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Motivating problem: prime divisors of polynomial orbits

Let f ∈ Z[x ], and denote the nth iterate of f by f n.

Let Of (a) = {f n(a) : n = 0, 1, 2, . . .} denote the orbit of a ∈ Z
under f . The orbits of f can hold great number-theoretic interest.

Examples:

I f (x) = (x − 1)2 + 1 = x2 − 2x + 2.

Of (3) = {3, 5, 17, 257, 65537, . . .}.
Fermat numbers (Fn = 22n

+ 1).

I f (x) = x2 − x + 1.

Of (2) = {2, 3, 7, 43, 1807, . . .}
Sylvester’s sequence (s0 = 2, sn = s0 · · · sn−1 + 1).
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Problem of recurrent interest: show various sequences have
infinitely many prime terms.

Dirichlet: (cn + d)n≥1 contains infinitely many primes (provided
(c , d) = 1).

Open problems: show (n2 + 1)n≥1 contains infinitely many primes.
Show the Fibonacci sequence contains infinitely many primes.

Conjecture (Fermat)

Fn is prime for all n

Slightly Revised Conjecture

Fn is composite for all n ≥ 5.
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Rather than investigate prime terms in polynomial orbits, we
consider the set of all primes dividing at least one term of a given
orbit:

P(Of (a)) = {p prime : p divides some element of Of (a)}

(Can extend to rational functions by considering p dividing the
numerator of some element of the orbit.)

By the natural upper density of a set of primes S ⊂ Z, we mean

D(S) = lim sup
x→∞

#{p ∈ S : p ≤ x}
#{p : p ≤ x} ,

Our main affair is to determine D(P(Of (a))) in various cases.
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Main Theorem (RJ, RJ-Manes)

The following f ∈ Q(x) satisfy D(P(Of (a))) = 0 for all a ∈ Z:

I x2 − kx + k for k ∈ Z
I x2 − kx + 1 for k ∈ Z \ {0, 2}
I x2 + k for k ∈ Z \ {−1}
I k(x2+1)

x for odd k ∈ Z having no prime factor ≡ 1 mod 4
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Connections with Galois theory

Lemma
Fix n ≥ 1 and f ∈ Z[x ], and let

dn = 1− D(p : f n(x) ≡ 0 mod p has no solution in Z).

Then for any a ∈ Z, D(P(Of (a))) < dn.

Proof sketch: f n(x) ≡ 0 mod p has no solution implies p - f m(a)
for all m ≥ n. There are only finitely many p for which p | f m(a)
for some m < n.
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Lemma
Let Gn be the Galois group of the splitting field of f n(x) over Q,
and recall Gn acts naturally on the roots of f n. We have

dn =
1

#Gn
#{σ ∈ Gn : σ fixes at least one root of f n}.

Proof: Classical application of the Chebotarev Density theorem.

Conclusion: D(P(Of (a))) is bounded above by

1

#Gn
#{σ ∈ Gn : σ fixes at least one root of f }.

Remark: A similar statement holds for f ∈ Q(x), provided that
f (∞) =∞.
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Arboreal representations

Let K be a number field, f ∈ K (x), and b ∈ P1(K ).

The preimage tree of f with root b has as vertices

⊔

n≥1

f −n(b),

with two elements connected iff f maps one to the other.
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First two levels of preimage tree of f (x) = x2+1
x , b = 0.
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Let Kn = K (f −n(b)), Gn = Gal(Kn/K ), and G∞ = lim←−Gn. All
these objects depend on f and b, but to ease notation we don’t
make explicit reference to this dependence.

Let T∞ be the full preimage tree of f and Tn its truncation to the
nth level. Since f has coefficients in K , Gn respects the
connectivity relation in Tn, giving natural injections

Gn ↪→ Aut(Tn) G∞ ↪→ Aut(T∞).

Remark: in the typical case that b avoids the orbits of all critical
points of f , T∞ is the complete (deg f )-ary rooted tree, and
Aut(T∞) is a well-understood group.
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Example: Let T2 be the complete binary rooted tree of height 2,
and label the vertices at the top level of T2 by 1, 2, 3, 4. Then
Aut(T2) ∼=
{e, (12), (34), (12)(34), (1324), (1423), (13)(24), (14)(23)} = D4.

In general for Tn the complete binary rooted tree of height n,
Aut(Tn) is the n-fold iterated wreath product of Z/2Z.

Aside on conjugacy-invariance: the group G∞ associated to (f , b)
is the same as the group associated to (ψ ◦ f ◦ ψ−1, ψ(b)), for any
ψ ∈ PGL2(K ). However, we often wish to keep b constant and let
f vary, and in such a case we can only use ψ that fix b.
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Generalizations

One can generalize this construction by replacing V by an
algebraic variety and f by a finite morphism.

When V = E is an elliptic curve, f = [`] for a prime `, and b = O,
G∞ ↪→ GL2(Z`) is the image of the `-adic linear Galois
representation associated to E . Serre showed that if E does not
have complex multiplication, then [GL2(Z`) : G∞] is finite.

When V is a commutative algebraic group and f is multiplication
by n, determining G∞ amounts to doing Kummer theory on V .
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For remainder of the talk, we return to the case V = P1, and we
let b = 0.

Questions: For which f ∈ K (x) can one determine G∞? When
does G∞ have finite index in Aut(T∞)?
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Results of Odoni

Theorem (Odoni 1985)

Let f (x) ∈ K (t0, . . . , td)[x ] be the generic polynomial of degree d
over K . Then G∞ ∼= Aut(T∞).
In particular, if n is fixed then for all but a ‘thin set’ of degree d
f ∈ K [x ] we have Gn

∼= Aut(Tn).

Theorem (Odoni 1985)

Let f (x) = x2 − x + 1. Then G∞ ∼= Aut(T∞)
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Quadratic polynomials

Theorem (RJ)

Let f ∈ Z[x ] be monic and quadratic. Suppose all iterates of f are
irreducible over Q, f is not post-critically finite, and 0 is
pre-periodic (but not periodic) under f . Then G∞ has finite index
in Aut(T∞).

The above theorem applies to f (x) = x2 − kx + k for all k ∈ Z
except −2, 0, 2, and 4, for which G∞ is either degenerate (k = 0)
or explicitly computable and of infinite index in Aut(T∞).

It also applies to f (x) = x2 + kx − 1 for all k ∈ Z except −1, 0,
and 2. When k = −1, f 3(x) is reducible, but nonetheless one can
show G∞ has finite index in Aut(T∞). For k = 0 and 2, G∞
remains unknown, but appears to have infinite index in Aut(T∞).
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Theorem (Stoll 1992)

Let f = x2 + k ∈ Z[x ] where −k is not a square, and suppose that
one of the following holds:

I k > 0, k ≡ 1 mod 4

I k > 0, k ≡ 2 mod 4

I k < 0, k ≡ 0 mod 4

Then G∞ ∼= Aut(T∞).

Remark: for f = x2 + 3, [Aut(T∞) : G∞] ≥ 2. Not known to be
finite.
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Quadratic rational functions with non-trivial
automorphisms

The case where f ∈ K (x) commutes with a non-trivial
ψ ∈ PGL2(K ), and a is a fixed point of ψ, is analogous to the
case of an elliptic curve with complex multiplication.

In recent work with M. Manes, we study the family f = k(x2+1)
x ,

k ∈ Z, which has ψ(x) = −x (recall our running assumption
b = 0). Here, G∞ ↪→ C∞, where C∞ is the subgroup of Aut(T∞)
commuting with the action of ψ on T∞.

For all n, Cn has a subgroup of index two isomorphic to
Aut(Tn−1).

Rafe Jones Galois actions on preimage trees



Motivating problem
Ideas in the proof

Further directions and open problems

Part I: Connections with Galois Theory
Part II: Arboreal Galois representations
A survey of results on arboreal representations
Part III: counting elements with fixed points

−
√
−3−

√
5

2

√
−3+

√
5

2
−

√
−3+

√
5

2

√
−3−

√
5

2

!
!
!
!"

"
"
"!

!
!
!"

"
"
"

i−i

#
#

#
#

#$
$

$
$

$

0

1

Rafe Jones Galois actions on preimage trees



Motivating problem
Ideas in the proof

Further directions and open problems

Part I: Connections with Galois Theory
Part II: Arboreal Galois representations
A survey of results on arboreal representations
Part III: counting elements with fixed points

Theorem (RJ-Manes)

There is a density 0 set of primes S ⊂ Z such that if k ∈ Z is not

divisible by any s ∈ S and f = k(x2+1)
x , then G∞ ∼= C∞.

Notes: S is the set of primes dividing the numerator of f n(1) for

some n ≥ 1, where f = (x2+1)
x . All p in S are ≡ 1 (mod 4).
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Counting elements with fixed points

Recall: D(P(Of (a))) is bounded above by

dn =
1

#Gn
#{σ ∈ Gn : σ fixes at least one root of f }.

Suppose G∞ ∼= Aut(T∞).

G1
∼= {e, (12)}. d1 = 1/2

G2
∼= {e, (12), (34), (12)(34), (1324), (1423), (13)(24), (14)(23)}.

d2 = 3/8
d3 = 39/128
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Let en = 1− dn. Then one can show en = 1
2e2

n−1 + 1
2 .

It follows that en → 1, and thus dn → 0. A similar argument can
be used to show that dn → 0 when G∞ ∼= C∞. This proves the

main theorem in the case f = k(x2+1)
x for certain k .

Let f ∈ Z[x ] be quadratic with f n irreducible, and let
Hn = Gal(Kn/Kn−1). Since Kn = Kn−1(f −1(α)) as α runs over
f −(n−1)(b), we have Hn ↪→ (Z/2Z)2n−1

. Call Hn maximal if this
injection is an isomorphism.

Theorem (RJ)

Suppose that f is quadratic, f n is irreducible for all n, and Hn is
maximal for infinitely many n. Then dn → 0.
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In particular, if f n is irreducible for all n, and
[Aut(T∞) : G∞] <∞, then the set of prime divisors of any orbit
of f has density zero. This can be used to prove the Main
Theorem in the cases f = x2 − kx + k , k ∈ Z, and
f = x2 − kx + 1, k ∈ Z \ {0, 2}.
The hypothesis that Hn be maximal for infinitely many n is much
weaker than [Aut(T∞) : G∞] <∞, and can be made to apply in
cases where the latter is unknown.

For instance, f (x) = x2 + k ∈ Z[x ], where −k is not a square,
proving the main theorem in this case.

Also, f (x) = x2 + t ∈ Fp(t)[x ].
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Conjecture

Suppose that f = x2 + ax + b ∈ Z[x ] with critical point γ, and
suppose that Of (γ) is infinite and f n is irreducible for all n. Then
for any a ∈ Z,

D(P(Of (a))) = 0.

Bad example: f (x) = (x + 945)2 − 945 + 3, γ = −945.
f (γ) = 2 · 3 · 157
f 2(γ) = 3 · 311
f 3(γ) = 2 · 3 · 7 · 19
f 4(γ) = 3 · 832

f 5(γ) = 2 · 3 · 103 · 755789
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The results showing G∞ is a large subgroup of Aut(T∞) for
quadratic f ∈ Q(x) rely on f not being post-critically finite. In the
absence of this, the group G∞ is often mysterious.

Polynomials conjugate to x2 − 1 provide particularly interesting
examples: in the case of f (x) = (x + 1)2 − 2, K∞ is ramified over
Q only at the prime 2.
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In the case of a linear Galois representation ρ : G∞ ↪→ GL2(Z`), we
may form an associated L-function via an Euler product where the
local factors at the unramified primes p are

1− tr(ρ(Frobp))p−s + p1−2s ,

where Frobp ⊂ G∞ denotes the conjugacy class of Frobenius at p.

This prompts a search for conjugacy-invariants one can attach to
Frobp in the arboreal case.
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For f (x) ∈ Z[x ], b = 0, it is a classical fact that for all but finitely
many p, the cycle structure of the image of Frobp in Gn is given by
the degrees of the irreducible factors of f n(x) in Z/pZ[x ].

Call h ∈ Z/pZ[x ] f -stable if h ◦ f m is irreducible in Z/pZ[x ] for all
m ≥ 0. Weight the irreducible factors of f n ∈ Z/pZ[x ] by degree.
If the proportion of the factorization occupied by f -stable factors
goes to 1 as n→∞, call f settled.

To each settled element one can associate a partition of unity
according to the weight occupied by each stable factor.
Example: f (x) = (x + 3)2 − 3, p = 13. f (x) = (x + 3)(x + 4), and
one can show both (x + 3) and (x + 4) are f -stable. The
associated partition is thus 1/2 + 1/2.

Conjecture

Let f ∈ Z/pZ[x ] be separable and quadratic. Then f is settled.
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