Galois actions on preimage trees

Rafe Jones

College of the Holy Cross

July 23, 2009

Rafe Jones Galois actions on preimage trees

イロン イヨン イヨン イヨン

æ

Motivating problem: prime divisors of polynomial orbits

Let $f \in \mathbb{Z}[x]$, and denote the *n*th iterate of f by f^n .

Let $O_f(a) = \{f^n(a) : n = 0, 1, 2, ...\}$ denote the orbit of $a \in \mathbb{Z}$ under f. The orbits of f can hold great number-theoretic interest.

Examples:

•
$$f(x) = (x - 1)^2 + 1 = x^2 - 2x + 2$$
.

 $O_f(3) = \{3, 5, 17, 257, 65537, \ldots\}.$ Fermat numbers ($F_n = 2^{2^n} + 1$).

►
$$f(x) = x^2 - x + 1$$
.

 $O_f(2) = \{2, 3, 7, 43, 1807, \ldots\}$ Sylvester's sequence $(s_0 = 2, s_n = s_0 \cdots s_{n-1} + 1)$.

イロト イポト イヨト イヨト

Problem of recurrent interest: show various sequences have infinitely many prime terms.

Dirichlet: $(cn + d)_{n \ge 1}$ contains infinitely many primes (provided (c, d) = 1).

Open problems: show $(n^2 + 1)_{n \ge 1}$ contains infinitely many primes. Show the Fibonacci sequence contains infinitely many primes.

Conjecture (Fermat)

 F_n is prime for all n

Slightly Revised Conjecture

 F_n is composite for all $n \ge 5$.

イロン イヨン イヨン イヨン

Rather than investigate prime terms in polynomial orbits, we consider the set of all primes dividing at least one term of a given orbit:

$$P(O_f(a)) = \{p \text{ prime } : p \text{ divides some element of } O_f(a)\}$$

(Can extend to rational functions by considering p dividing the numerator of some element of the orbit.)

By the *natural upper density* of a set of primes $S \subset \mathbb{Z}$, we mean

$$D(S) = \limsup_{x \to \infty} \frac{\#\{p \in S : p \le x\}}{\#\{p : p \le x\}},$$

Our main affair is to determine $D(P(O_f(a)))$ in various cases.

イロト イポト イヨト イヨト

Main Theorem (RJ, RJ-Manes)

The following $f \in \mathbb{Q}(x)$ satisfy $D(P(O_f(a))) = 0$ for all $a \in \mathbb{Z}$:

•
$$x^2 - kx + k$$
 for $k \in \mathbb{Z}$

•
$$x^2 - kx + 1$$
 for $k \in \mathbb{Z} \setminus \{0, 2\}$

•
$$x^2 + k$$
 for $k \in \mathbb{Z} \setminus \{-1\}$

• $\frac{k(x^2+1)}{x}$ for odd $k \in \mathbb{Z}$ having no prime factor $\equiv 1 \mod 4$

イロン イヨン イヨン イヨン

2

Part I: Connections with Galois Theory Part II: Arboreal Galois representations A survey of results on arboreal representations Part III: counting elements with fixed points

Connections with Galois theory

Lemma

Fix $n \ge 1$ and $f \in \mathbb{Z}[x]$, and let

 $d_n = 1 - D(p : f^n(x) \equiv 0 \mod p$ has no solution in \mathbb{Z}).

Then for any $a \in \mathbb{Z}$, $D(P(O_f(a))) < d_n$.

Proof sketch: $f^n(x) \equiv 0 \mod p$ has no solution implies $p \nmid f^m(a)$ for all $m \ge n$. There are only finitely many p for which $p \mid f^m(a)$ for some m < n.

・ロン ・回と ・ヨン・

Lemma

Let G_n be the Galois group of the splitting field of $f^n(x)$ over \mathbb{Q} , and recall G_n acts naturally on the roots of f^n . We have

$$d_n = \frac{1}{\#G_n} \# \{ \sigma \in G_n : \sigma \text{ fixes at least one root of } f^n \}.$$

Proof: Classical application of the Chebotarev Density theorem. Conclusion: $D(P(O_f(a)))$ is bounded above by

$$\frac{1}{\#G_n}\#\{\sigma\in G_n:\sigma \text{ fixes at least one root of } f\}.$$

Remark: A similar statement holds for $f \in \mathbb{Q}(x)$, provided that $f(\infty) = \infty$.

イロン イヨン イヨン イヨン

Part I: Connections with Galois Theory Part II: Arboreal Galois representations A survey of results on arboreal representations Part III: counting elements with fixed points

Arboreal representations

Let K be a number field, $f \in K(x)$, and $b \in \mathbb{P}^1(K)$.

The preimage tree of f with root b has as vertices

$$\bigsqcup_{n\geq 1}f^{-n}(b),$$

with two elements connected iff f maps one to the other.

・ロト ・日本 ・モート ・モート

Part I: Connections with Galois Theory Part II: Arboreal Galois representations A survey of results on arboreal representations Part III: counting elements with fixed points

First two levels of preimage tree of $f(x) = \frac{x^2+1}{x}, b = 0.$

イロト イヨト イヨト イヨト

Let $K_n = K(f^{-n}(b))$, $G_n = \operatorname{Gal}(K_n/K)$, and $G_{\infty} = \varprojlim G_n$. All these objects depend on f and b, but to ease notation we don't make explicit reference to this dependence.

Let T_{∞} be the full preimage tree of f and T_n its truncation to the *n*th level. Since f has coefficients in K, G_n respects the connectivity relation in T_n , giving natural injections

$$G_n \hookrightarrow \operatorname{Aut}(T_n) \qquad G_\infty \hookrightarrow \operatorname{Aut}(T_\infty).$$

Remark: in the typical case that *b* avoids the orbits of all critical points of *f*, T_{∞} is the complete (deg *f*)-ary rooted tree, and Aut(T_{∞}) is a well-understood group.

・ロト ・回ト ・ヨト ・ヨト

Example: Let T_2 be the complete binary rooted tree of height 2, and label the vertices at the top level of T_2 by 1, 2, 3, 4. Then $Aut(T_2) \cong$ $\{e, (12), (34), (12)(34), (1324), (1423), (13)(24), (14)(23)\} = D_4.$

In general for T_n the complete binary rooted tree of height n, $Aut(T_n)$ is the *n*-fold iterated wreath product of $\mathbb{Z}/2\mathbb{Z}$.

Aside on conjugacy-invariance: the group G_{∞} associated to (f, b) is the same as the group associated to $(\psi \circ f \circ \psi^{-1}, \psi(b))$, for any $\psi \in PGL_2(K)$. However, we often wish to keep *b* constant and let *f* vary, and in such a case we can only use ψ that fix *b*.

・ロン ・回 と ・ ヨ と ・ ヨ と

Part II: Connections with Galois Theory Part II: Arboreal Galois representations A survey of results on arboreal representations Part III: counting elements with fixed points

・ロン ・回と ・ヨン ・ヨン

Generalizations

One can generalize this construction by replacing V by an algebraic variety and f by a finite morphism.

When V = E is an elliptic curve, $f = [\ell]$ for a prime ℓ , and b = O, $G_{\infty} \hookrightarrow \operatorname{GL}_2(\mathbb{Z}_{\ell})$ is the image of the ℓ -adic linear Galois representation associated to E. Serre showed that if E does not have complex multiplication, then $[\operatorname{GL}_2(\mathbb{Z}_{\ell}) : G_{\infty}]$ is finite.

When V is a commutative algebraic group and f is multiplication by n, determining G_{∞} amounts to doing Kummer theory on V. For remainder of the talk, we return to the case $V = \mathbb{P}^1$, and we let b = 0.

Questions: For which $f \in K(x)$ can one determine G_{∞} ? When does G_{∞} have finite index in Aut (T_{∞}) ?

Part I: Connections with Galois Theory Part II: Arboreal Galois representations A survey of results on arboreal representations Part III: counting elements with fixed points

Results of Odoni

Theorem (Odoni 1985)

Let $f(x) \in K(t_0, ..., t_d)[x]$ be the generic polynomial of degree d over K. Then $G_{\infty} \cong \operatorname{Aut}(T_{\infty})$. In particular, if n is fixed then for all but a 'thin set' of degree d $f \in K[x]$ we have $G_n \cong \operatorname{Aut}(T_n)$.

Theorem (Odoni 1985)

Let $f(x) = x^2 - x + 1$. Then $G_{\infty} \cong \operatorname{Aut}(T_{\infty})$

イロン イヨン イヨン イヨン

Part I: Connections with Galois Theory Part II: Arboreal Galois representations A survey of results on arboreal representations Part III: counting elements with fixed points

Quadratic polynomials

Theorem (RJ)

Let $f \in \mathbb{Z}[x]$ be monic and quadratic. Suppose all iterates of f are irreducible over \mathbb{Q} , f is not post-critically finite, and 0 is pre-periodic (but not periodic) under f. Then G_{∞} has finite index in $\operatorname{Aut}(T_{\infty})$.

The above theorem applies to $f(x) = x^2 - kx + k$ for all $k \in \mathbb{Z}$ except -2, 0, 2, and 4, for which G_{∞} is either degenerate (k = 0) or explicitly computable and of infinite index in Aut (T_{∞}) .

It also applies to $f(x) = x^2 + kx - 1$ for all $k \in \mathbb{Z}$ except -1, 0, and 2. When k = -1, $f^3(x)$ is reducible, but nonetheless one can show G_{∞} has finite index in $\operatorname{Aut}(T_{\infty})$. For k = 0 and 2, G_{∞} remains unknown, but appears to have infinite index in $\operatorname{Aut}(T_{\infty})$.

Theorem (Stoll 1992)

Let $f = x^2 + k \in \mathbb{Z}[x]$ where -k is not a square, and suppose that one of the following holds:

- ► $k > 0, k \equiv 1 \mod 4$
- ▶ $k > 0, k \equiv 2 \mod 4$
- $\flat \ k < 0, k \equiv 0 \bmod 4$

Then $G_{\infty} \cong \operatorname{Aut}(T_{\infty})$.

Remark: for $f = x^2 + 3$, $[Aut(T_{\infty}) : G_{\infty}] \ge 2$. Not known to be finite.

イロト イヨト イヨト イヨト

Part I: Connections with Galois Theory Part II: Arboreal Galois representations A survey of results on arboreal representations Part III: counting elements with fixed points

・ロン ・回 と ・ ヨン ・ ヨン

Quadratic rational functions with non-trivial automorphisms

The case where $f \in K(x)$ commutes with a non-trivial $\psi \in PGL_2(K)$, and *a* is a fixed point of ψ , is analogous to the case of an elliptic curve with complex multiplication.

In recent work with M. Manes, we study the family $f = \frac{k(x^2+1)}{x}$, $k \in \mathbb{Z}$, which has $\psi(x) = -x$ (recall our running assumption b = 0). Here, $G_{\infty} \hookrightarrow C_{\infty}$, where C_{∞} is the subgroup of $\operatorname{Aut}(T_{\infty})$ commuting with the action of ψ on T_{∞} .

For all *n*, C_n has a subgroup of index two isomorphic to $Aut(T_{n-1})$.

Part I: Connections with Galois Theory Part II: Arboreal Galois representations A survey of results on arboreal representations Part III: counting elements with fixed points

æ

Theorem (RJ-Manes)

There is a density 0 set of primes $S \subset \mathbb{Z}$ such that if $k \in \mathbb{Z}$ is not divisible by any $s \in S$ and $f = \frac{k(x^2+1)}{x}$, then $G_{\infty} \cong C_{\infty}$.

Notes: S is the set of primes dividing the numerator of $f^n(1)$ for some $n \ge 1$, where $f = \frac{(x^2+1)}{x}$. All p in S are $\equiv 1 \pmod{4}$.

イロン イヨン イヨン イヨン

Part I: Connections with Galois Theory Part II: Arboreal Galois representations A survey of results on arboreal representations Part III: counting elements with fixed points

イロン イヨン イヨン イヨン

Counting elements with fixed points

Recall: $D(P(O_f(a)))$ is bounded above by

$$d_n = \frac{1}{\#G_n} \# \{ \sigma \in G_n : \sigma \text{ fixes at least one root of } f \}.$$

Suppose $G_{\infty} \cong \operatorname{Aut}(T_{\infty})$.

$$\begin{aligned} G_1 &\cong \{e, (12)\}. \ d_1 &= 1/2 \\ G_2 &\cong \{e, (12), (34), (12)(34), (1324), (1423), (13)(24), (14)(23)\}. \\ d_2 &= 3/8 \\ d_3 &= 39/128 \end{aligned}$$

Let $e_n = 1 - d_n$. Then one can show $e_n = \frac{1}{2}e_{n-1}^2 + \frac{1}{2}$.

It follows that $e_n \to 1$, and thus $d_n \to 0$. A similar argument can be used to show that $d_n \to 0$ when $G_{\infty} \cong C_{\infty}$. This proves the main theorem in the case $f = \frac{k(x^2+1)}{x}$ for certain k.

Let $f \in \mathbb{Z}[x]$ be quadratic with f^n irreducible, and let $H_n = \operatorname{Gal}(K_n/K_{n-1})$. Since $K_n = K_{n-1}(f^{-1}(\alpha))$ as α runs over $f^{-(n-1)}(b)$, we have $H_n \hookrightarrow (\mathbb{Z}/2\mathbb{Z})^{2^{n-1}}$. Call H_n maximal if this injection is an isomorphism.

Theorem (RJ)

Suppose that f is quadratic, f^n is irreducible for all n, and H_n is maximal for infinitely many n. Then $d_n \rightarrow 0$.

・ロン ・回と ・ヨン ・ヨン

In particular, if f^n is irreducible for all n, and $[\operatorname{Aut}(T_{\infty}): G_{\infty}] < \infty$, then the set of prime divisors of any orbit of f has density zero. This can be used to prove the Main Theorem in the cases $f = x^2 - kx + k$, $k \in \mathbb{Z}$, and $f = x^2 - kx + 1$, $k \in \mathbb{Z} \setminus \{0, 2\}$.

The hypothesis that H_n be maximal for infinitely many n is much weaker than $[Aut(T_\infty): G_\infty] < \infty$, and can be made to apply in cases where the latter is unknown.

For instance, $f(x) = x^2 + k \in \mathbb{Z}[x]$, where -k is not a square, proving the main theorem in this case.

Also, $f(x) = x^2 + t \in \mathbb{F}_p(t)[x]$.

・ロン ・回 と ・ 回 と ・ 回 と

Further directions and open problems

Conjecture

Suppose that $f = x^2 + ax + b \in \mathbb{Z}[x]$ with critical point γ , and suppose that $O_f(\gamma)$ is infinite and f^n is irreducible for all n. Then for any $a \in \mathbb{Z}$,

$$D(P(O_f(a)))=0.$$

Bad example:
$$f(x) = (x + 945)^2 - 945 + 3$$
, $\gamma = -945$.
 $f(\gamma) = 2 \cdot 3 \cdot 157$
 $f^2(\gamma) = 3 \cdot 311$
 $f^3(\gamma) = 2 \cdot 3 \cdot 7 \cdot 19$
 $f^4(\gamma) = 3 \cdot 83^2$
 $f^5(\gamma) = 2 \cdot 3 \cdot 103 \cdot 755789$

イロト イポト イヨト イヨト

The results showing G_{∞} is a large subgroup of $\operatorname{Aut}(T_{\infty})$ for quadratic $f \in \mathbb{Q}(x)$ rely on f not being post-critically finite. In the absence of this, the group G_{∞} is often mysterious.

Polynomials conjugate to $x^2 - 1$ provide particularly interesting examples: in the case of $f(x) = (x + 1)^2 - 2$, K_{∞} is ramified over \mathbb{Q} only at the prime 2.

イロト イポト イヨト イヨト

Analogies with linear representations

In the case of a linear Galois representation $\rho : G_{\infty} \hookrightarrow GL_2(\mathbb{Z}_{\ell})$, we may form an associated *L*-function via an Euler product where the local factors at the unramified primes p are

$$1 - \operatorname{tr}(\rho(\operatorname{Frob}_p))p^{-s} + p^{1-2s},$$

where $\operatorname{Frob}_p \subset G_\infty$ denotes the conjugacy class of Frobenius at p.

This prompts a search for conjugacy-invariants one can attach to Frob_p in the arboreal case.

イロト イヨト イヨト イヨト

For $f(x) \in \mathbb{Z}[x]$, b = 0, it is a classical fact that for all but finitely many p, the cycle structure of the image of Frob_p in G_n is given by the degrees of the irreducible factors of $f^n(x)$ in $\mathbb{Z}/p\mathbb{Z}[x]$.

Call $h \in \mathbb{Z}/p\mathbb{Z}[x]$ *f-stable* if $h \circ f^m$ is irreducible in $\mathbb{Z}/p\mathbb{Z}[x]$ for all $m \ge 0$. Weight the irreducible factors of $f^n \in \mathbb{Z}/p\mathbb{Z}[x]$ by degree. If the proportion of the factorization occupied by *f*-stable factors goes to 1 as $n \to \infty$, call *f settled*.

To each settled element one can associate a partition of unity according to the weight occupied by each stable factor. Example: $f(x) = (x+3)^2 - 3$, p = 13. f(x) = (x+3)(x+4), and one can show both (x + 3) and (x + 4) are *f*-stable. The associated partition is thus 1/2 + 1/2.

Conjecture

Let $f \in \mathbb{Z}/p\mathbb{Z}[x]$ be separable and quadratic. Then f is settled.

・ロト ・回ト ・ヨト ・ヨト - ヨ