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A classic problem: let E be an elliptic curve defined over Q, and
consider the extension K∞ of Q obtained by adjoining the torsion
points E [pn] for all n ≥ 1.

Let G∞ be the Galois group of K∞ over Q.

Because E [pn] ∼= (Z/pZ)2, we have G∞ ↪→ GL2(Zp).

Problem: What is [GL2(Zp) : G∞]?
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Now suppose that E has complex multiplication, i.e. there is an
endomorphism α of E that is not [m] for any m.

Then G∞ must commute with α, and thus injects into either

a Borel subgroup

[
∗ ∗
0 ∗

]
or a Cartan subgroup

[
∗ 0
0 ∗

]

(assuming we replace Q by the CM field of E , conjugate
appropriately, and possibly allow the coefficients to live in the ring
of integers of a quadratic extension of Qp)

In fact, for all but finitely many p, G∞ injects into a Cartan
subgroup C .
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Problem: What is [C : G∞]?

Answer: (Serre 1972) If E has no CM, then [GL2(Zp) : G∞] <∞.
If E has CM and G∞ ↪→ C , then [C : G∞] <∞. Moreover, in
either case for all but finitely many p the index is 1.
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Dynamical analogues

In the previous setup, we could have defined K∞ to be obtained
from Q by adjoining all preimages of O under iteration of the map
[p] on E .

Let’s replace E by P1, and replace [p] by a rational map φ ∈ Q(x).

Let Kn = Q(φ−n(0), K∞ =
⋃

n Kn, G∞ = Gal(K∞/Q).

Unlike the elliptic curves case, φ−n(0) has no group structure, but
T0 :=

⋃
n φ
−n(0) has a natural tree structure. So G∞ ↪→ Aut(T0).
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First two levels of preimage tree T0 for φ(x) = x2+1
x , initial point

0.
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Problem: Is [Aut(T0) : G∞] <∞?

Even restricting to quadratic polynomials, there are very few
results. It is known that [Aut(T0) : G∞] <∞ for

I φ(x) = x2 + a, for a > 0, a ≡ 1, 2 mod 4 and
a < 0, a ≡ 0 mod 4 (Stoll 1992),

I φ(x) = x2 − ax + a, a ∈ Z
φ(x) = x2 + ax − 1, a ∈ Z \ {0, 2} (RJ 2008).
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Dynamical complex multiplication

When φ commutes with another map α ∈ Q(x) fixing 0, then the
action of G∞ on T0 must commute with the action of α on T0.

Ritt (1922): except for very unusual φ, α must have degree 1, and
thus be a Mobius transformation.

Let Aut(φ) be the group of Mobius transformations commuting
with φ.
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Dynamical complex multiplication, quadratic case

If deg φ = 2, then apart from two exceptional maps, either
#Aut(φ) = 1 or #Aut(φ) = 2.

The Galois group of Q (
⋃

n φ
−n(b)) over Q is determined by the

PGL2(Q)-conjugacy class of the pair (φ, b).

Proposition

Let (φ, b) consist of a quadratic rational function φ and basepoint
b ∈ P1(Q) such that φ commutes with a Mobius transformation α
of order 2 and α(b) = b. Then (φ, b) is conjugate to

(
k(x2 + m)

cx
, 0

)

for some k ,m, c ∈ Z.
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Fix φ = k(x2+m)
cx and α(x) = −x .

Then G∞ ↪→ C (α), where C (α) is the centralizer in Aut(T0) of
the involution induced by α.

Remark
Let T0,n be the truncation of T0 to the first n levels only, and
define Cn(α) similarly. Then Cn(α) contains a subgroup of index
two that is isomorphic to Aut(T0,n−1).
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C2(α) = {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}
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Theorem (RJ-Michelle Manes)

Let φ = k(x2+1)
x for k ∈ Z, and define pn(x) to be the numerator

of φn(x). Suppose that for all n ≥ 2, kpn(1) is not a square in Z.
Then [C (α) : G∞] <∞.

Remark: pn(1) is the numerator of the nth term of the orbit of 1,
which is a critical point of φ (the other is -1).

Example

If k = 1, then pn(1) is the left coordinate in the recurrence given by
(r0, s0) = (1, 1), (rn, sn) = (r2

n−1 + s2
n−1, rn−1sn−1), which proceeds

(1, 1), (2, 1), (5, 2), (29, 10), (941, 290), . . .
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One can check that in the above example, pn(1) ≡ 2 mod 3 for all
n ≥ 2, so the Theorem applies.

Corollary

Suppose that φ = k(x2+1)
x and k mod 24 6∈ {2, 6, 8, 12, 14, 18, 20}.

Then [C (α) : G∞] <∞.

Proof: Find p such that for k satisfying certain congruences
modp, pn(1) is a fixed non-square modp for all n ≥ 2.
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Theorem (RJ-Michelle Manes)

Let φ = k(x2+1)
x for k ∈ Z, and suppose that pn(1) is not a square

for all n ≥ 2. Let vp denote the p-adic valuation, and assume in
addition that vp(k) = 0 for all primes p dividing some pj(1) for
ψ = (x2 + 1)/x. Then G∞ ∼= C (α).

So G∞ ∼= C (α) for k = 1, 3, 7, 9, 11, 13, 17, 19, 21, . . ..

Remark: Recall that pj(1) for ψ = (x2 + 1)/x is given by the left
coordinate in the recurrence (r0, s0) = (1, 1),
(rn, sn) = (r2

n−1 + s2
n−1, rn−1sn−1). Thus a prime dividing some

pj(1) must be the sum of two squares, and therefore is 1 mod 4.

Moreover, one can show the natural density of the set of primes
dividing some pj(1) is zero.
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Proof strategy:

1. Show that if there exists a prime p ∈ Z that ramifies in
Kn := K (φ−n(0)) but not in Kn−1 := K (φ−(n−1)(0)), then
Gal(Kn/Kn−1) ∼= (ker Cn(α)→ Cn−1(α)).

2. Show that Disc pn is divisible only by primes dividing kpn(1)
(c.f. talk of John Cullinan).

3. Use the fact that gcd(kpi (1), kpj(1)) is a power of k (since
φ(0) =∞ and φ(∞) =∞) to show that if δn is not a square,
then apart from finitely many exceptional n, there is some p
with vp(kpn(1)) odd and vp(kpi (1)) = 0 for i < n. This
proves the finite index theorem.

4. Assume that vq(k) = 0 for all q dividing pj(1) for
ψ = (x2 + 1)/x . Show that in this case kpn(1) is divisible to
an odd power by a prime not dividing k , for all n.
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an odd power by a prime not dividing k , for all n.
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Galois problems
Theorems for quadratic rational functions

Proof strategy:

1. Show that if there exists a prime p ∈ Z that ramifies in
Kn := K (φ−n(0)) but not in Kn−1 := K (φ−(n−1)(0)), then
Gal(Kn/Kn−1) ∼= (ker Cn(α)→ Cn−1(α)).

2. Show that Disc pn is divisible only by primes dividing kpn(1)
(c.f. talk of John Cullinan).

3. Use the fact that gcd(kpi (1), kpj(1)) is a power of k (since
φ(0) =∞ and φ(∞) =∞) to show that if δn is not a square,
then apart from finitely many exceptional n, there is some p
with vp(kpn(1)) odd and vp(kpi (1)) = 0 for i < n. This
proves the finite index theorem.

4. Assume that vq(k) = 0 for all q dividing pj(1) for
ψ = (x2 + 1)/x . Show that in this case kpn(1) is divisible to
an odd power by a prime not dividing k , for all n.
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