) of G.

Example 3.12. Suppose that F = Fp, p 6= 2, and consider the group G2 described in Example 2.19.

One can show that

G2
∼= {e, (1 2), (3 4), (1 2)(3 4), (1 3 2 4), (1 4 2 3), (1 3)(2 4), (1 4)(2 3)}.

The set {1, 2} is a block of G2 since either σ({1, 2}) = {1, 2} or σ({1, 2}) = {3, 4} for any σ ∈ G2.

The collection {{1, 2}, {3, 4}} is a CBS for G. �

If G has a CBS, then all its elements must permute the blocks of the CBS. Note that if G is

transitive, then a CBS must be a partition of S into blocks of equal numbers of elements. In fact, if

G is transitive then a partition of S is a CBS for G if and only if each σ ∈ G permutes the subsets

belonging to the partition.

We know as a consequence of Proposition 3.3 that Gn is transitive. We now find a CBS for Gn

consisting of two-element sets. As noted at the beginning of Section 3.1, if Rn−1 = {β1, . . . , β2n−1}

then

Rn =
{
±
√
−x+ β1, . . . ,±

√
−x+ β2n−1

}
.

Set Γi = {±
√
−x+ βi}. Any σ ∈ Gn must permute the roots of fn−1, whence it must permute the

collection

C = {Γi}2
n−1

i=1 (3.7)

of subsets of Rn. It follows that C is a CBS for Gn. In the case n = 2, C is the CBS given in

Example 3.12.
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Definition 3.13. Let G be a group acting transitively on a set S, and let D be a CBS for G. We call

a permutation of S whose orbits are precisely the subsets belonging to D a permutation associated

to D.

We wish to analyze permutation groups G (acting on a set S) that possess a CBS of two-element

subsets. An important tool in this analysis is a one-to-one correspondence between such CBSs and

certain permutation of S.

Note that a permutation associated to D must act as a single cycle on each subset belonging to

D. In the case where D is composed of two-element subsets, there is only one such cycle for each

subset (the one interchanging the two elements). Thus there is only one permutation associated to

D, and we call this the permutation associated to D.

Proposition 3.14. Let G be a group acting transitively on a set S, and let D be a CBS for G

composed of two-element subsets. Let δ be the permutation associated to D. Then

1. δ fixes no elements of S.

2. |δ| = 2

3. σδ = δσ for every σ ∈ G.

4. τδ = δτ for every permutation τ of S (not necessarily in G) that permutes the subsets belonging

to D.

Moreover, if δ is a permutation of S satisfying 1, 2, and 3 above, then there is a unique CBS D for

G composed of two-element subsets such that δ is the permutation associated to D.

Proof: Property 1 follows from the definition of δ and property 2 follows from the fact that D

is composed of two-element sets. We now prove property 4, which implies property 3. Let δ be a

permutation of S that permutes D, and consider the permutation τδτ−1. Since δ(∆) = ∆ for each

∆ ∈ D and τ permutes D, τδτ−1 maps ∆ to itself for all ∆ ∈ D. Moreover, τδτ−1 has no fixed

points in S because δ has no fixed points in S. Thus the orbits of τδτ−1 are precisely the subsets

belonging to D. By the uniqueness of δ we then have τδτ−1 = δ.

To prove the final statement of the proposition, let D be the partition of S given by the orbits

of δ. Properties 1 and 2 imply that each orbit of δ has two elements. Let ∆ = {s, δ(s)} be a subset

belonging to D, and let σ ∈ G. By property 3, we have

σ(∆) = {σ(s), σδ(s)} = {σ(s), δσ(s)},

which is again an orbit of δ. Thus every element of G permutes D, whence D is a CBS for G. Clearly

δ is the permutation associated to D. �
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Proposition 3.14 shows that there is a one-to-one correspondence between CBSs of G consisting

of two-element sets and permutations of S that satisfy conditions 1, 2, and 3 in the Proposition. To

denote this correspondence we use the phrase “associated to”; thus we speak of the CBS associated

to a permutation as well as the permutation associated to a CBS.

We now turn our attention to the study of the center of a permutation group. The following

proposition gives us some information about the cycle decomposition of elements in the center of

such a group.

Proposition 3.15. Let G act transitively on a set S and let σ ∈ Z(G), the center of G. Then σ is

a product of k disjoint m/k-cycles, where k | m.

Proof: Write σ = σ1σ2 · · ·σk, where the σi are disjoint cycles. Choose i1 6= i2 with 1 ≤ i1, i2 ≤ k,

and let s1 ∈ σi1 and s2 ∈ σi2 . Let |σi1 | = m1 and |σi2 | = m2. Note that σm1(s1) = s1 and

σm2(s2) = s2.

Since G is transitive, we may choose τ ∈ G such that τ(s2) = s1. Then

(τστ−1)m2(s1) = τσm2τ−1(τ(s2)) = τσm2(s2) = τ(s2) = s1. (3.8)

However, since σ ∈ Z(G) we have σm2 = (τστ−1)m2 , so (3.8) gives σm2(s1) = s1. The only powers

of σ that fix s1 are multiples of m1, so we conlcude that m1 | m2. By choosing τ ∈ G with τ(s1) = s2

and adapting slightly the above argument, we get m2 | m1. We thus have that m2 = m1, and since i1

and i2 were arbitrary it follows that all the σi have the same length. Thus k | m and the proposition

is proved. �

The next Proposition uses Proposition 3.15 to glean information about Z(Gn).

Proposition 3.16. There exists ω ∈ Z(Gn) that is a product of 2n−1 disjoint transpositions. In

particular, ω satisfies conditions 1, 2, and 3 of Proposition 3.14.

Proof: By Proposition 3.4, we have that Gn is a 2-group. It is a standard result in elementary

group theory that the center of a p-group is nontrivial (see e.g. [18, page 122]). Thus we may choose

z ∈ Z(Gn) different from the identity.

Since Gn acts on the set Rn, which has 2n elements, Proposition 3.15 shows that z is a product

of 2m disjoint 2n−m-cycles for some m. Since z is not the identity, m < n. Note that squaring

a 2k-cycle gives a product of two disjoint k-cycles. It follows that zn−m−1 is a product of 2n−1

transpositions. The second sentence of the Proposition is obvious. �

Propositions 3.14 and 3.16 together show that there is a CBS Z of Gn whose associated permu-

tation is ω, which lies in Gn. Recall the CBS C of Gn, defined in (3.7). Let γ be the permutation
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associated to C. We wish to show that in fact Z = C, which is equivalent to ω = γ. This implies

that γ ∈ Gn, which is a valuable piece of information.

Suppose that ω 6= γ. Our approach is to show that this implies Gn is alternating, contradicting

Corollary 3.10. Doing so requires several intermediary steps and occupies the remainder of this

section.

Consider a permutation group G with a CBS D composed of two-element subsets. Our first

step is to find a simple criterion for an element of G to have even sign. Suppose σ ∈ G induces a

permutation σ on D, and write σ as a product of disjoint cycles:

σ = C1C2 · · ·Ck.

We may write σ = τ1τ2 · · · τk, where τi is a permutation of S (not necessarily in G) that induces Ci

on D and leaves fixed all points of S not contained in some element of Ci. We study under what

conditions the τi have even sign, and from this derive a criterion for σ to have even sign.

Lemma 3.17. Let D be a partition of S into two-element subsets. Let

C = (∆i1 ∆i2 · · · ∆im)

be a cycle of elements of D, and set Σ = ∆i1 ∪∆i2 ∪ · · · ∪∆im . Let τ be a permutation of S that

induces the permutation C on D and satisfies τ(u) = u for all u 6∈ Σ. Let s ∈ Σ. Then either

1. τ is a product of two disjoint m-cycles (if τm(s) = s) or

2. τ is a 2m-cycle (if τm(s) 6= s)

In particular, τ is even if and only if τm(s) = s.

Proof: Since τ fixes all u /∈ Σ, we need only consider its action on Σ. For any j and any k < m,

we have τk(∆ij ) 6= ∆ij . Thus the orbit of any element of Σ contains at least m elements. Since Σ

contains only 2m elements, we have that either τ is two disjoint m-cycles or a 2m-cycle. The former

is the case precisely when every element of Σ has an orbit of length m, and the latter when every

element has an orbit of length 2m. But τm(s) = s if and only if the orbit of s has m elements, and

τm(s) 6= s if and only if the orbit of s has 2r elements. �

We now introduce a set that indexes the two-element blocks and examine how the action of a

permutation σ on this set reflects the signature of σ.

Proposition 3.18. Let G be a group acting transitively on a set S with 2m elements. Suppose that

m is even and D = {∆1,∆2, . . . ,∆m} is a CBS for G with #∆i = 2 for 1 ≤ i ≤ m. Let E be any
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set consisting of exactly one element from each ∆i. Then σ ∈ G is even if and only if #{E ∩ σ(E)}

is even.

Remark: The following proof can easily be adapted to show that for m arbitrary, σ is even if and

only if m+ #{E ∩ σ(E)} is even.

Proof: Write E = {ei}i=1,...,m. Let δ be the permutation associated to D, and note that

e ∈ E ⇐⇒ δ(e) /∈ E

.

Let σ ∈ G. Denote by σ̄ the induced permutation of σ on D, and write σ̄ as a product of disjoint

cycles: σ̄ = C1C2 · · ·Cl. Each Ck can be written (∆i1 ∆i2 · · · ∆imk
) for some mk. Clearly∑

kmk = m.

Let Σk = ∆i1∪∆i2∪· · ·∪∆imk
, and let Ek = E∩Σk = {eij}j=1,...,mk

. Let τk be the permutation

of S satisfying τk|Σk
= σ|Σk

and τ(u) = u if u 6∈ Σk. The transitivity of G on S implies the Σk

partition S, and from this it follows that σ = τ1τ2 · · · τl.

I claim that

#{E ∩ σ(E)} =
∑
k

#{Ek ∩ τk(Ek)}. (3.9)

To see why this holds, assume that e ∈ E ∩ σ(E), and note that this is equivalent to σ−1(e) ∈ E.

Suppose that e ∈ Ek. Since σ and τk give identical permutations of Σk, we have τ−1
k (e) = σ−1(e) ∈

Σk ∩ E = Ek. Hence e ∈ Ek ∩ τk(Ek). This is true for exactly one k, and the claim follows.

For each 1 ≤ j ≤ mk, we have

τk(eij ) = δεj (eij+1),

where εj = 0 or 1. Since τk permutes D, we have by Proposition 3.14 that δ commutes with τk.

This gives

τmk (ei1) = δε1+ε2+···+εmk (ei1).

Since |δ| = 2, it follows from Lemma 3.17 that τk is even if and only if ε1 + ε2 + · · · + εmk
is even.

But this sum is simply #{j : 1 ≤ j ≤ mk and τk(eij ) /∈ Ek}, which is the same as

mk −#{j : 1 ≤ j ≤ mk and τk(eij ) ∈ Ek}.

This last expression may be restated as mk −#{Ek ∩ τk(Ek)}. We have thus established that σ is

even if and only if ∑
k

(
mk −#{Ek ∩ τk(Ek)}

)
≡ 0 (mod 2). (3.10)
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Recall that
∑
kmk = m and m is even. Moreover, since we are working modulo 2 we need only

count the k such that #{Ek ∩ τk(Ek)} is odd. Hence (3.10) is equivalent to

# {k : #{Ek ∩ τk(Ek)} is odd} ≡ 0 (mod 2).

By equation (3.9), this is equivalent to #{E ∩ σ(E)} ≡ 0 (mod 2). Thus σ is even if and only if

#{E ∩ σ(E)} is even. �

Example 3.19. To illustrate Proposition 3.18, consider the group S12 acting on the set {1, 2, . . . , 12},

with

D = {{1, 2}, {3, 4}, . . . , {11, 12}} .

Let σ = (1 9 2 10)(3 4)(5 8 12)(6 7 11). Note that σ is even and induces the permutation

(∆1 ∆5)(∆3 ∆4 ∆6) on D. Choose E = {1, 4, 6, 7, 9, 12}. Then σ(E)∩E = {7, 9}, so Proposition

3.18 is borne out. If we choose E = {2, 4, 5, 8, 9, 12}, then σ(E) ∩ E = {2, 5, 8, 12}, bearing out the

Proposition once again. �

We now take our second step towards showing that γ 6= ω implies that Gn is alternating. The

assumption γ 6= ω is equivalent to C 6= Z. In order to apply Proposition 3.18 to this case, we need

to have a single subset of S that has precisely one representative from each Γ ∈ C and from each

Ω ∈ Z. The following Lemma shows that such a set exists.

Lemma 3.20. Let S be a set of 2m elements, and let

D = {∆1, . . .∆m} and L = {Λ1, . . .Λm}

be two partitions of S with #∆i = #Λi = 2 for i = 1, . . . ,m. There exists E ⊂ S such that

#(E ∩∆i) = #(E ∩ Λi) = 1 for i = 1, . . . ,m.

Proof: Let δ be the permutation associated to D, and let λ be the permutation associated to L. Note

that because |δ| = |λ| = 2, we have (δλ)−1 = λδ. This implies that for any m, δ(δλ)m = (δλ)−mδ

and λ(δλ)m = (δλ)−mλ. Also note that every ∆i may be written {s, δ(s)} for some s ∈ S, and every

Λi may be written {s, λ(s)} for some s ∈ S.

For reasons that become clear in a moment, we wish E to have the property that δλ(E) = E, so

we form E as a union of δλ-orbits:

First, choose s0 ∈ S, and let E0 = {(δλ)j(s0) : j ∈ Z}.

Choose, if possible, s1 such that {s1, δ(s1), λ(s1)} ∩ E0 = ∅, and let E1 = {(δλ)j(s1) : j ∈ Z}.
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Choose, if possible, s2 such that {s2, δ(s2), λ(s2)} ∩ (E0 ∪ E1) = ∅, and let

E2 = {(δλ)j(s2) : j ∈ Z}.

Continue until

{s, δ(s), λ(s)} ∩
l⋃
i=0

Ei 6= ∅ (3.11)

for all s ∈ S. Let E =
⋃l
i=0Ei.

By our remarks in the first paragraph, to establish the lemma it is enough to show that for any

s ∈ S, we have #({s, δ(s)} ∩ E) = #({s, λ(s)} ∩ E) = 1. Thus we must show that for any s ∈ S,

either s ∈ E and {δ(s), λ(s)} ∩ E = ∅ or s /∈ E and {δ(s), λ(s)} ⊆ E.

First note that if λ(s) ∈ E for some s ∈ S, then δλ2(s) ∈ E, whence δ(s) ∈ E. Conversely, if

δ(s) ∈ E then (δλ)−1δ(s) ∈ E, whence λ(s) ∈ E. We thus have that either

{δ(s), λ(s)} ⊆ E or {δ(s), λ(s)} ∩ E = ∅. (3.12)

Thus to prove the lemma it is enough to establish the following claim:

Claim: {δ(s), λ(s)} ⊆ E if and only if s /∈ E.

Proof: One direction is easy: suppose s /∈ E. By (3.11) either δ(s) ∈ E or λ(s) ∈ E. Thus by

(3.12) we have {δ(s), λ(s)} ⊆ E.

Conversely, suppose that {δ(s), λ(s)} ⊆ E. Then δ(s) ∈ Ek for some k, so that δ(s) = (δλ)j(sk).

Assume that s ∈ E, so that s = (δλ)j
′
(sk′). Putting these together gives

δ
(

(δλ)j
′
(sk′)

)
= (δλ)j(sk). (3.13)

We now derive a contradiction. The left-hand side of (3.13) is the same as (λδ)j
′
(δ(sk′)), and since

(λδ) = (δλ)−1 and Ek is δλ-invariant, we have δ(sk′) ∈ Ek. By construction δ(sk′) is not contained

in any Ek with k < k′, so we conclude k ≥ k′. On the other hand, from (3.13) we have

(δλ)j
′
(sk′) = δ

(
(δλ)j(sk)

)
= (λδ)j−1(λ(sk)),

and from this we conclude λ(sk) ∈ Ek′ . Thus k′ ≥ k, which shows that k′ = k.

Equation (3.13) now becomes

δ
(

(δλ)j
′
(sk)

)
= (δλ)j(sk),

which is the same as

δ(sk) = (δλ)j+j
′
(sk). (3.14)

If 1
2 (j + j′) = b is an integer, then (3.14) yields δ((δλ)b(sk)) = (δλ)b(sk), which contradicts the fact

that δ has no fixed points in S. If 1
2 (j + j′ − 1) = c is an integer, then we can rewrite (3.14) as
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λ(sk) = (δλ)j+j
′−1(sk). This yields λ((δλ)c(sk)) = (δλ)c(sk), which contradicts the fact that λ has

no fixed points in S. �

Example 3.21. To illustrate Lemma 3.20, consider the following two partitions of {1, 2, . . . , 14}:

D = {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}{13, 14}}

L = {{1, 8}, {2, 6}, {5, 7}, {3, 11}, {9, 14}, {4, 12}, {10, 13}}

This gives δλ = (1 7 6)(2 5 8)(3 12)(4 11)(5 8)(9 13)(10 14). Using the notation of the

proof of Lemma 3.20, let s0 = 1, giving E0 = {1, 6, 7}. Next we choose s1 = 3, which works because

{3, δ(3), λ(3)} ∩ E0 = ∅. This gives E1 = {3, 12}. Finally we choose s2 = 9, which works because

{9, δ(9), λ(9)} ∩ (E0 ∪ E1) = ∅. This gives E2 = {9, 13}, and we have E = {1, 3, 6, 7, 9, 12, 13}. One

can quickly verify that #(E ∩∆i) = #(E ∩ Λi) = 1 for i = 1, . . . , 7. �

Now all the pieces are in place for the main result of this section.

Theorem 3.22. Let S be a set of 2m elements, let G be a group acting transitively on S, and let

D = {∆1, . . .∆m} and L = {Λ1, . . .Λm}

be two CBSs of G with #∆i = #Λi = 2 for i = 1, . . . ,m. Let δ be the permutation associated to D,

and let λ be the permutation associated to L. Suppose that λ ∈ G and λ 6= δ. Then G is alternating,

i.e. comprised entirely of even permutations.

Proof: By Lemma 3.20, we may choose E ⊂ S such that #(E∩∆i) = #(E∩Λi) = 1 for i = 1, . . . ,m.

Let σ ∈ G. We want to show that

δλ(E ∩ σ(E)) = E ∩ σ(E). (3.15)

First we show δλ(E) = E. Let e ∈ E. Then #(E ∩ {e, λ(e)}) = 1, so λ(e) /∈ E. But {λ(e), δλ(e)} ∈

D, so #(E ∩ {λ(e), δλ(e)}) = 1. Thus δλ(e) ∈ E. Next note that by Proposition 3.14, δ and λ

commute with σ. Hence

δλ(σ(E)) = σ(δλ(E)) = σ(E).

This establishes (3.15), from which it follows that E ∩ σ(E) is a union of δλ-orbits.

We claim that all δλ-orbits are composed of exactly two elements. We use the fact that λ ∈ G,

which by Proposition 3.14 implies that λδ = δλ. Since |δ| = |λ| = 2, this implies that |δλ| = 2.

Thus any δλ-orbit has at most two elements. Suppose that δλ has a one-element orbit:

δλ(s) = s (3.16)
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for some s ∈ S. By Proposition 3.14, δ and λ commute with any σ ∈ G, so applying σ to both sides

of (3.16) yields δλ(σ(s)) = σ(s). Since G acts transitively on S it follows that δλ is the identity,

which contradicts λ 6= δ.

Thus E ∩σ(E) is a union of two-element sets, which shows #(E ∩σ(E)) is even. By Proposition

3.18 this implies that σ is even. Hence G is alternating. � .

The following corollary is a crucial ingredient in the proof of Theorem 1.7.

Corollary 3.23. Let C be the CBS for Gn defined in (3.7), and let γ be the permutation associated

to C. Then γ ∈ Z(Gn) ∩Hn. In particular, Hn is nontrivial.

Proof: Let ω ∈ Z(Gn) be as in Proposition 3.16, and let Z be the CBS associated to ω. Suppose

that ω 6= γ. By Theorem 3.22 it follows that Gn is alternating, which contradicts Corollary 3.10.

Thus γ ∈ Z(Gn). By the definition of C, a permutation maps to itself every subset belonging to C

if and only if it fixes every root of fn−1. Thus γ fixes Kn−1, whence γ ∈ Hn. �

Example 3.24. To illustrate Corollary 3.23, consider the case F = Fp, p 6= 2, and n = 2, as in

Example 2.19. We have

R2 =
{√
−x+

√
x,−

√
−x+

√
x,

√
−x−

√
x,−

√
−x−

√
x

}
,

which we label 1, 2, 3, and 4 respectively. The partition C consists of the sets {1, 2} and {3, 4}.

Thus γ = (1 2)(3 4). This limits the possibilities for H2 to two. Either H2 = {e, (1 2)(3 4)} or

H2 = {e, (1 2), (3 4), (1 2)(3 4)}. In the latter case H2 is maximal. �

3.3 A First Characterization of Maximal Hn

In Section 3.2, we explored the implications of the CBS C of Gn defined in (3.7). We now show this

is just one of many CBSs for Gn. Fix m with 0 ≤ m ≤ n, and let {β1, β2, . . . , β2n−m} be the roots

of fn−m(y) (by convention we set f0(y) = y). Since fn(y) = fn−m(fm(y)), we have

fn(y) =
2n−m∏
i=1

(fm(y)− βi) .

We define the partition Cm of Rn to be

{
{roots of (fm(y)− β1)}, {roots of (fm(y)− β2)}, . . . , {roots of (fm(y)− β2n−m)}

}
.
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Note that for 1 ≤ i ≤ 2n−m−1, we have β2i−1 =
√
−x+ α and β2i = −

√
−x+ α for some root α of

fn−m−1. Thus (fm(y)− β2i−1) (fm(y)− β2i) = (fm(y))2 + x− α = fm+1(y)− α. It follows that

{roots of (fm(y)− β2i−1)} ∪ {roots of (fm(y)− β2i)} = {roots of (fm+1(y)− α)} (3.17)

The most important aspect of the partitions Cm is that any σ ∈ Gn permutes the roots of fn−m,

and thus permutes the subsets belonging to Cm. Thus Cm is a CBS for every m with 0 ≤ m ≤ n.

Moreover, σ induces the same permutation on Cm and Rn−m. Note that C1 is the same as the CBS

C of Section 3.2. Clearly C0 is the CBS consisting of one-element subsets of Rn, while Cn is the CBS

consisting of only the subset Rn.

Now we will use some abelian Kummer Theory. Let Rn−1 be the roots of fn−1. The extension

Kn/Kn−1 is obtained by adjoining square roots of the elements −x+ β ∈ Kn−1 for each β ∈ Rn−1.

The maximal degree of this extension is thus 22n−1
, because |Rn−1| = 2n−1. Thus the order of Hn

is at most 22n−1
. Consider the multiplicative group K∗

n−1, and let V = {−x + β : β ∈ Rn−1}. Let

〈V,K∗
n−1

2〉 be the subgroup of K∗
n−1 generated by K∗

n−1
2 and V . Abelian Kummer Theory (see e.g.

[21]) gives us an isomorphism

Hn
∼= 〈V,K∗

n−1
2〉/K∗

n−1
2.

Every coset representative of the group 〈V,K∗
n−1

2〉/K∗
n−1

2 is a product of elements belonging to V .

Thus all coset representatives are contained in the set of all products

∏
β∈S

(β − x), (3.18)

where S varies over the subsets of Rn−1. These products are in one-to-one correspondence with the

subsets of Rn−1 and thus there are 22n−1
of them. When Hn is maximal they are all distinct cosets.

Now suppose that Hn is not maximal. Then the cosets whose representatives are given in (3.18)

are not all distinct, so we have∏
β∈T

(β − x)

∏
β∈T ′

(β − x)

 ∈ K∗
n−1

2

for two distinct subsets T, T ′ of Rn−1. Hence S = (T ∪ T ′)− (T ∩ T ′) is nonempty and we have

∏
β∈S

(β − x) ∈ K∗
n−1

2. (3.19)

Given (3.19), we wish to use elements ofGn−1 to force other such products to be inK∗
n−1

2. We use

the notation A�B to denote the symmetric difference of A and B, that is, A�B = (A∪B)−(A∩B).
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Proposition 3.25. Suppose that for some S ⊆ Rn−1,∏
β∈S

(β − x) ∈ K∗
n−1

2. (3.20)

Let σ ∈ Gn−1. Then ∏
β∈σ(S)�S

(β − x) ∈ K∗
n−1

2.

Proof: Applying σ to (3.20) yields ∏
β∈S

(σ(β)− x) ∈ K∗
n−1

2,

which is the same as

∏
β∈σ(S)

(β − x) ∈ K∗
n−1

2.

Hence ∏
β∈S

(β − x)

 ∏
β∈σ(S)

(β − x)

 ∈ K∗
n−1

2,

and so  ∏
β∈σ(S)�S

(β − x)

 ∏
β∈σ(S)∩S

(β − x)2

 ∈ K∗
n−1

2.

The proposition then follows. �

Supposing that a product of the form
∏
β∈S(β−x) is in K∗

n−1
2, the next proposition gives more

information about what other such products we can force to be in K∗
n−1

2.

Proposition 3.26. Let m satisfy 0 ≤ m ≤ n−2, and let S ⊂ Rn−1 be a nonempty union of subsets

belonging to Cm but not a union of subsets belonging to Cm+1. Then there exists σ ∈ Gn−1 such that

σ(S) � S is a nonempty union of subsets belonging to Cm+1

Proof: Write

Cm = {Γm,1,Γm,2, . . .Γm,2n−m},

and note that by (3.17) we have

Cm+1 =
{
{Γm,1 ∪ Γm,2}, . . . , {Γm,2n−m−1 ∪ Γm,2n−m}

}
.

Let γ ∈ Hn−m be the element mentioned in Corollary 3.23. Let σ be any element of Gn−1

extending γ (by general Galois theory, e.g., as in [10], such an element exists). The action of γ
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on the subsets belonging to Cm is the same as the action of γ on Rn−m. Recall that if Rn−m =

{β1, . . . , β2n−m} then γ exchanges the elements β2i−1 and β2i for 1 ≤ i ≤ 2n−m−1. Since σ extends

γ, we have

σ(Γm,2i−1) = Γm,2i and σ(Γm,2i) = Γm,2i−1 (3.21)

for 1 ≤ i ≤ 2n−m−1. Thus for any Γ ∈ Cm, the oribt of Γ under σ is a subset belonging to Cm+1.

Note that because S is a union of subsets belonging to Cm and σ permutes Cm, σ(S) � S is also

a union of subsets belonging to Cm. To prove the proposition, it is therefore enough to show that

σ(S) � S is nonempty and a union of σ- orbits, i.e. σ(σ(S) � S) = σ(S) � S.

Since S is nonempty and not a union of elements of Cm+1, there is a pair {Γm,2k−1,Γm,2k} such

that one is in S and the other is not. Thus

{Γm,2k−1 ∪ Γm,2k} ⊂ σ(S) � S,

implying that σ(S) � S is not empty.

If T, T ′ are subsets of Rn then σ(T − T ′) = σ(T ) − σ(T ′) because σ permutes Rn. Similar

identities hold for σ(T ∪ T ′) and σ(T ∩ T ′). Thus we have

σ(σ(S) � S) = σ(σ(S) ∪ S)− σ(σ(S) ∩ S)

= (σ2(S) ∪ σ(S))− (σ2(S) ∩ σ(S)) = σ(S) � σ2(S). (3.22)

By (3.21), σ2 maps to itself each subset belonging to Cm. Since S is a union of such subsets we have

σ2(S) = S. Thus (3.22) shows σ(σ(S) � S) = σ(S) � S. �

We now apply Propositions 3.25 and 3.26 to show the main result of this section.

Theorem 3.27. Hn is maximal if and only if pn 6∈ K∗
n−1

2.

Proof: We show the contrapositive of both directions. First assume that Hn is not maximal,

whence [Kn : Kn−1] is not maximal. Let Rn−1 be the set of roots of fn−1. By (3.19),∏
β∈S

(β − x) ∈ K∗
n−1

2

for some S ⊆ Rn−1. We wish to show ∏
β∈Rn−1

(β − x) ∈ K∗
n−1

2. (3.23)

If S = Rn−1 we are done. If S 6= Rn−1, there is some m with 0 ≤ m ≤ n− 2 such that S is a union

of subsets belonging to Cm but not a union of subsets belonging to Cm+1. In this case, applying

Propositions 3.25 and 3.26 a finite number of times yields (3.23).
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The roots α of fn are the same as the roots of the equations y2 = β− x for β ∈ Rn−1. Thus the

product of all roots of fn is ∏
β∈Rn−1

− (β − x) .

Since #Rn−1 is even, this product is the same as the one in (3.23). But the product of all roots

of fn is fn(0) (there is no minus sign because fn has even degree), and by definition fn(0) = pn.

Thus (3.23) gives pn ∈ K∗
n−1

2.

Now assume pn ∈ K∗
n−1

2. By the remarks of the preceding paragraph, we have that (3.23) holds.

Thus the cosets defined in (3.18) are not all distinct, whence Hn is not maximal by Kummer theory.

�

3.4 Primitive Mandelbrot Periods and Maximal Hn

We begin this section by returning to the study of pn left off in Section 3.1. To apply the results of

Section 3.1 to Hn, we examine the discriminant DKn−1/K of the extension Kn−1/K and compare it

to Disc fn. Finally, we combine results from every section of this chapter to prove Theorem 3.2.

We noted in section 3.1 that the roots of pn consist of all c ∈ F such that 0 is periodic under

iteration of fc = x2 + c with period dividing n. We now wish to examine the values of c for which 0

is periodic with primitive period n (some authors refer to this as exact period n). We say that such

c have primitive Mandelbrot period n. To this end, we define the following element of K:

Φn =
∏
d|n

(pd)µ(n/d). (3.24)

Note that it is not immediately clear that the Φn are polynomials in x. For if µ(n/d) = −1, there

will be a factor of pd in the denominator of Φn. We will take care of this difficulty in a moment.

We say that c ∈ F has formal Mandelbrot period n if Φn(c) = 0. Suppose that c has primitive

Mandelbrot period n. Then pn(c) = 0 but pm(c) 6= 0 for each m < n. It is then clear from the

definition of Φn that Φn(c) = 0, since there is a factor of pn in the numerator but no such factors in

the denominator. Thus any point of primitive Mandelbrot period n must have formal Mandelbrot

period n. The next proposition shows the converse holds as well. It is interesting to contrast this

result with those in [25] regarding the primitive part of cyclotomic polynomials.

Proposition 3.28. For each n, Φn is a polynomial. Moreover, the roots of Φn are precisely those

c ∈ F with primitive Mandelbrot period n.
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Proof: Our argument is modeled after the one in [25], Lemma 2.3. Let c ∈ F be a root of pn, and

let m be such that c is a primitive root of pm, i.e. pm(c) = 0 but pi(c) 6= 0 for all i < m. Clearly we

must have m|n. Then for any d, pd(c) = 0 if and only if m|d. Thus in the product (3.24), the only

terms we need to consider are the ones corresponding to the divisors d of n such that m|d. Hence

if we write n = mn1, we are interested in terms corresponding to all the products mk that divide

mn1. Thus we consider ∏
mk|mn1

(pmk)µ(n/mk) =
∏
k|n1

(pmk)µ(n1/k).

Suppose now that ord(x−c)(pm) = e; by assumption e ≥ 1. Proposition 3.7 then tells us that for all

k, ord(x−c)(pmk) = e. Hence we have

ord(x−c)

∏
k|n1

(pmk)µ(n1/k)

 =
∑
k|n1

µ
(n1

k

)
ord(x−c)(pmk)

= e
∑
k|n1

µ
(n1

k

)

=

e if n1 = 1, that is, m = n

0 if n1 > 1, that is, m < n

In either case ord(x−c)(Φn) ≥ 0. By the definition of Φn, the set of possible poles of Φn is contained

in the roots of pn (the roots of pd are also roots of pn for any d|n), so we’ve shown that Φn is a

polynomial. Moreover, any root c of Φn is a root of pn, because a root of the product (3.24) must be

a root of pd for some d|n. Thus the above argument shows that the primitive Mandelbrot period of

c cannot be less than n. Hence every root of Φn has primitive Mandelbrot period n. The converse

was shown in the discussion immediately preceding this proposition. �

Corollary 3.29. The Φn are pairwise relatively prime.

Proof: Immediate from Proposition 3.28. �

We now consider deg(Φn). From (3.24), we see that

deg(Φn) =
∑
d|n

µ
(n
d

)
deg(pd) =

∑
d|n

µ
(n
d

)
2d−1. (3.25)

Corollary 3.30. deg(Φn) is odd if and only if n is squarefree.

Proof: From (3.25) we see that deg(Φn) is odd if and only if µ(n) 6= 0, i.e. if and only if n is

squarefree. �
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Note also that the term of the rightmost sum in (3.25) corresponding to d = n contributes 2n−1.

Since
bn/2c∑
i=1

2i−1 ≤ 2n/2 − 1

for n ≥ 2, we conclude that deg(Φn) ≥ 2n−1 − 2n/2. For n ≥ 4, this last expression is at least 2n−2.

Since deg(Φ1) = deg(Φ2) = 1 and deg(Φ3) = 3, we have that deg(Φn) ≥ 1 for all n. This shows:

Corollary 3.31. For each n ≥ 1 there exists c ∈ F with primitive Mandelbrot period n.

We now describe our method for proving Theorem 3.2. From Corollary 3.25 we see that Φn

cannot be a square in K when n is squarefree. We wish to show that Φn 6∈ K∗2 implies Hn maximal.

We use proof by contradiction, and the following lemma provides a big step towards a contradiction.

Lemma 3.32. Suppose that Φn 6∈ K∗2 and Hn is not maximal. Then there is an irreducible factor

q of Φn such that q | DKn−1/K .

Proof: Since Φn is not a square in K, the squarefree part of Φn must include at least one irreducible

q ∈ Fp[x], i.e. ordq(Φn) is odd. By Proposition 3.28, all roots of q in F have primitive Mandelbrot

period n, while all roots of pn

Φn
have primitive Mandelbrot period less than n. Thus q - pn

Φn
, meaning

that ordq(pn) is odd.

Since Hn is not maximal, Theorem 3.27 implies pn ∈ K∗2
n−1. It follows that q is a square in Kn−1

(because ordq(pn) is odd). Thus the ideal (q) ramifies in Kn−1, so q | DKn−1/K . �

To complete the proof of Theorem 3.2, we wish to show that if q ∈ F [x] is irreducible and

q | DKn−1/K , then q | Disc fn. We begin by estimating DKn/Kn−1 , which requires finding a basis of

Kn/Kn−1. Let Rn−1 = {β1, . . . , β2n−1}, and for i = 1, . . . , 2n−1 let αi satisfy α2
i = −x + βi. Note

that

Kn = Kn−1(α1, . . . , α2n−1).

Choose S ⊆ {α1, . . . , α2n−1} of minimal size such that Kn = Kn−1(S). Thus we have

[Kn : Kn−1] = 2|S|

. Define B ⊂ Kn as the set of all products of the form αi1αi2 · · ·αim where 0 ≤ m ≤ |S| and αij ∈ S.

Proposition 3.33. B is a basis for Kn/Kn−1.

Proof: The elements of B are in one-to-one correspondence with the subsets of the set S above, so

|B| = 2|S| = [Kn : Kn−1]. Hence it suffices to show that B spans Kn/Kn−1. Let γ ∈ Kn. Since

Kn = Kn−1(S), we can write γ as a Kn−1-linear combination of products of powers of the α ∈ S.
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Since α2 ∈ Kn−1 for all α ∈ S, γ can in fact be written as a linear combination of products of

elements in S. Therefore B spans Kn/Kn−1.

Recall from earlier that we denote the Galois group of Kn/Kn−1 by Hn. By Corollary 3.23 we

know that [Kn : Kn−1] > 1, which implies that S is not empty. Fix an i with αi ∈ S, and let Si =

S − {αi}. Since |Si| < |S|, we cannot have Kn = Kn−1(Si), so we must have [Kn : Kn−1(Si)] = 2.

The unique non-trivial automorphism of this extension is the one that sends αi to −αi and fixes αj

for each αj ∈ S with j 6= i. Call this automorphism σi; clearly it is an element of Hn.

Proposition 3.34. Let b, b′ ∈ B. Then

TrKn/Kn−1(bb′) =

[Kn : Kn−1]b2 if b = b′

0 if b 6= b′

Proof: First suppose b = b′. Then either both are 1 and we are done or bb′ is a product of

some number of α2
i . Since each αi is the square root of an element of Kn−1, we immediately have

bb′ ∈ Kn−1. Hence TrKn/Kn−1(bb′) = [Kn : Kn−1]bb′ 6= 0 (since we are not in characteristic 2).

Now suppose that b 6= b′, and let S be the set defined just before Proposition 3.33. Without loss

of generality there is an αi ∈ S such that αi | b but αi - b′. Hence bb′ = αiγ, where αi does not

divide γ. Consider the extension Kn/Kn−1(Si). As noted above, the Galois group of this extension

consists of the identity and σi. But σi(bb′) = −bb′, so we have TrKn/Kn−1(Si)(bb
′) = bb′ − bb′ = 0.

Now by the transitivity of the trace with respect to extensions ([13, page 15]),

TrKn/Kn−1(bb′) = TrKn−1(Si)/Kn−1(TrKn/Kn−1(Si)(bb
′))

= TrKn−1(Si)/Kn−1(0)

= 0.

�

Corollary 3.35. For each n there exist positive integers m1 and m2 such that

DKn/Kn−1 | 2
m1

( ∏
αi∈S

α2
i

)m2

.

Proof: Let A = Fp[x], and denote by An−1 and An the integral closures of A in Kn−1 and Kn

respectively. Then An is an An−1-module of rank [Kn : Kn−1]. Also, every αi is integral over

K since its minimal polynomial over K is fn ∈ A[y], which is monic. Hence B ⊆ An. Since the

elements of B generate Kn as a Kn−1-vector space, they must generate a free Rn−1-subsmodule of

Rn that has rank [Kn : Kn−1]. Thus we have

DKn/Kn−1 | DKn/Kn−1(B),
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where DKn/Kn−1(B) = det(TrKn/Kn−1(bibj)) (see e.g. [20, page 65]).

However, Proposition 3.34 gives

TrKn/Kn−1(bibj) =

[Kn : Kn−1]b2i if i = j

0 if i 6= j

So the matrix in question is diagonal, with determinant
∏
i[Kn : Kn−1]b2i . For each k, the number

of bi ∈ B with αk | bi is 2|S|−1 (one for each subset of S − {αk}). Hence we have

DKn/Kn−1(B) = [Kn : Kn−1]|B|
( ∏
αi∈S

α2
i

)2|A|−1

Since [Kn : Kn−1] is a power of 2, the first factor is also a power of 2. This proves the corollary. �

We use Corollary 3.35 to get information about DKn/K . For this we need the tower formula for

discriminants (see e.g. [13, page 126]). In our case it gives

DKn/K = NKn−1/K(DKn/Kn−1)(DKn−1/K)[Kn:Kn−1].

Applying Corollary 3.35 to this equation yields

DKn/K | 2
m3

( ∏
αi∈S

NKn−1/K(α2
i )

)m2

(DKn−1/K)[Kn:Kn−1]. (3.26)

The Galois conjugates of α2
i are simply the α2

j , where j = 1, . . . , 2n−1. We noted in the discussion

preceding Proposition 3.9 that
∏2n−1

j=1 α2
j = pn. Thus for each i, NKn−1/K(α2

i ) is a power of pn, and

so (3.26) becomes

DKn/K | 2
m3(pn)m4(DKn−1/K)[Kn:Kn−1].

for suitable numbers m,mn depending on n.

An easy inductive argument now shows:

Proposition 3.36. There exist positive integers j0, j1, j2, . . . , jn, such that

DKn/K | 2
j0

n∏
i=1

(pi)ji .

With Proposition (3.36) and Lemma 3.32 we are near to being able to prove an important theorem

relating the maximality of Hn to the factorization of Φn in the prime subfield of K. This theorem

leads directly to the main results of this chapter. However, first we need the following lemma, which

shows that to prove Φn 6∈ K∗2 it is enough to verify that Φn is not a square in F ′(x), where either

F ′ = Q or else F ′ = Fp is the prime subfield of F .



54

Lemma 3.37. Let charF 6= 2, K = F (x), F ′ the prime subfield of F , and let Φn be as in (3.24).

Suppose that Φn 6∈ F ′(x)∗2. Then Φn 6∈ K∗2.

Proof: The main thing to note is that pn has coefficients in F ′, and it follows from (3.24) and

Proposition 3.28 that Φn does as well. We prove the contrapositive of the Lemma. Suppose that

Φn = q2 for some q ∈ K. Then all roots of q in K are also roots of Φn, and hence lie in F ′. The

coefficients of q, being symmetric polynomials of the roots, thus also lie in F ′. The fact that F ′ is

perfect implies that irreducible factors of Φn in F ′[x] cannot become squares in F ′(x). Therefore if

Φn is a square in F ′(x) it must already be a square in F ′(x). �

We now give a theorem that quickly leads to the main results of the chapter.

Theorem 3.38. Let charF 6= 2, K = F (x), and f = y2 + x ∈ K[y]. Let F ′ ⊆ F be the prime

subfield of F , and let Kn be the splitting field of fn over K. Finally, put Hn = Gal (Kn/Kn−1)

and let Φn ∈ K be as defined in (3.24). Then Hn is maximal (i.e. #Hn = 22n−1
) if and only if

Φn 6∈ F ′(x)∗2.

Proof: By Lemma 3.37, Φn 6∈ F ′(x)∗2 implies that Φn 6∈ K∗2. By Lemma 3.32 it is then enough

to derive a contradiction from the assertion that there is an irreducible factor q of Φn such that

q | DKn−1/K . From Proposition 3.36 we see that all roots of DKn−1/K have primitive Mandelbrot

period at most n− 1. Yet by Proposition 3.28 roots of q have primitive Mandelbrot period n.

To show the converse, we remark that if Φn is a square in F ′(x) then pn is a square in Kn−1.

To see this, note that pn =
∏
d|n Φd (use Mobius inversion on (3.24)), and one can easily show that

Φm ∈ K∗2
n−1 for any m ≤ n− 1. That Hn is not maximal then follows from Theorem 3.27. �

Theorem 3.38 shows that to determine whether Hn is maximal we need only prove something

about the factorization of Φn in the prime subfield of F . This handy criterion leads directly to a

proof of the first two statements of Theorem 3.2 (we give a proof of the third in section 3.5). Recall

that Theorem 3.2 states that:

1. If charF 6= 2, Hn is maximal for all squarefree n.

2. If F has characteristic 0, then Hn is maximal for all n.

3. If F has characteristic p ≡ 3 mod 4, then Hn is maximal for all n.

Proof of statements 1 and 2: Proposition 3.30 shows that deg Φn is odd when n squarefree.

By Theorem 3.38, it follows that Hn is maximal when n is squarefree. Suppose now that F has
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characteristic 0. Reducing modulo 2 we have

(pn)′ = 2pn−1(pn−1)′ − 1 = 1

for any n. Therefore pn is separable over Q for all n. Theorem 3.38 then gives Hn maximal for all

n. �

One of the salient features of Theorem 3.38 is that it reduces the maximality of Hn (and therefore

Gn) to information contained entirely in the prime subfield of F . In particular, it shows that if Gn

is maximal, then it remains maximal when F is replaced by any algebraic extension of F . Since

constant field extensions (see Definition 2.14) in Kn/K are subextensions that are algebraic over F ,

it follows that they vanish when we replace F by F . Thus the fact that Gn remains maximal when

we replace F by F implies that Kn/K is geometric. This is the essence of the proof of the following

corollary:

Corollary 3.39. Suppose that Hm is maximal for all m ≤ n. Then Kn/K is geometric.

Proof: Let F be the algebraic closure of F , and recall that K = F (x) and Kn/K is geometric if

F ∩Kn = F . Consider the diagram

KnF

↗ ↖

Kn KF

↖ ↗

Kn ∩KF

↑

K

where the arrows denote inclusion. By a basic theorem of Galois theory [10, page 505], we have

Gal (KnF/KF ) ∼= Gal (Kn/Kn ∩KF ). (3.27)

We clearly have KF = FF (x) = F (x), so the left-hand side of (3.27) is Gal (KnF/F (x)). However,

this is just the splitting field of of fn over F (x). By Theorem 3.38 the assumption that Hm maximal

for all m ≤ n implies that Φm is not a square in K for all m ≤ n. Using Theorem 3.38 again gives

that Gn remains maximal when we replace F by any algebraic extension of F . Therefore

#Gal (KnF/F (x)) = #Gal (Kn/K).

Combining this with (3.27) gives #Gal (Kn/Kn ∩F (x)) = #Gal (Kn/K). Therefore the two groups

are in fact equal, which implies Kn ∩ F (x) = K. Intersecting both sides of this with F then gives

Kn ∩ F = F , as desired. �
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We now have the following immediate consequence of Theorem 3.2 and Corollary 3.39.

Corollary 3.40. If charF = 0 or charF = p ≡ 3 mod 4 then Kn/K is geometric for all n.

We end this section with some evidence for Conjecture 3.1, which states that for charF 6= 2,

Hn is maximal for all n, and Conjecture 2.17, which states that Kn/K is geometric for all n. By

Theorem 3.38 and Corollary 3.39, both of these conjectures follow from showing that Φn is not a

square in Fp(x) for all n ≥ 1 and for all p 6= 2 (the charactertic zero case is proven in Theorem 3.2).

When n is not squarefree the degree of Φn is even, making it a candidate to be a square in Fp[x].

On the other hand, as shown in the proof of statements 1 and 2 of Theorem 3.2 (page 54), Φn is

separable over Q, meaning that there are only finitely many primes p (those dividing Disc Φn) such

that Φn is not separable over Fp. Theorem 3.38 then shows that for any fixed n, Hn is maximal for

any F whose characteristic does not belong to some finite set of primes. Moreover, the degree of

Φn grows very quickly, on the order of 2n. Therefore it has a large number of distinct roots in Q.

Intuitively it seems unlikely that all these roots would overlap when reduced modulo one of a finite

set of primes.

We can use Theorem 3.38 and the observations of the previous paragraph to give numerical

evidence for Conjectures 3.1 and 2.17. In particular, we can settle the case n = 4 in general. Over

Q, we have Disc Φ4 = 58673 = 23×2551, and one can verify directly that modulo both these primes

Φ4 is not a square. Thus H4 is maximal for all F of characteristic 6= 2. Combining this with Theorem

3.2 shows (still assuming charF 6= 2) that Hn is maximal for n ≤ 7, whence Gn is maximal and

Kn/K is geometric (by Corollary 3.39) for n ≤ 7.

Even the second non-squarefree case of n = 8 is too big to tackle in this manner: the discriminant

over Q of Φ8 is approximately 10250, large enough that factorization is no longer feasible. For fixed

p 6= 2, we may choose c ∈ Fpk for some k ≥ 1 and compute Φn(c) quickly. If this is not a square in

Fpk for some c, then the maximality of Hn is established. Using this technique, one can verify that

for p = 5, a case not covered by Theorem 3.2, Hn is maximal (and thus Kn/K is geometric) for all

n ≤ 2000. Note that this justifies the comment made on page 28.

We have one bit of unfinished business in this chapter, which is to give the proof of Theorem 3.2

in the case where the characteristic of F is a prime of the form 4k + 3.

3.5 The case char F = p ≡ 3 mod 4 in Theorem 3.2

An interesting question related to our considerations in this chapter is to determine the Galois

groups over Q of the iterates of x2 + 1. First posed by J. McKay, it was addressed by Odoni [26]

who reduced the question to whether certain elements bn were squares in Q, analogously to the Φn
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in our results of Chapter 3. In a 1992 paper [35], Stoll devised a clever method that allowed him

to show that the bn are never squares. He extended his result to show that the Galois groups of

iterates of x2 + a are all maximal for an infinite set of a ∈ Z. Here we use a minor modification of

Stoll’s argument to show that Φn is not a square in Fp(x) when p ≡ 3 mod 4 (Theorem 3.44). Using

Theorem 3.38, this proves the final assertion of Theorem 3.2.

We make some modifications to our setup as follows: let A be the ring of integers in a Dedekind

domain K, suppose A is a principal ideal domain, and let g ∈ A[y2] be an even polynomial. Put

q1 = ±g(0), and qn = g(qn−1) for n ≥ 1. Assume all qn 6= 0 and put Ψn =
∏
d|n q

µ(n/d)
d .

Lemma 3.41. For each n, Ψn ∈ A.

Proof: : A straightforward generalization of Proposition 3.28. �

Lemma 3.42. Suppose that for all n ≥ 1 there is an mn ∈ A such that:

1. mn and qn are relatively prime,

2. mn | qn + q2n, and

3. −1 is not a square in A/(mn).

Then for all n ≥ 2, Ψn is not a square in K.

Proof: Let n ≥ 2 have prime decomposition pe11 p
e2
2 · · · per

r , where ej ≥ 1, r ≥ 1, and the pj are

distinct primes. Set n′ = p1 · · · pr > 1, and k = n/n′; note that if d | n, then µ(n/d) 6= 0 precisely

when d is a multiple of k.

Note that mk and q2k are relatively prime: any common factor of mk and q2k must also be a

common factor of mn and qk by property 2 above, and thus this common factor is 1 by property 1

above. Clearly qk ≡ −q2k mod mk. We show that qlk ≡ q2k mod mk for all l ≥ 2. We have

q3k = gk(q2k) ≡ gk(−qk) mod mk. (3.28)

Since g ∈ A[y2], gk(−qk) = gk(qk), and gk(qk) = q2k. Thus (3.28) yields

q3k ≡ q2k mod mk (3.29)

and by induction qlk ≡ q2k mod mk for all l ≥ 2, as desired.

We now have

Ψn =
∏
d|n

q
µ(n/d)
d =

∏
t|n′

q
µ(n′/t)
kt ≡ (−1)µ(n′)

∏
t|n′

q
µ(n′/t)
2k mod mk.
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Since
∑
t|n′ µ(n′/t) = 0 and µ(n′) = ±1, the rightmost expression above is just −1 mod mk. But

−1 is not a square modmk, so Ψn is not a square in A. Hence Ψn is not a square in K. �

To make the line of reasoning begun by Lemma 3.42 work, we naturally need to find elements

mn. We propose mn = qn + qn+1. This choice automatically satisfies property 2 of Lemma 3.42.

Indeed, if a prime p divides qn + qn+1, then clearly we have qn+1 ≡ −qn mod p. Moreover, as in the

proof of Lemma 3.42,

qn+2 = g(qn+1) ≡ g(−qn) = g(qn) = qn+1 ≡ −qn mod p,

so p divides qn + qn+2. It follows that qn + qn+1 | qn + qn+2. Repeating this argument n− 2 times

yields qn + qn+1 | qn + q2n.

We now specialize to the case A = Fp[x]. The next result gives a condition under which the

choice mn = qn + qn+1 satisfies properties 1 and 3 of Lemma 3.42.

Lemma 3.43. Suppose that g(0) = ±1, deg qn is odd for n ≥ 2, and −1 is not a square in Fp. Then

Ψn is not a square in Fp(x) for all n ≥ 2.

Proof: Let mn = qn+qn+1. Note that modulo qn we have qn+1 = g(qn) ≡ g(0) = ±1. Therefore qn

and qn+1 are relatively prime, and thus qn and mn are relatively prime as well. We now need only

establish that −1 is not a square mod mn. Since deg qn is odd for n ≥ 2, we have deg q2 > 0, and

thus for n ≥ 1 we have degmn = deg qn+1, which is odd. Thus mn has at least one irreducible factor

s of odd degree. By assumption −1 is not a square in Fp, and it follows from [32, Proposition 1.10]

that −1 is not a square mod s. Hence −1 cannot be a square mod mn. Lemma 3.42 then shows

that Ψn is not a square in Fp(x) for all n ≥ 2. �

Theorem 3.44. If p ≡ 3 mod 4, then Φn is not a square in Fp(x) for each n ≥ 1

Proof: Recall that we defined p1 = x, pn = p2
n−1 + x, and Φn =

∏
d|n p

µ(n/d)
d . Let g = xy2 + 1.

Clearly deg g(a) is odd for any a ∈ Fp[x], so the hypotheses of Lemma 3.43 are satisfied. Now

xqn = (xqn−1)2 + x, and xq1 = x, so we have xqn = pn for all n. Thus

Ψn =
∏
d|n

q
µ(n/d)
d =

∏
d|n

xµ(n/d)
∏
d|n

q
µ(n/d)
d =

∏
d|n

p
µ(n/d)
d = Φn.

Lemma 3.43 then gives that Φn is not a square in Fp(x) for n ≥ 2. Clearly Φ1 = x is not a square

in Fp(x). �

The final assertion of Theorem 3.2 now follows immediately from Theorems 3.44 and 3.38.



Chapter 4

Construction of the Galois Process

for f and Probabilistic Background

The group-theoretic results presented in Chapter 3 are in some sense the engine of this thesis.

However, unless it is attached to some surrounding apparatus – imagine gears, axles, and wheels if

you wish – this engine does not result in forward motion. In this chapter we construct a surrounding

apparatus, and in the next chapter we show that forward motion indeed occurs: enough motion to

prove our main result.

Recall the setup of Chapter 3: let F be a field of characteristic 6= 2, let K = F (x), and set

f = y2 + x ∈ K[y]. Let Kn be the splitting field over K of the nth iterate fn, and put Gn =

Gal (Kn/K) and Hn = Gal (Kn/Kn−1). The surrounding apparatus mentioned in the previous

paragraph emerges from probability theory. To understand why this is natural, recall that Gn acts

on the set Rn of roots of fn, and we seek information about the number of g ∈ Gn that fix at least

one element of Rn (see Theorem 2.18). The results of Chapter 3 lead directly to information about

the fixed points in Rn of elements in Hn. To use this we need to consider the partitioning of Gn

into cosets of Hn. Specifically, if g0 ∈ Gn fixes t elements of Rn−1, we consider the function

φ : g0Hn → Z+

g 7→ number of fixed points of g in Rn (4.1)

If n is squarefree, we use Theorem 3.2 to determine #φ−1(u) explicitly for any u (see Proposition 5.6).

For general n, Corollary 3.23 allows us to establish the average value of φ (see Theorem 5.3). Both

of these statements are more natural if we think of φ as a random variable and g0Hn as a probability

space with the uniform distribution. The first statement gives the distribution of φ, while the

59
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second gives the expectation of φ. The framework of probability theory also gives us powerful tools

for extending results on the behavior of φ.

Before we can bring to bear the tools of probability, we must describe the probability space

in which we are working. We wish to find a space with a random variable Xn whose distribution

resembles that of φ above:

P(Xn = t) =
1

#Gn
#{g ∈ Gn : g fixes t elements of Rn}. (4.2)

One method of doing this is to let Gn be the underlying space, give it the uniform probability

distribution, and let Xn be defined similarly to φ. Then if we condition Xn on the event g0Hn we

obtain the same probability distribution as that of φ.

We are interested, however, in limiting behavior as n grows, so this approach is insufficient.

We take this opportunity to recall that a sequence X0, X1, X2, . . . of random variables defined on

a common probability space (Ω,F ,P) is known as a discrete-time stochastic process, which we

abbreviate simply to process. To accomodate the behavior of Gn for all n, we need a process that

satisfies (4.2) for each n. Indeed, for the applications we have in mind, we need a process satisfying

a stronger property, namely

P (X0 = t0, . . . , Xn = tn) =

1
#Gn

# {g ∈ Gn : g fixes ti elements of Ri for i = 0, 1, . . . , n} (4.3)

for any n ≥ 0 and any nonnegative integers t0, . . . , tn.

A process can be thought of as a game of chance, with Xn denoting a gambler’s score at turn n.

Consider a process that satisfies (4.3); thus our gambler is playing a “Gn game” in that her chances

of gaining or losing points at each turn are determined by the structure of Gn. By Theorem 2.18

we have

δ(In) = P(Xn > 0), (4.4)

where In is the set of α ∈ Fp such that 0 has an nth preimage in Fp(α) under iteration of x2 + α.

By Corollary 2.6, to achieve our main goal of showing δ(H(Fp)) = 0 we need only show that

lim
n→∞

δ(In) = 0. Thus we wish to find lim
n→∞

P(Xn > 0), namely the probability that the gambler

never goes bankrupt. And we are rooting against the gambler, as we wish to show that bankruptcy

is certain.

The structure of Hn enters into this process via conditional distributions. The computation of

a conditional probability such as P(Xn = tn | Xn−1 = tn−1) amounts to computing the proportion

of elements of the set S = {g ∈ Gn : g fixes tn−1 elements of Rn−1} that fix tn elements of Rn.

Elements of Hn by definition induce the identity permutation on Rn−1, so g ∈ S if and only if
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gh ∈ S. It follows that S is a union of cosets of Hn. We may then apply analyses like the one

described for the function φ defined in (4.1).

In this chapter we construct a process that satisfies (4.3); this occupies the first two sections.

In sections 3 and 4, we give some definitions and basic properties of certain well-known kinds of

processes that play a role in Chapter 5.

4.1 Construction of the Galois Process for f

In this section we construct a process that satisifes equation (4.3). We refer to such a process as the

Galois process associated to iterates of f (we use the instead of a because uniqueness is immaterial

as long as it satisfies (4.3)). We abbreviate this to the Galois process for f , or simply GP(f).

Constructing probability spaces with specified properties can be highly non-trivial, and it is

often impossible to do so explicitly. However, the Daniell-Kolmogorov Extension theorem allows

one to show that many useful spaces exist without having to construct them. This is the tool

that I originally used to show the Galois process exists, and it remains the “official” method in

that the proofs of Chapter 5 are all written to conform to it. Late in the process of doing my thesis

research, however, I discovered a much nicer and more intuitive explicit construction, which is briefly

described. If the reader is willing to accept that the proofs of Chapter 5 may be safely translated

into the language of the explicit construction, then he/she can skip over the “official” method.

We begin with the explicit construction, which allows one to get more of a flavor for what is

going on and provides an intuition helpful for understanding the results of Chapter 5. Since Kn−1

is a Galois sub-extension of Kn, there is a natural quotient homomorphism ψn : Gn → Gn−1. We

choose as our underlying space the inverse limit G of the Gn with respect to these maps. Thus g ∈ G

looks like

(g1, g2, g3, . . .),

where gn ∈ Gn and the sequence is coherent in that ψn(gn) = gn−1. We have obvious nth factor

projections πn : G → Gn. We give G the standard pro-finite topology, where the open sets are

generated by the collection {π−1
n (gn) : gn ∈ Gn, n ∈ N}. One can easily show that G is compact

with this topology. We take as our σ-algebra the Borel sets B, and for our probability measure we

take the Harr measure P, which by definition is invariant under translation (i.e. left-multiplication).

Since G is compact, we may normalize P so that P(G) = 1. The projections πn are continuous in

our topology, so the sets π−1
n (gn) are measurable for any gn ∈ Gn. Note also that

G =
⊔

gn∈Gn

π−1
n (gn), (4.5)
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where the union is disjoint. Clearly if πn(g) = gn then π−1
n (gn) = gπ−1

n (e), so the sets π−1
n (gn) are

translates of one another. Thus (4.5) and the translation invariance of P give

1 =
∑

gn∈Gn

P(π−1
n (gn)),

and from this we get

P(π−1
n (gn)) = 1/#Gn (4.6)

for all gn ∈ Gn.

Finally, for each n we define

Xn(g) = number of fixed points of πn(g) in Rn.

Recall that ψ(πn(g)) = πn−1(g), where ψ : Gn → Gn−1 is the quotient homomorphism with kernel

Hn. Thus πn(g) induces the same permutation on Rn−1 as πn−1(g). By induction we have that

πn(g) and πi(g) have the same action on Ri for any i ≤ n. Thus for any i ≤ n, Xi(g) is the same

as the number of fixed points in Ri of πn(g). It follows that X0(g) = t0, . . . , Xn(g) = tn if and only

if πn(g) fixes ti elements of Ri for 0 ≤ i ≤ n. From (4.6) we then immediately get that the process

(G,B,P, (Xn)n≥0) satisfies (4.3).

We now give the “official” method of proving the existence of the Galois process, which makes

use of the well-known Daniell-Kolmogorov Extension theorem. Suppose that we have a σ-algebra E

on a set E and for each n a probability measure µn defined on the n-fold product of (E, E). The

Daniell-Kolmogorov Theorem says that, provided the µn meet an obvious consistency condition,

there is a probability µ defined on an infinite product of (E, E) that extends each of the µn. The

Theorem also covers continuous-time processes, but for our purposes it is enough to stick with the

discrete-time case. In this section we state the discrete-time version of the theorem in detail, while

in the next section we show how it can be used to construct the process we seek.

Let E be a set and E a σ-algebra on E. Suppose that for each n we have a probability measure

µn defined on the product space (En+1, E⊗(n+1)), and suppose that the µn are compatible in the

following way: for any n and any Ai ⊂ E, i = 0, 1, 2, . . . , n− 1, we have

µn−1 (A0 ×A1 × · · · ×An−1) = µn (A0 ×A1 × · · · ×An−1 × E) . (4.7)

Now let us introduce the canonical space (Ω,F , (Xn)n≥0) defined as follows:

Ω = EN, ω ∈ Ω is denoted (ωn)n≥0, Xn(ω) = ωn for every n.

For each n ≥ 0, define Fn to be the σ-algebra generated by all sets of the the form X−1
i (A),

where A ∈ E and 0 ≤ i ≤ n. We denote this Fn = σ(X0, . . . , Xn). Note that X−1
i (A) is simply
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E × · · · ×E ×A×E × · · · , with the A being in the ith position. Thus Fn consists of all sets of the

form B × E × E × · · · , where B ∈ E⊗(n+1). Finally, set F = σ(X0, X1, X2, . . .) = σ(
⋃∞
n=0 Fn).

We may use µn to define a probability Pn on (Ω,Fn) by taking, for every B ∈ E⊗(n+1),

Pn(B × E × E × . . .) = µn(B). (4.8)

Given this setup, it is natural to ask if there is a probability measure P defined on all of F that

agrees with every Pn. The Daniell-Kolmogorov Theorem provides an affirmative answer:

Theorem 4.1. Using the notation above, and supposing that the µn satisfy (4.7), there exists a

unique probability measure P on the canonical space (Ω,F) such that for any F ∈ Fn, P(F ) =

Pn(F ).

For a proof of Theorem 4.1, see [39, page 81]. Let (Ω,F ,P, (Xn)n≥0) be the process whose

existence is guaranteed in Theorem 4.1. Note that because P extends Pn, we have by (4.8) that for

any Ai ∈ E , i = 0, 1, 2, . . . , n,

µn(A0 ×A1 × · · · ×An) = P(A0 × · · · ×An × E × E × · · · )

= P(X0 ∈ A0, X1 ∈ A1, . . . , Xn ∈ An), (4.9)

where the last expression is the usual shorthand for

P
(
X−1

0 (A0) ∩X−1
1 (A1) ∩ · · · ∩X−1

n (An)
)
.

We now use Theorem 4.1 to construct the process we seek. Unfortunately, this construction

utilises the structure of G only implicitly, as its underlying space is NN. Take E = N and E = P(N),

the power set of N. We now define the probability measures µn for n ≥ 0.

Let n be given. For each i ≤ n we define

vi,n : Gn → N

g 7→ number of fixed points of g in R(fi).

We make the convention that R(f0) = {0}, so that v0,n(g) = 1 for all g ∈ Gn. We now use these

maps to define

vn : Gn −→ Nn+1

g 7−→ (v0,n(g), v1,n(g), . . . , vn,n(g)) .

Example 4.2. Consider the case n = 2; we use the labeling given in Example 2.19. From Theorem

3.2 we know that H1 and H2 are maximal, meaning

H2 = {e, (1 2), (3 4), (1 2)(3 4)}
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and #G2 = 8. By the definition of Hn, these are the only elements that restict to the identity

permutation on R(f1). The four elements of G2 not contained in H2 must therefore interchange the

sets {1, 2} and {3, 4} and must have squares that preserve these sets. One can easily show these

elements are (1 3 2 4), (1 4 2 3), (1 3)(2 4), and (1 4)(2 3). �

We have, for instance,

v2 ((1 2)) = (1, 2, 2)

v2 ((1 2)(3 4)) = (1, 2, 0)

v2 (e) = (1, 2, 4)

v2 ((1 3)(2 4)) = (1, 0, 0)

We pause to enumerate two elementary properties of the vn: First, since the domain of vn is

finite, we have for all B1, B2 ∈ P(N)⊗(n+1),

#v−1
n (B1 ∪B2) = #v−1

n (B1) + #v−1
n (B2)−#v−1

n (B1 ∩B2). (4.10)

Second, the finiteness of the Gn also gives us that for each n

vn(Gn) = F0 × F1 × · · · × Fn,

where each Fi is a finite set.

At last we are in a position to define µn:

µn : P(N)⊗(n+1) −→ R+

B 7−→ #vn−1(B)
#Gn

(4.11)

Example 4.3. We have

µ2 ({1} × {2} × {4}) =
#{e}

8
=

1
8

µ2 ({1} × {2} × {2}) =
#{(12), (34)}

8
=

1
4

µ2 ({1} × {0} × {0}) =
#{(1324), (1423), (13)(24), (14)(23)}

8
=

1
2

µ2 ({1} × {2} × N) =
#{e, (12), (34), (12)(34)}

8
=

1
2

We now show that the µn are indeed probability measures. As usual, the condition of countable

additivity requires a small bit of work. We give two easy Lemmas that simplify the proof.

Lemma 4.4. Let B be a subset of Nn+1 belonging to P(N)⊗(n+1). Then µn(B) = 0 if and only if

B ∩ vn(Gn) = ∅.
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Proof: Taking v−1
n of both sides of the equation B ∩ vn(Gn) = ∅ gives

v−1
n (B) ∩Gn = ∅. (4.12)

(Note that v−1
n (vn(Gn)) = Gn because f−1(f(S)) ⊇ S in general and v−1

n (vn(Gn)) ⊆ Gn.) But

v−1
n (B) ⊆ Gn, so (4.12) is equivalent to v−1

n (B) = ∅. This holds if and only if µn(B) = 0. �

Lemma 4.5. If B1 and B2 are disjoint subsets of Nn+1 belonging to P(N)⊗(n+1), then µn(B1∪B2) =

µn(B1) + µn(B2).

Proof: Applying v−1
n to both sides of B1∩B2 = ∅ gives v−1

n (B1∩B2) = ∅. The lemma then follows

from equation (4.10). �

Proposition 4.6. For each n, µn is a probability measure on (Nn+1,P(N)⊗(n+1)).

Proof: It is clear from the definition that 0 ≤ µn ≤ 1 for all n. Moreover, we obviously have

µn(Nn+1) = #Gn

#Gn
= 1. It remains to verify that each µn is countably additive: if B1, B2, . . . are

pairwise disjoint subsets belonging to P(N)⊗(n+1), then

µn

( ∞⋃
i=1

Bi

)
=

∞∑
i=1

µn(Bi).

Since the Bi are pairwise disjoint and vn(Gn) is a product of finite sets, there must exist an i0 such

that
(⋃∞

i=i0+1Bi
)
∩ vn(Gn) = ∅. Thus by Lemma 4.4, we have µn

(⋃∞
i=i0+1Bi

)
= 0. This gives us

µn

( ∞⋃
i=1

Bi

)
= µn

(
C ∪

i0⋃
i=1

Bi

)
,

where µn(C) = 0 and C,B1, B2, . . . , Bi0 are pairwise disjoint. Using induction and Lemma 4.5, we

have

µn

(
C ∪

i0⋃
i=1

Bi

)
= µn(C) +

i0∑
i=1

µn(Bi) =
i0∑
i=1

µn(Bi) =
∞∑
i=1

µn(Bi),

where the last equality holds since µn(Bi) = 0 when i > i0. Thus µn is a probability measure. �

Now that we have established that each µn is a probability measure, the only remaining obstacle

to applying the Daniell-Kolmogorov Theorem is to show that the µn satisfy (4.7).

Proposition 4.7. The µn satisfy the compatibility condition (4.7).

Proof: We must show that for all n ≥ 1, we have

µn−1 (A0 ×A1 × · · · ×An−1) = µn (A0 ×A1 × · · · ×An−1 × N) ,
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where Ai ⊆ N for each i. Recall that Hn is the Galois group of Kn/Kn−1, and the quotient

map ψn : Gn → Gn−1 gives an isomorphism between Gn/Hn and Gn−1. Now fix g ∈ Gn. We have

vn(g) ∈ A0×A1×· · ·×An−1×N if and only if vn,i(g) ∈ Ai for i = 0, 1, 2, . . . , n−1 (note that the value

of vn,n is irrelevant). This last condition is equivalent to vn−1,i(ψn(g)) ∈ Ai for i = 0, 1, 2, . . . , n− 1,

i.e. vn−1(ψn(g)) ∈ A0 ×A1 × · · · ×An−1. Thus we may rewrite µn (A0 ×A1 × · · · ×An−1 × N) as

1
#Gn

#{g ∈ Gn | ψn(g) ∈ v−1
n−1 (A0 ×A1 × · · · ×An−1)} (4.13)

By definition we have ψn(g′) = ψn(g) if and only if g′ ∈ gHn, so (4.13) is equal to

#Hn

#Gn
#{gHn ∈ Gn/Hn | (ψn(g)) ∈ v−1

n−1(A0 ×A1 × · · · ×An−1)},

and using #Gn = #Hn ·#Gn−1, we have that this is equal to

1
#Gn−1

#{g ∈ Gn−1 | g ∈ v−1
n−1(A0 ×A1 × · · · ×An−1)},

which is µn−1 (A0 ×A1 × · · · ×An−1) �

Thanks to Propositions 4.6 and 4.7, we may apply Theorem 4.1 to show that there exists a

process (Ω,F ,P, (Xn)n≥0) such that

P(X0 ∈ A0, X1 ∈ A1, . . . , Xn ∈ An) = µn(A0 ×A1 × · · · ×An) (4.14)

for any Ai ∈ N (see discussion following Theorem 4.1). In particular, for any n and any nonnegative

integers t0, . . . , tn, we have

P(X0 = t0, X1 = t1, . . . , Xn = tn) = µn({t0} × {t1} × · · · × {tn})

=
1

#Gn
# {g ∈ Gn | vn(g) ∈ {t0} × {t1} × · · · × {tn}}

and this last expression, by the definition of vn, is simply

1
#Gn

# {g ∈ Gn : g fixes ti elements of Ri for i = 0, 1, . . . , n} .

This establishes (4.3), which is the principal property we desired our process to have.

We close with the remark, which is helpful in the proofs of Chapter 5, that because R0 = {0},

we have P(X0 = 1) = 1.

4.2 Martingales and Markov Chains

Since GP(f) has random variables that take their values in Z, we now restrict our attention mainly

to such processes. This section is devoted to an important class of processes known as martingales.
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We give a somewhat restricted definition of these, which is sufficient for our purposes. The concept

of martingale draws its inspiration from a gambler playing a fair game (i.e. one with expectation 0)

repeatedly. Let Xn denote the gambler’s gain at game n. The gambler chooses her stakes according

to some rule involving the outcomes of previous games, so the Xn are not independent. However,

the knowledge of past games should not affect the fairness of future games. Thus regardless of the

values of X0, X1, . . . , Xn, the expectation of Xn+1 should be 0. To formulate this rigorously, we give

a brief review of the notion of conditional expectation.

First recall that if (Ω,F ,P) is a probability space and X a random variable taking values in Z,

then the expectation of X is

E(X) =
∑
k∈Z

k ·P(X = k),

where X = k denotes the set X−1(k). We say X is integrable if E(X) is finite.

Consider now two random variables X and Y taking values in Z. We define the familiar condi-

tional probability

P(Y = k | X = t) = P(Y = k ∩X = t)/P(X = t).

The conditional expectation E(Y | X = t) is then just the expectation defined above but using the

conditional probability:

E(Y | X = t) =
∑
k∈Z

k ·P(Y = k | X = t) =
1

P(X = t)

∑
k∈Z

k ·P(Y = k ∩X = t).

We set h(t) = E(Y | X = t) for t ∈ Z. We may then compose h with X to get a random variable

E(Y | X) that maps ω to E(Y | X = X(ω)).

We can repeat this construction with multiple variables as follows: let Y,X1, . . . , Xn be Z-valued,

and define

P(Y = k | X1 = t1, . . . , Xn = tn) =
P (Y = k ∩

⋂n
i=1Xi = ti)

P (
⋂n
i=1Xi = ti)

.

Analogously to the single-variable case, we define E(Y | X1 = t1, . . . , Xn = tn) to be∑
k∈Z

k ·P(Y = k | X1 = t1, . . . , Xn = tn). (4.15)

Then we define the random variable E(Y | X1, . . . , Xn) that takes ω to

E(Y | X1 = X1(ω), . . . , Xn = Xn(ω)).

We now give the definition of a martingale. In the discussion at the beginning of this section

of a gambler playing repeatedly a fair game, we let the Xn be the gambler’s gain at turn n. The

random variables in the following definition may be thought of as the gambler’s accumulated gains

through turn n.
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Definition 4.8. Let S = (Ω,F ,P, (Xn)n≥0) be a stochastic process where each Xn takes values in

Z and is integrable. We say S is a martingale if for every n ≥ 0 we have

E(Xn+1 | X0, . . . , Xn) = Xn.

We note that this definition is less general than the one presented in many probability texts1

(see e.g. [4]).

We say that a martingale (Ω,F ,P, (Xn)n≥0) converges if

P
(
{ω ∈ Ω | lim

n→∞
Xn(ω) exists}

)
= 1.

Martingales have achieved much of their usefulness because they often converge. The following is a

standard theorem (see e.g. [7, page 71])

Theorem 4.9. Let M = (Ω,F ,P, (Xn)n≥0) be a martingale with Xn ≥ 0 for each n (Xn need not

be integer valued). Then M converges. We set X∞(ω) = limn→∞Xn(ω), which is defined except on

a set of probability 0.

We end this section with a statement of the definition of a Markov chain, a concept which we

use less than martingales but which nonetheless plays a role in Chapter 5 in the case where Hn is

maximal for all n. Loosely, a Markov chain is an infinite sequence of random variables, indexed

by what can be thought of as a time parameter, where only information from the previous variable

may affect the values of the next variable. Any sequence of independent variables certainly qualifies;

Markov chains can be thought of as one level more complicated than such sequences.

Definition 4.10. Let S = (Ω,F ,P, (Xn)n≥0) be an integer-valued stochastic process. We say S is

a Markov chain if for any natural numbers m1 < m2 < · · · < mk and integers s1, s2, . . . , sk such

that P(Xm1 = s1, . . . , Xmk−1 = sk−1) > 0, we have

P(Xmk
= sk | Xm1 = s1, . . . , Xmk−1 = sk−1) = P(Xmk

= sk | Xmk−1 = sk−1).

1The conditioning E(Xn+1 | X0, . . . , Xn) takes into account only the values of previous Xn, that is, the gambler’s
past gains. Thus in using this form of conditioning in our definition, we are assuming the gambler has knowledge
only of her past gains. (Another way of saying this is that her knowledge of the past consists only of events of
the form X−1

0 (A0) ∩ · · · ∩ X−1
n (An) for Borel sets A0, . . . , An, the collection of which is known as the σ-algebra

generated by X0, . . . , Xn.) But there may be other information available about the past. For instance, if the
gambler skips game 1, then X1 = 0 with certainty. Yet knowledge of what happened in game 1 could in principle
be useful in future predictions. The most general definition of a martingale allows us to stipulate the sophistication
of the gambler’s knowledge of the past; in our definition above, we only allow the gambler the barebones knowledge
of the past gains at each game. To state the more general version, we must expand our notion of conditional
expectation to arbitrary σ-algebras, not merely the one generated by X0, . . . , Xn. Once this is done, the general
definition of a martingale is with respect to an increasing sequence of σ- algebras F0 ⊆ F1 ⊆ F2 ⊆ · · · , with each
Xn being Fn-measurable and E(Xn+1 | Fn) = Xn.
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4.3 Branching Processes

In this section, we discuss a certain kind of Markov chain that lends itself to a particularly neat

analysis. We assume throughout the section that all Markov chains have X0 = 1 with probability

1. This assumption is easily dispensed with, but improves clarity and is sufficient for all of our

applications.

An important characteristic of a Markov chain is its transition probabilites, namely

pij,n = P(Xn = j | Xn−1 = i).

Note that pij,n is undefined when P(Xn−1 = i) = 0. In the case where pij,n depends only on i and

j, we call the Markov chain time homogeneous. We refer to a Markov chain as non-negative when its

random varibles take on only non-negative integer values. The following definition is adapted from

[16]. We give a slighly more complicated definition that suits our purposes in Chapter 5.

Definition 4.11. Suppose M = (Ω,F ,P, (Xn)n≥0) is a non-negative, time-homogeneous Markov

chain. We call M a branching process if for each i ≥ 0 such that

P(Xn−1 = i) > 0,

the transition probabilities {pij}j∈N have the same distribution as the sum of i independent variables,

each with the same distribution as X1. We take the sum of 0 random variables to have value 0 with

probability 1.

The study of such processes began with an 1874 paper by Francis Galton and the Reverend H.W.

Watson [38] (see [16] for a summary), and some authors use “Galton-Watson processes” instead of

“branching processes”. Galton proposed the problem of determining the likelihood of eventual

extinction of a family line, as measured by the number of males in each generation. He assumed

a single progenitor at generation 0, and also made the crucuial assumption that the probability

distribution of sons is identical for every man in every generation. Such a scenario is modeled by a

branching process, with Xn denoted the size of the nth generation.

As another illustration, we can think of a branching process as a game with the following rules.

The house has an infinite supply of tickets, each having a number k written on the back, with k

chosen at random according to the probability distribution of X1. To begin the game you are given

one ticket (this corresponds to X0 = 1). You then trade in your ticket to the house; in return you

receive a number of tickets equal to the number on the back of your original ticket. At the next

round you trade in all your tickets and receive a number of new tickets equal to the sum of the

numbers on the backs of all your previous tickets. Continue in this fashion.
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As a side note, one can turn this into an amusing parlor game by giving each player the option

of stopping at any given round and keeping all her tickets. Subsequent players then try to beat her

score. I have tried this withX1 such that P(X1 = 3) = 1/6, P(X1 = 1) = 1/2, and P(X1 = 0) = 1/3;

the results were highly entertaining.

An important general property of a branching process is that 0 is an absorbing state provided

that P(X1 = 0) > 0. By this we mean that for any m, P(Xm+1 = 0, Xm+2 = 0, . . . | Xm = 0) = 1.

This is suggested by the above discussion: if you run out of tickets at any round, you have no hope

of ever getting any more. From the definition and the assumption that P(X1 = 0) > 0 we have by

an easy induction that P(Xn = 0) > 0 for all n ≥ 1, and P(Xn = 0 | Xn−1 = 0) = 1 for all n ≥ 2.

Since a Galton- Watson process is a Markov chain, this means that for any 1 ≤ m < n,

P(Xn = 0 | Xm = 0, . . . , Xn−1 = 0) = 1,

which is the same as

P(Xm = 0, . . . , Xn−1 = 0, Xn = 0) = P(Xm = 0, . . . , Xn−1 = 0).

Repeated application of this gives

P(Xm = 0, . . . , Xn−1 = 0, Xn = 0) = P(Xm = 0).

Therefore P(Xm+1 = 0, . . . , Xn = 0 | Xm = 0) = 1. Note that P(· | Xm = 0) is a probability

measure on Ω. We need now only show that the intersection of an increasing sequence of probability

1 events again has probability 1. To do this we employ the very useful property of continuity of

probability measures (see e.g. [15, pages 8,9]):

Proposition 4.12. Suppose we have events A1 ⊇ A2 ⊇ A3 ⊇ · · · in a probability space. Then

P

( ∞⋂
n=1

An

)
= lim
n→∞

P(An).

Similarly, if B1 ⊆ B2 ⊆ B3 ⊆ · · · , then we have

P

( ∞⋃
n=1

Bn

)
= lim
n→∞

P(Bn).

We now have

P(Xm+1 = 0, Xm+2 = 0, . . . | Xm = 0) = 1, (4.16)

as desired.

From now on we make the assumption that P(X1 = 0) > 0, as this is sufficient for our applica-

tions. In Watson and Galton’s original paper, Watson proposed an ingenious solution to Galton’s
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problem on family lines. The solution centered on the idea of probability generating functions. The

probability generating function (or pgf for short) of a random variable X taking non-negative integer

values is defined as the complex function

g(z) =
∞∑
k=0

P(X = k)zk.

We often write pk = P(X = k), so g(z) =
∑
pkz

k. Note that g(z) converges for |z| ≤ 1 because∑
pk = 1.

The following Proposition, taken from [15], is quite useful:

Proposition 4.13. Suppose Y1, . . . , Yn are independent with respective pgfs g1, . . . , gn. Then the

random variable Y1 + Y2 + · · ·+ Yn has pgf g1g2 · · · gn.

Now let (Ω,F ,P, (Xn)n≥0) be a branching process. Let g be the pgf of X1. The pgf of a random

variable depends only on its distribution. Thus under the condition Xn−1 = i, Proposition 4.13 and

Definition 4.11 tell us Xn has the pgf (g(z))i. Note that this holds even for i = 0. This leads to

Watson’s main result:

Proposition 4.14. Let (Ω,F ,P, (Xn)n≥0) be a branching process, let g be the pgf of X1, and let gn

be the pgf for Xn (without conditioning). Then gn is the nth iterate of g.

Proof: We make use of the fact that the events {Xn−1 = i} partition Ω, so that if A is any

event, P(A) =
∑
iP(A ∩ {Xn−1 = i}). Obviously we may restrict this sum to the i such that

P(Xn−1 = i) > 0. We do this in the following computation:

gn =
∑
k

P(Xn = k)zk

=
∑
k

∑
i

P(Xn = k,Xn−1 = i)zk

=
∑
k

∑
i

P(Xn−1 = i)P(Xn = k | Xn−1 = i)zk

=
∑
i

P(Xn−1 = i)
∑
k

P(Xn = k | Xn−1 = i)zk

We remarked just prior to this Proposition that
∑
k P(Xn = k | Xn−1 = i)zk = (g(z))i. Thus we

have

gn =
∑
i

P(Xn−1 = i)(g(z))i = gn−1(g(z)).

The Proposition then follows by induction. �

We now turn our attention to the probability en of extinction by generation n, which we define

as

P(Xn = 0, Xn+1 = 0, Xn+2 = 0, . . .).
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Clearly {en}n∈N is an increasing sequence. By (4.16), we have en = P(Xn = 0). We can thus apply

Proposition 4.14, which shows that

en = gn(0), (4.17)

where the superscript indicates iteration. Note that en = g(en−1), and also e0 = 0. One may easily

show using Proposition 4.12 that the probability of eventual extinction is e = lim
n→∞

en, which exists

because en ≤ 1 for all n. We clearly have g(e) = e (because g is continuous on 0 ≤ z ≤ 1). Moreover,

e is the limit of an increasing sequence whose first element is 0. A short inductive argument (see

[15]) shows:

Proposition 4.15. Let (Ω,F ,P, (Xn)n≥0) be a branching process, and g the pgf of X1. Then e is

the smallest non-negative solution of the equation g(x) = x.

One can also show (see [15] again) that e = 1 if and only if E(X1) ≤ 1. In the case E(X1) < 1,

we have the following trivial estimate for the rate at which en approaches 1:

en ≥ 1− (E(X1))n .

When E(X1) = 1, matters are more complicated. The following result is originally due to Kol-

mogorov and can be found in [16, page 21].

Theorem 4.16. Let (Ω,F ,P, (Xn)n≥0) be a branching process with E(X1) = 1, and let g be the pgf

for X1. Then

lim
n→∞

(
P(Xn > 0)− 2

ng′′(1)

)
= 0.

Thus when E(X1) = 1, we have en ∼ 1− 2/(ng′′(1)).

We close our examination of branching processes with a link to martingales.

Proposition 4.17. Let B = (Ω,F ,P, (Xn)n≥0) be a branching process, and suppose that E(X1) = 1.

Then W is a martingale.

Proof: The expectation of a random variable depends only on its distribution. By the additivity

of expectations (see [15]), if Z1, . . . , Zm are identically distributed random variables then

E(Z1 + · · ·+ Zm) = mE(Z1).

Hence by definition 4.11 we have

E(Xn|Xn−1 = i) = iE(X1) = i.

Therefore E(Xn|Xn−1) = Xn−1.
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Now by definition B is a Markov chain, so

P(Xn = sn | X0 = s0, . . . , Xn−1 = sn−1) = P(Xn = sn | Xn−1 = sn−1)

for any s0, s1, . . . , sn in Z. By the definition of conditional expectation (4.15), this implies

E(Xn | X0, . . . , Xn−1) = E(Xn | Xn−1),

and the proposition follows. �
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Chapter 5

The Threads Come Together

In this chapter, we use the group-theoretic insight gained in Chapter 3 to determine the long-run

behavior of the Galois process for f , which we refer to as GP(f) (see Section 4.1 for definitions).

Specifically, we show the behavior of this process is intimately linked to the structure of the groups

Hn, and the main results of Chapter 3 give us information about these. The most important result

of the present chapter is Corollary 5.4, which draws on Corollary 3.23 to establish that GP(f) is a

martingale. It then follows (see Theorem 4.9) that GP(f) converges. We next use Theorem 3.2 to

establish explicitly the behavior of Xn for all n such that Hn is maximal. This allows us to show

that GP(f) converges to 0 with probability 1.

Applying the convergence to 0 of GP(f) in the case F = Fp, p 6= 2, and using Theorem 2.18

allows us to show that lim
n→∞

δ(In) = 0. Recall that δ is Dirichlet density (see (1.6)) and

In = {α ∈ Fp : f−nα (0) ∩ Fp(α) 6= ∅},

namely the set of α ∈ Fp such that 0 has an nth preimage in Fp(α) under iteration of fα = x2 + α.

Corollary 2.6 then shows that δ(H(Fp)) = 0, which is Theorem 1.7, our main result. We end

the chapter with an exploration of some of the nice consequences one can derive from assuming

Conjecture 3.1, namely that Hn is maximal for all n.

We recall that K = F (x), charF 6= 2. Let f = y2 + x, Kn be the splitting field of fn over

K,Gn = Gal (Kn/K), and Hn = Gal (Kn/Kn−1). Let (Ω,F ,P, (Xn)n≥0)) be GP(f) as defined in

Section 4.1.

75
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5.1 The Galois Process for f is a Martingale

This section builds up to Theorem 5.3, which gives us the information we need to show the GP(f)

is a martingale. Before we arrive there, we establish some basic results. The proofs of these results

have the same flavor as that of the more complicated arguments of this chapter, including the proof

of Theorem 5.3.

We first recall a fact from Chapter 3 that makes frequent appearances in the proofs in this chapter.

First, we denote the roots of fn−1 by Rn−1 and the roots of fn by Rn. If Rn−1 = {β1, . . . β2n−1}

then

Rn =
{
±
√
−x+ β1, . . . ,±

√
−x+ β2n−1

}
. (5.1)

Note that in the language of Chapter 3, the partition C is simply{{
±
√
−x+ β1

}
, . . . ,

{
±
√
−x+ β2n−1

}}
= {{±r} : r ∈ Rn} . (5.2)

Recall that each g ∈ Gn permutes the subsets belonging to C. We make frequent use of the

fact that the permutation g induces on Rn−1 is the same as the permutation g induces on C. In

particular, the number of distinct subsets {±r}r∈Rn mapped to themselves by g is equal to the

number of elements of Rn−1 that g fixes.

We begin with a simple result that shows 0 is an absorbing state of GP(f).

Proposition 5.1. Let (Ω,F ,P, (Xn)n≥0) = GP(f), and m < n. Then

P(Xn = 0 | Xm = 0) = 1.

Proof: Using the explicit construction of GP(f) given in Section 4.1, the proposition follows from

this observation: if g ∈ Gn fixes no element of Rm, then there is a complete block system of Rn
such that g maps no block to itself. Hence g fixes no elements of Rn.

In order to be consistent with the “official” construction given in Chapter 4, i.e., the one using the

Daniell-Kolmogorov extension theorem, we must jump through a few more hoops. By the definition

of conditional probability, we must compute

P(Xm = 0, Xn = 0)
P(Xm = 0)

. (5.3)

Let S = A0 ×A1 × · · · ×An ⊂ Nn+1, where

Ai =

{0} if i = m

N otherwise
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Let S0 ⊂ Nn+1 be defined similarly, except we set An = {0}. Clearly S0 ⊂ S. From the basic

property of GP(f) given in (4.14), the expression in (5.3) is equal to

µn (S0)
µn (S)

where µn is the function defined in (4.11). From the definition of µn this is the same as

#v−1
n (S0)

#v−1
n (S)

. (5.4)

One easily sees that v−1
n (S) is non-empty. Indeed, G1

∼= S2, so any g ∈ Gn that extends (1 2) ∈ G1

must interchange the blocks of a two-block complete block system of Gi, i ≥ 2. Thus g has no fixed

points in Ri and it follows that vn(g) = (1, 0, 0, . . . , 0) ∈ S.

Now g ∈ v−1
n (S) if and only if g has no fixed points in Rm, and v−1

n (S0) consists of those

g ∈ v−1
n (S) that also have no fixed points in Rn. The Proposition then follows from the remark

made in the first paragraph of the proof. �

Since P( · | Xm = 0) defines a probability measure on Ω and a countable intersection of proba-

bility 1 events again has probability 1, it follows from Proposition 5.1 that

P(Xm+1 = 0, Xm+2 = 0, . . . | Xm = 0) = 1.

Thus 0 is an absorbing state of GP(f)

The main results of this chapter deal with conditional probabilities of GP(f), as does Proposition

5.1. In our main results, the equivalents of the set v−1
n (S) in the proof of Proposition 5.1 are unions

of cosets of Hn. Thus we warm up for the main events with results analyzing a single coset g0Hn.

Proposition 5.2. Let n ≥ 1, and suppose g0 ∈ Gn fixes t elements of Rn−1. Then the number of

elements of Rn fixed by any g ∈ g0Hn is an even integer 2w with 0 ≤ w ≤ t.

Proof: By (5.1), Rn may be partitioned into sets of the form {±r}. Thus the number of elements

of Rn fixed by any g ∈ Gn is an even integer between 0 and 2n. Moreover, if g(r) = r for some

r ∈ Rn, then g(r2 + x) = r2 + x. But from (5.1) one sees that r2 + x is in Rn−1. Thus the number

of elements of Rn fixed by g is at most twice the number of elements of Rn−1 fixed by g.

Note that an element of Hn induces the identity permutation on Rn−1. Since elements of g0Hn

differ from g0 only by an element of Hn, they all induce the same permutation on Rn−1 as g0.

In particular, they all fix t elements of Rn−1. Hence the number of elements of Rn fixed by any

g ∈ g0Hn is an even integer 2w with 0 ≤ w ≤ t. �

We now give a meatier result on the structure of a single coset g0Hn, which paves the way for our
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result that GP(f) is a martingale. The proof makes fundamental use of Corollary 3.23, providing a

reward for the hard work we did in Chapter 3.

Theorem 5.3. Suppose that g0 ∈ Gn fixes t elements of Rn−1, and consider g0Hn ∈ Gn/Hn. For

g ∈ Gn, let sn(g) denote the number of fixed points of g in Rn. Then

1
#Hn

∑
g∈g0Hn

sn(g) = t,

so that on average g ∈ g0Hn fixes t elements of Rn.

Proof: Consider γ ∈ Hn (cf. Corollary 3.23), which we recall maps r to −r for each r ∈ Rn.

Clearly γ has order 2. The group {e, γ} = 〈γ〉 acts by right multiplication on the set g0Hn, dividing

it into disjoint two-element orbits. We show that for each g ∈ g0Hn,

sn(g) + sn(gγ) = 2t. (5.5)

From this it follows that ∑
g∈g0Hn

sn(g) = t ·#Hn,

which proves the Theorem.

Fix g ∈ g0Hn, and let r ∈ Rn. Suppose first that g(r2) 6= r2. This obviously implies that g fixes

no element of {±r}. Since γ(r2) = r2, we have

gγ(r2) = g(r2) 6= r2.

Therefore gγ has no fixed points in {±r}.

Now suppose that g(r2) = r2. Clearly g either fixes both elements of {±r} or exchanges them.

On the other hand, γ exchanges the elements of {±r}. Therefore if g fixes the elements of {±r}

then gγ exchanges them, while if g exchanges the elements of {±r} then gγ fixes them. In either

case we have

(number of fixed points of g in {±r}) + (number of fixed points of gγ in {±r}) = 2. (5.6)

Finally we note that because g = g0h for some h ∈ Hn, g and g0 induce the same permutation

on Rn−1. The number of subsets {±r} ⊂ Rn that are mapped to themselves by g is thus the same

as the number mapped to themselves by g0. By (5.1) this is clearly equal to the number of elements

of Rn−1 fixed by g0, namely t. Using this fact and (5.6) we obtain (5.5). �

The next result uses Theorem 5.3 to establish that GP(f) is a martingale. The proof uses

reasoning similar to that of Lemma 5.1.
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Corollary 5.4. GP(f) is a martingale.

Proof: Denote GP(f) by (Ω,F ,P, (Xn)n≥0). By Definition 4.8 we must show that

E(Xn | X0, . . . , Xn−1) = Xn−1for all n.

Thus for any integers t0, . . . , tn−1 such that

P(X0 = t0, . . . , Xn−1 = tn−1) > 0, (5.7)

we must show that

E(Xn | X0 = t0, . . . , Xn−1 = tn−1) = tn−1. (5.8)

The left-hand side of (5.8) is simply
∑
k k · P(Xn = k | X0 = t0, . . . , Xn−1 = tn−1). Therefore by

the definition of conditional probability, (5.8) becomes∑
k

k · P(X0 = t0, . . . , Xn−1 = tn−1, Xn = k)
P(X0 = t0, . . . , Xn−1 = tn−1)

. (5.9)

Let S = {t0}×{t1}×· · ·×{tn−1}×N ⊂ Nn+1, and let Sk = {t0}×{t1}×· · ·×{tn−1}×{k} ⊂ Nn+1.

From the basic property of GP(f) given in (4.14), the expression in (5.9) is equal to∑
k

k · µn (Sk)
µn (S)

where µn is the function defined in (4.11). From the definition of µn this is the same as∑
k

k · #v−1
n (Sk)

#v−1
n (S)

.

This in turn may be rewritten as

1
#v−1

n (S)

∑
k

k ·#v−1
n (Sk) (5.10)

From (5.7) it follows that v−1
n (S) is nonempty, so the denominators in the above two expressions

are non-zero. Now g ∈ v−1
n (S) if and only if g fixes tn−1 elements of Rn−1, tn−2 elements of Rn−2,

and so on down to t0 elements of R0. Clearly v−1
n (Sk) consists of those g ∈ v−1

n (S) that also fix k

elements of Rn. Thus (5.10) becomes

1
#v−1

n (S)

∑
k

k ·#
{
g ∈ v−1

n (S) : g fixes k elements of Rn
}

and this in turn is simply

1
#v−1

n (S)

∑
g∈v−1

n (S)

(number of fixed points of g in Rn) . (5.11)
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Expression (5.11) is just the number of elements of Rn that g ∈ v−1
n (S) fixes on average.

It is important to note that if h ∈ Hn, then h induces the identity permutation on each Ri for

0 ≤ i ≤ n − 1. Thus if g ∈ v−1
n (S) then so is gh. It follows that v−1

n (S) is a union of cosets of

Hn. We may now apply Theorem 5.3. By definition, each g ∈ v−1
n (S) fixes tn−1 elements of Rn−1.

Theorem 5.3 then proves that (5.11) is equal to tn−1. �

In view of Corollary 5.4, we call GP(f) a Galois martingale. One can repeat our construction

of GP(f) for an arbitrary Galois tower over K and obtain a perfectly good process that one could

fairly call a Galois process. However, not all Galois processes are martingales; we refer the ones that

are as Galois martingales. Our GP(f) is the first known member of this new class of processes. This

gives some justification for the first two words of the title of this thesis.

The fact that GP(f) is a martingale gives us much information about its eventual behavior.

Theorem 4.9 shows that

P
(
{ω ∈ Ω | lim

n→∞
Xn(ω) exists}

)
= 1. (5.12)

In GP(f), Xn is integer valued, so (5.12) implies that with probability 1 the sequence (Xn(ω))n≥0

is eventually constant. This strong statement plays a central role in proving our main results.

5.2 The Galois Process for f Converges to 0

In this section, we establish

P (Xn = 0 for all n sufficiently large) = 1. (5.13)

As noted in the discussion at the beginning of Chapter 4 (page 60) our main result (Theorem 1.7)

is equivalent to lim
n→∞

P(Xn > 0) = 0, so (5.13) quickly leads to a proof of our main result. Since

GP(f) converges (5.12), it is enough to show that for any t ≥ 1,

P (Xn = t for all n sufficiently large) = 0.

Consider for a moment a fixed t ≥ 1. Note that

{Xn = t for all n sufficiently large } =
∞⋃
m=1

{Xn = t for all n ≥ m}.

Thus to prove (5.13) it is enough to show that for each m ≥ 0,

P (Xn = t for all n ≥ m) = 0. (5.14)
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To accomplish this, we must draw on the results of Chapter 3. Specifically, Theorem 3.2 proves that

Hn is maximal for n squarefree. When Hn is maximal we may explicitly compute

P(Xn = t | Xn−1 = t,Xn−2 = t, . . . ,Xm = t).

We do this in the following Lemma and Proposition.

Lemma 5.5. Let t ≥ 1 and suppose that g0 ∈ Gn fixes t elements of Rn−1. Suppose further that

Hn is maximal. Then we have

# {g ∈ g0Hn : g fixes u elements of Rn} =


(
t
w

)
2(2n−1−t) if u = 2w for some 0 ≤ w ≤ t

0 otherwise

Proof: By Proposition 5.2, the number of elements of Rn fixed by any g ∈ g0Hn is an even integer

2w with 0 ≤ w ≤ t. Thus we suppose u is of this form.

The maximality of Hn implies its order is 22n−1
. By (5.1), this implies that for each pair

{±r} ⊂ Rn, there exists a unique hr ∈ Hn that maps r to −r and fixes all other elements of Rn.

Denote by M the set

{r ∈ Rn : g0(r2) = r2}.

Note that r2 + x is an element of Rn−1, and r ∈ M if and only if g0(r2 + x) = r2 + x. Since g0

fixes t elements of Rn−1, we have M = {±r1} ∪ · · · ∪ {±rt} for some elements r1, . . . , rt of Rn. In

particular, #M = 2t.

Now let J be the subgroup of Hn that fixes each element of M . There are 2n−1 − t elements

of Rn−1 that are not fixed by g0, and this implies that there are 2n−1 − t pairs {±r} ⊂ Rn not

contained in M . The maximality of Hn therefore shows

#J = 2(2n−1−t). (5.15)

Consider h ∈ Hn. Since h fixes r2 for each r ∈ Rn, we have g0h(r2) 6= r2 for any r ∈ Rn −M

(by the definition of M). Therefore g0h cannot fix any element of Rn −M . Moreover, any j ∈ J

fixes all elements of M . It follows from these two observations that for any j ∈ J , g0hj and g0h fix

the same number of elements of Rn. Thus every element of a set of the form g0hJ has the same

number of fixed points in Rn.

Recalling that M = {±r1} ∪ · · · ∪ {±rt}, we can write any h ∈ Hn as

(hr1)e1(hr2)e2 · · · (hrt)
etj,

where ei = 0 or 1 for each i and j ∈ J . Thus any coset g0hJ may be written uniquely as

g0(hr1)e1(hr2)e2 · · · (hrt
)etJ. Moreover, all elements of this coset will have exactly

2t− (2e1 + · · ·+ 2et) (5.16)
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fixed points in Rn. The number of ways (5.16) can equal 2w is precisely
(
t
w

)
. The Lemma then

follows from (5.15). �

The next Proposition gives, for n with Hn maximal, an explicit expression of the probability

distribution of Xn given past behavior. However, the Proposition does not hold for all possible past

behaviors: we must assume that the value of Xn−1 is known. Under the additional hypothesis that

Hn is maximal for all n, we can dispense with this assumption and GP(f) becomes a Markov chain

(see Proposition 5.9).

Proposition 5.6. Let (Ω,F ,P, (Xn)n≥0) = GP(f), and suppose that Hn is maximal. Suppose also

that m1 < m2 < · · · < mk, with mk = n− 1. Then for any positive integers t1, . . . , tk with

P(Xm1 = t1, . . . , Xmk
= tk) > 0

we have

P(Xn = u | Xm1 = t1, . . . , Xmk
= tk) =


(
tk
w

)
1

2tk
if u = 2w for some 0 ≤ w ≤ tk

0 otherwise
(5.17)

Proof: The argument is similar to the proof of Corollary 5.4. To prove the Proposition, we must

compute
P(Xm1 = t1, . . . , Xmk

= tk, Xn = u)
P(Xm1 = t1, . . . , Xmk

= tk)
. (5.18)

Let S = A0 ×A1 × · · · ×An ⊂ Nn+1, where

Ai =

 {tmj
} if i = mj for some j

N otherwise

Let Su be defined similarly to S, except we set An = {u}. Clearly Su ⊂ S. From the basic property

of GP(f) given in (4.14), the expression in (5.18) is equal to

µn(Su)
µn(S)

where µn is the function defined in (4.11). From the definition of µn this is the same as

#v−1
n (Su)

#v−1
n (S)

. (5.19)

Note that g ∈ v−1
n (S) if and only if g fixes tk elements of Rmk

= Rn−1, tk−1 elements of Rmk−1 ,

and so on down to t1 elements of Rm1 . Also, v−1
n (Su) consists of those g ∈ v−1

n (S) that fix u elements

of Rn. By Proposition 5.2, v−1
n (Su) = ∅ if u is not of the form 2w for 0 ≤ w ≤ tk. Thus (5.19)

equals 0 unless u is of this form. We now assume u = 2w for some 0 ≤ w ≤ tk, and we compute

(5.19).
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Note that if h ∈ Hn, then h induces the identity permutation on each of Rmk
, Rmk−1 , . . . ,Rm1 .

Thus if g ∈ v−1
n (S) then so is gh. This shows that v−1

n (S) is a union of cosets of Hn. By Lemma 5.5,

in each coset contained in v−1
n (S) there are

(
tk
w

)
2(2n−1−tk) elements of v−1

n (Su). On the other hand,

since Hn is maximal there are 22n−1
elements in each coset of Hn. It follows that (5.19) is equal to(

tk
w

)
2(2n−1−tk)

22n−1 ,

which proves the Proposition. �

A consequence of Proposition 5.6 is that when Hn is maximal, for any m < n and 1 ≤ w ≤ 2m−1

we have

P(Xn = 2w | Xm = 2w, . . . ,Xn−1 = 2w) =
(

2w
w

)
1

4w
, (5.20)

provided of course that P(Xm = 2w, . . . ,Xn−1 = 2w) > 0.

This is the crucial ingredient in establishing equation (5.14). Denote by cw the right-hand side

of equation (5.20). We wish to give an upper bound for cw when w ≥ 1. To do this, we note that

cw+1

cw
=

1
4

(2w + 2)(2w + 1)
(w + 1)2

=
4w2 + 6w + 2
4w2 + 8w + 4

,

and the right-hand side of this equation is less than 1 for w ≥ 1. Since c1 = 1/2, we have cw ≤ 1/2

for 1 ≤ w ≤ 2m−1. Thus we have proved the following Lemma:

Lemma 5.7. Suppose Hn is maximal. Then for any m < n and 0 ≤ w ≤ 2m−1 we have

P(Xn = 2w | Xm = 2w, . . . ,Xn−1 = 2w) ≤ 1
2
.

Now, armed with Lemma 5.7, we present a theorem that proves equation (5.14). Note that

Theorem 3.2 is instrumental in the proof.

Theorem 5.8. Let (Ω,F ,P, (Xn)n≥0) = GP(f). Then for any t ≥ 1 and m ≥ 1,

P (Xn = t for all n ≥ m) = 0.

Proof: If t is odd, then it follows from Proposition 5.2 that P(Xn = t) = 0 for all n ≥ 1. Also,

if t > 2m then P(Xm = t) = 0, and the Theorem is true. We now assume t = 2w for some

0 < w ≤ 2m−1.

Let Am be the event {Xn = 2w for all n > m}. For each j > m, let Bm,j be the event

{Xn = 2w for n = m,m+ 1, . . . , j}.

We note that for all j > m, Bm,j ⊇ Bm,j+1. Also, we have

Am =
∞⋂

j=m+1

Bm,j .
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By Proposition 4.12 this gives P(Am) = lim
j→∞

P(Bm,j).

To give an upper bound for P(Bm,j), we let Cn be the event {Xn = 2w}. We now have

Bm,j =
j⋂

n=m

Cn.

If P(Cj−1 ∩ · · · ∩ Cm) = 0 then clearly P(Bm,j) = 0. Assuming P(Cj−1 ∩ · · · ∩ Cm) 6= 0, we have

P

(
j⋂

n=m

Cn

)
= P(Cm)P(Cm+1 | Cm) · · ·P(Cj | Cm ∩ · · · ∩ Cj−1) (5.21)

by the definition of conditional probability.

We now apply Lemma 5.7, which states that if Hn is maximal then

P(Cn | Cm ∩ · · · ∩ Cn−1) ≤ 1/2.

Thanks to Theorem 3.2 we know that Hn is maximal when n is squarefree. Denoting by S the set

of squarefree positive integers, (5.21) yields

P(Bm,j) ≤
(

1
2

)#(S∩{m,...,j})

The infinitude of S now gives us lim
j→∞

P(Bm,j) = 0, which completes the proof. �

Proof of Theorem 1.7: Theorem 5.8 implies that for any t ≥ 1,

P

( ∞⋃
m=1

{Xn = t for all n ≥ m}

)
= 0. (5.22)

GP(f) is a martingale by Corollary 5.4, and thus converges. Its random varibles are integer valued,

so each sequence (Xn(ω))n∈N is therefore eventually constant with probability 1. Hence (5.22) shows

P

( ∞⋃
m=1

{Xn = 0 for all n ≥ m}

)
= 1.

Clearly for any m ≥ 1,

{Xn = 0 for all n ≥ m} ⊆ {Xn = 0 for all n ≥ m+ 1}.

Therefore by Proposition 4.12 we have

lim
m→∞

P({Xn = 0 for all n ≥ m}) = 1.

Note that {Xm = 0} ⊇ {Xn = 0 for all n ≥ m}, giving

lim
m→∞

P({Xm = 0}) = 1.
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Taking the complement of the events {Xm = 0} now yields lim
m→∞

P({Xm > 0}) = 0. By equation

(4.4) this implies

lim
n→∞

1
#Gn

# {g ∈ Gn | g has a fixed point in Rn} = 0. (5.23)

Finally, we specialize to the case F = Fp, p 6= 2. By Theorem 2.18 the equation (5.23) in this case

implies that lim
n→∞

δ(In) = 0. Corollary 2.6 then gives our main result, namely δ(H(Fp)) = 0. The

proof of Theorem 1.7 is complete. �

We note that by Theorem 2.18, equation (5.23) also shows that lim
n→∞

D(In) = 0, provided that

Kn/K is geometric for all n. By Corollary 3.40 we know this is the case when p ≡ 3 mod 4. Therefore

by Corollary 2.6, D(H(Fp)) = 0 when p ≡ 3 mod 4. Assuming Conjecture 2.17 this holds for all

p 6= 2. These remarks prove the statement following Theorem 1.7.

5.3 Consequences of Conjecture 3.1

We now examine some consequences of Conjecture 3.1, which states that Hn is maximal for all n.

With this assumption we show that GP(f) is a particularly simple branching process (see Section

4.3).

Proposition 5.9. Suppose that Conjecture 3.1 holds, i.e. Hn is maximal for all n. Then GP(f) is

a Markov chain.

Proof: Let (Ω,F ,P, (Xn)n≥0) = GP(f). We must show that for any nonnegative integers k,

m1 < m2 < · · · < mk, and s1, . . . , sk,

P(Xmk
= sk | Xm1 = s1, . . . , Xmk−1 = sk−1) = P(Xmk

= sk | Xmk−1 = sk−1). (5.24)

When mk−1 = mk − 1, (5.24) follows from Proposition 5.6 (note that the expression on the right-

hand side of (5.17) depends only on u and tk). To show (5.24) follows from this is a standard exercise

in elementary probability. We give it here for completeness.

We proceed by induction on the quantity mk − mk−1. The base case was established above.

Suppose (5.24) holds for all m1 < m2 < · · · < mk with mk −mk−1 = i, and choose m1 < m2 <

· · · < mk with mk − mk−1 = i + 1. We note that the events {Xmk−1+1 = j} partition Ω, and it

follows that if A ⊂ Ω is an event then

P(A) =
∑
j∈J

P(A ∩ {Xmk−1+1 = j}). (5.25)

We may thus rewrite the left-hand side of (5.24) as follows:∑
j∈J

P(Xm1 = s1, . . . , Xmk−1 = sk−1, Xmk−1+1 = j,Xmk
= sk)

P(Xm1 = s1, . . . , Xmk−1 = sk−1)
.
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Multiplying numerator and denominator of this expression by

P(Xm1 = s1, . . . , Xmk−1 = sk−1, Xmk−1+1 = j)

yields

∑
j∈J

(
P(Xmk

= sk | Xm1 = s1, . . . , Xmk−1 = sk−1, Xmk−1+1 = j)

· P(Xmk−1+1 = j | Xm1 = s1, . . . , Xmk−1 = sk−1)
)

(5.26)

By our inductive hypothesis, the first part of this product is equal to

P(Xmk
= sk | Xmk−1+1 = j),

and this in turn is equal to P(Xmk
= sk | Xmk−1 = sk−1, Xmk−1+1 = j). Also by the inductive

hypothesis, the second part of the product is equal to P(Xmk−1+1 = j | Xmk−1 = sk−1). Hence

(5.26) is equal to∑
j∈J

(
P(Xmk

= sk | Xmk−1 = sk−1, Xmk−1+1 = j) ·P(Xmk−1+1 = j | Xmk−1 = sk−1)
)
.

Using the definition of conditional probability, this is easily seen to be∑
j∈J

P(Xmk
= sk, Xmk−1+1 = j | Xmk−1 = sk−1),

which is equal to P(Xmk
= sk | Xmk−1 = sk−1) by (5.25). �

Proposition 5.10. Suppose that Conjecture 3.1 holds. Then GP(f) is a branching process.

Proof: Let (Ω,F ,P, (Xn)n≥0)) = GP(f). We begin by noting that G1 = S2, so that P(X1 = 0) =

1/2 = P(X1 = 2). Thus X1 may be considered the result of flipping a fair coin, with two points

awarded for heads and zero for tails. Letting g be the probability generating function of X1, we

clearly have

g(z) =
1
2

+
1
2
z2.

Now let Z be the sum of i independent random variables with the same distribution as X1. It is not

hard to see that for 0 ≤ j ≤ 2i,

P(Z = j) =


(
i
k

)
1
2i if j = 2k for some 0 ≤ k ≤ i

0 otherwise
(5.27)

By Proposition 5.9, Conjecture 3.1 implies that GP(f) is a Markov chain. We now draw on Proposi-

tion 5.6, which holds for all n by our assumption of Conjecture 3.1. The right-hand side of equation
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(5.17) does not depend on n, which shows that GP(f) is time-homogenous. It is clearly non-negative.

Finally, Proposition 5.6 gives

pij = P(Xn = j | Xn−1 = i) =


(
i
k

)
1
2i if j = 2k for some 0 ≤ k ≤ i

0 otherwise

for all i > 0 such that P(Xn−1 = i) > 0. This is the same as the distribution in (5.27), and we know

from Proposition 5.1 that 0 is an absorbing state. Thus GP(f) satisfies Definition 4.11. �

One immediate consequence of Proposition 5.10 is that we can determine the probability e of

eventual extinction of GP(f) under the assumption that Hn is maximal for all n. The probability

generating function of X1 is g(z) = 1
2 (1 + z2), and by Proposition 4.15, e is the smallest non-zero

root of g(z) − z = 1
2 (1 − 2z + z2). This clearly gives e = 1, which implies Theorem 1.7. Thus

establishing that Hn is maximal for all n would allow us to use the above reasoning to arrive at a

proof of Theorem 1.7 more expeditiously. However, a proof of the maximality of all Hn has been

elusive; see the discussion on page 56.

We close with an examination of the values P(Xn > 0) under the assumption of Conjecture 3.1.

First we give some reminders of the algebraic significance of P(Xn > 0). Recall that by definition

In is the set of α ∈ Fp such that 0 has an nth preimage in Fp(α) under iteration of fα = x2 + α:

In = {α ∈ Fp : f−nα (0) ∩ Fp(α) 6= ∅}.

By the remark on page 85 following the proof of Theorem 1.7 and the fact that Conjecture 3.1

implies Kn/K geometric for all n (Corollary 3.39), we have that D(In) exists for all n. By Theorem

2.18 and equation (4.4) we then have

D(In) =
1

#Gn
# {g ∈ Gn | g has a fixed point in Rn} = P(Xn > 0). (5.28)

The definition of natural density says that

D(In) = lim
k→∞

#(In ∩ Fpk)
pk

.

By the prime number theorem for polynomials in Fp[x] [32, Proposition 2.2], for large k almost all

elements of Fpk have degree k. Hence

#(In ∩ Fpk) ≈ #{α ∈ Fpk : f−nα (0) ∩ Fpk 6= ∅}.

We sum up this discussion in the following statement: P(Xn > 0) is approximately equal to the

proportion, for large k, of α ∈ Fpk such that 0 has an nth preimage in Fpk under iteration of x2 +α.
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This proportion is easily computed as long as k is not too large. For notational convenience we

define:

h(p, k, n) =
#{α ∈ Fpk : f−nα (0) ∩ Fpk 6= ∅}

pk
. (5.29)

We thus have shown P(Xn > 0) = lim
k→∞

h(p, k, n).

The following corollary of Proposition 5.10 gives a simple formula for P(Xn > 0).

Corollary 5.11. If p ≡ 3 mod 4, then 1−P(Xn > 0) is equal to the nth iterate of 1
2 + 1

2z
2 evaluated

at z = 0. More generally, this is true if Conjecture 3.1 holds.

Remark: Corollary 5.11 may be modified to hold in the case where it is only known that Hn is

maximal for all n ≤ N . Naturally in this case the conclusion only holds for n ≤ N .

Proof of Corollary 5.11: Let (Ω,F ,P, (Xn)n≥0)) = GP(f). Under the assumption of Conjecture

3.1, Proposition 5.10 shows that GP(f) is a branching process. Therefore by Proposition 4.14 the

probability generating function of Xn is the nth iterate of the pgf g(z) = 1
2 + 1

2z
2 of X1. Thus we

have that P(Xn = 0) is gn(0). �

In light of Corollary 5.11 and the discussion preceding it, assuming Hm is maximal for m ≤ n

we can measure for various values of p the quality of the approximation of lim
k→∞

h(p, k, n) given by

P(Xn > 0). The assumption that Hm is maximal for m ≤ n is not hard to verify in many cases.

Indeed, as noted in the discussion on page 56, Hm is maximal for m ≤ 7, and for specific p one can

computationally verify up to m = 16 thanks to Theorem 3.38. Also, Theorem 3.2 shows that Hm is

maximal for all m as long as p ≡ 3 mod 4.

The table on the following page presents data on h(p, k, n) for n ≤ 10 over three finite fields of

different characteristic and different degree. One can show that Hn is maximal for n ≤ 10 in all

three of these characteristics, so P(Xn > 0) does indeed approximate lim
k→∞

h(p, k, n) for n ≤ 10. The

values in the second column are generated using Corollary 5.11.

The rightmost column of the table is perhaps surprising. Even though the extension has degree

1, the values of h(p, n, k) are for the most part closer to lim
k→∞

h(p, k, n) than are the values of

h(p, k, n) for the other extensions, of degree 6 and 9. This suggests that, assuming Conjecture 3.1,

the values P(Xn > 0) also equal lim
p→∞

h(p, n, 1), where the limit is taken through primes. A proof of

this statement would require a kind of “horizontal” version of the second form of the Tchebotarev

Density theorem. Such a theorem may be achievable by paying careful attention to the dependencies

of the error term in the proof of Tchebotarev (see [32, Theorem 9.13B]).
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n lim
k→∞

h(p, k, n) h(3, 9, n) h(5, 6, n) h(22307, 1, n)

1 0.5000 0.5000 0.5000 0.5000

2 0.3750 0.3750 0.3750 0.3750

3 0.3047 0.3060 0.2983 0.3044

4 0.2583 0.2520 0.2515 0.2595

5 0.2249 0.2199 0.2239 0.2265

6 0.1996 0.1947 0.1997 0.2006

7 0.1797 0.1751 0.1777 0.1807

8 0.1636 0.1576 0.1602 0.1649

9 0.1502 0.1470 0.1493 0.1512

10 0.1389 0.1370 0.1391 0.1393

Assuming Hn maximal for all n, we can use Theorem 4.16 to determine the rate at which

lim
n→∞

lim
k→∞

h(p, n, k) approaches 0 as n → ∞. The probability generating function of X1 is g(z) =
1
2 + 1

2z
2, and obviously g′′(1) = 1. Theorem 4.16 then gives

lim
n→∞

(
P(Xn > 0)− 2

n

)
= 0,

and by the above remarks P(Xn > 0) = lim
k→∞

h(p, n, k).

We close with a comment on H(Fp). Assuming Conjecture 3.1 (and unconditionally for p ≡

3 mod 4), we have shown that D(H(Fp)) = 0, which is equivalent to

#(H(Fp) ∩ Fpk) = o(pk),

where the little-o notation indicates a function whose limit is 0 when divided by pk. It would

be interesting to obtain a lower bound for #(H(Fp) ∩ Fpk). It follows from our work here that

lim sup
k→∞

#(H(Fp) ∩ Fpk) =∞. This is because the roots of Φn are all contained in H(Fp) (they are

the points of primitive Mandelbrot period n in the terminology of Section 3.4), and the Φn are of

positive degree and pairwise relatively prime by Proposition 3.28. However, it is not immediately

clear that lim
k→∞

#(H(Fp) ∩ Fpk) = ∞, and even if this holds there seems to be no obvious way to

give a lower bound for the rate of growth of #(H(Fp) ∩ Fpk).
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