
Achievement Sets of Sequences

Rafe Jones

July 21, 2010

Abstract

Given a real sequence (xn), we examine the set of all sums of the
form

P
i∈I xi, as I varies over subsets of the natural numbers. We call

this the achievement set of (xn), and write it AS(xn). For instance,
AS(1/2n) = [0, 1] by the existence of binary expansions, and AS(2/3n)
is the Cantor middle third set. We explore the properties of these two
sequences that account for their very different achievement sets. We give
a sufficient condition for a sequence to have an achievement set that is
an interval, and another sufficient condition for the achievement set to be
a Cantor set. We also examine what sets can occur as achievement sets,
and give results on the topology of achievement sets.

Introduction.

In 1854, Bernhard Riemann proved his well-known rearrangement theorem,
which states that the terms of a conditionally convergent series may be re-
arranged so that the series sums to any specified real number (or ±∞). On the
other hand, rearrangements of terms of an absolutely convergent series have no
effect on the sum. In this paper, we consider a variant of the rearrangement
problem: what if we allow omissions of terms (and not rearrangements)? More
precisely, we say r ∈ R is achieved by a real sequence (xn) if there is a (possibly
finite) subsequence of (xn) whose sum converges to r. We seek to understand
all r that are achieved by a given (xn), and we call this set the achievement set
of (xn), denoted AS(xn).

Two examples motivate our explorations. First, consider that the exis-
tence of binary expansions shows that AS(1/2n) = [0, 1]. On the other hand,
AS(2/3n) is the Cantor middle third set, since the latter consists of those num-
bers in the unit interval representable by a ternary expansion consisting only of
the digits 0 and 2. The vast topological differences between these sets prompt
natural questions. What properties of these sequences make their achievement
sets so different? What other sets can occur as achievement sets? In this paper
we resolve the first question, and shed some light on the second.

In the direction of the first question, we characterize in Section 1 the (xn)
with limit zero such that AS(xn) is an interval, and deduce several corollaries.
One of them is an analogue of Riemann’s rearrangment theorem: if the terms of
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(xn) form a conditionally convergent series, then AS(xn) = R. In Section 2 we
give a condition that ensures AS(xn) is a Cantor set, which requires proving that
AS(xn) is closed provided (xn) approaches zero. Towards the second question
mentioned in the previous paragraph, we show in Section 3 that achievement
sets come in two distinct flavors: with empty interior, or with dense interior.
Moreover, we give conditions on (xn) that imply AS(xn) is either a finite union
of intervals or a finite union of Cantor sets. In Section 4, we give some examples
of classes of sets that do occur as achievement sets, and on the other hand show
that many familiar sets do not. Curiously, we find that the set of nonnegative
rational numbers Q+ is in the latter category, while {−1}∪Q+ is in the former.

Various authors have investigated aspects of achievement sets. Hornich [5],
Kakeya [6], and Ribenboim [10, Chapter 2] have results in the direction of those
presented in Section 1. Hornich [5] and Morán [7] have work along the lines of
that presented in Section 2. The results of Sections 3 and Section 4 appear to
be new. In [7, 8], Morán allows sequences consisting of of vectors in Rn, and
examines the case where the Lebesgue measure of the resulting achievement set
is zero. He gives precise results on the Hausdorff dimension of such achievement
sets, particularly in the case of sequences satisfying the conditions of Theorem
2.1. Also related are [2] and [4], in which a sequence of positive integers is called
complete if every natural number is the sum of some subsequence. In [2], J. L.
Brown showed that the Fibonacci sequence is complete, but if any two terms
are removed the resulting sequence is not complete.

1 Intervals.

Throughout, we deal only with sequences whose terms are all nonzero. More-
over, all sequences are infinite unless explicitly noted otherwise. We denote
a sequence x1, x2, x3, . . . by (xn), and we declare that the empty subsequence
sums to 0.

For our first results on achievement sets, we give conditions on (xn) that
imply that AS(xn) is an interval. In keeping with the terminology introduced so
far, we call (xn) a high achiever if AS(xn) is an interval (we refrain from calling
(xn) remedial if AS(xn) fails to be an interval). The notion of a high achiever is
the analogue of a complete sequence of positive integers, since it requires AS(xn)
to be as large as possible. The following theorem gives a characterization of high
achievers among sequences whose limit is zero, and represents a minor extension
of results appearing in [5], [6], and [10, Chapter 2].

Theorem 1.1. Let (xn) = x1, x2, x3, . . . be a sequence of real numbers with
xn → 0. Suppose that for each k ≥ 1,

|xk| ≤
∞∑

n=k+1

|xn|. (1)

Then (xn) is a high achiever. Moreover, if |xk| ≥ |xk+1| for each k ≥ 1 then
(xn) is a high achiever if and only if (1) holds.
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Note that if one drops the requirement |xk| ≥ |xk+1| for each k ≥ 1 then it
is easy to find high achievers that violate (1): any nontrivial rearrangement of
( 1
2n ) suffices.

Before getting to the proof of Theorem 1.1, we give a lemma that will be
used repeatedly in the sequel to handle sequences with negative terms.

Lemma 1.2. Let (xn) be a sequence of real numbers, and suppose that the sum
of the negative terms of (xn) converges to sN ≤ 0. Then −sN + AS(xn) =
AS(|xn|).

Proof. Partition Z+ into the disjoint subsets IP = {j | xj > 0} and IN = {j |
xj < 0}. Since IP and IN partition Z+ (recall our convention that the terms of
all sequences are nonzero), we have AS(xn) = AS(xi | i ∈ IP )+AS(xi | i ∈ IN ),
where + denotes the arithmetic sum. Note that in this equation, we use the
fact that our hypothesis on the negative terms ensures that a subsequence with
convergent sum must in fact have absolutely convergent sum. Taking absolute
values then yields

AS(|xn|) = AS(xi | i ∈ IP )−AS(xi | i ∈ IN ). (2)

Let r ∈ AS(xn), so that there is K ⊆ Z+ such that r =
∑
k∈K xk. Then

K = KP ∪KN for some KP ⊆ IP and KN ⊆ IN . Thus

r − sN =

(∑
i∈KP

xi +
∑
i∈KN

xi

)
−
∑
i∈IN

xi =
∑
i∈KP

xi −
∑

i∈IN\KN

xi

and by (2) this last expression is an element of AS(|xn|). We’ve therefore shown
AS(xn)− sN ⊆ AS(|xn|).

To show the reverse inclusion, suppose that r ∈ AS(|xn|). By (2), there
must be subsets JP ⊆ IP and JN ⊆ IN such that

r =
∑
i∈JP

xi −
∑
i∈JN

xi.

Adding and subtracting
∑
i∈IN

xi to the right-hand side gives

r =

∑
i∈JP

xi +
∑

i∈IN\JN

xi

− sN ,
and thus r ∈ AS(xn)− sN .

Proof of Theorem 1.1. Let IN be as in the proof of Lemma 1.2, and assume
first that

∑
i∈IN

xi converges. By Lemma 1.2 it is enough in this case to show
that (|xn|) is a high achiever. We may thus assume that all terms of (xn) are
positive.

Let s denote the sum of the xn. Clearly it is enough to show that r ∈ AS(xn)
for 0 < r < s.
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We define indices i1, i2, i3, . . . using a greedy algorithm. Let i1 be the smallest
index satisfying xi1 ≤ r. Inductively, if i1, i2, . . . , im are already chosen, we take
im+1 to be the smallest index such that im+1 > im and

xim+1 +
m∑
j=1

xij ≤ r,

provided that at least one such index exists.
If this process terminates, then there must be some m such that i1, . . . , im

are defined but for each n > im we have xn +
∑m
j=1 xij > r. By construction∑m

j=1 xij ≤ r, and by hypothesis limn→∞ xn = 0. It follows that
∑m
j=1 xij = r,

whence r ∈ AS(xn).
Suppose now that the process of constructing the ij does not terminate, and

suppose further that the sequence i1, i2, i3, . . . omits a finite number of positive
integers. Since r < s the sequence must omit at least one positive integer. Let
k be the largest such integer. Consider the sum t of the xij with ij < k (let
t = 0 if there are no ij < k). We then have xk + t > r and t+

∑∞
h=1 xk+h ≤ r.

It follows that xk >
∑∞
h=1 xk+h, which contradicts (1).

Therefore if the process of constructing the ij does not terminate, then
the sequence i1, i2, i3, . . . omits an infinite number of positive integers. Let
{k1,k2, k3, . . .} be such a sequence. This means that for each kl,

xkl
+
∑
ij<kl

xij > r ≥
∑
ij<kl

xij . (3)

By hypothesis liml→∞ xkl
= 0, and so taking the limit as l → ∞ in (3) gives

r =
∑∞
j=1 xij . Thus r ∈ AS(xn). This proves the theorem in the case that∑

i∈IN
xi converges.

If
∑
i∈IN

xi diverges, then the positive-term sequence (−xi | i ∈ IN ) satisfies
(1) for each k. Thus AS(−xi | i ∈ IN ) = [0,∞). Letting IP be the set of indices
of the positive terms of (xn), we now have

AS(xn) =
{

(−∞, c] if
∑
i∈Ip

xi converges to c
(−∞,∞) if

∑
i∈IP

xi diverges
(4)

In either case, AS(xn) is a high achiever.
We now prove the second assertion of the theorem. Suppose that |xk| ≥

|xk+1| for each k ≥ 1, and also that (1) does not hold, i.e., there exists an index
k with

|xk| >
∞∑

n=k+1

|xn| .

This implies that the terms of (xn) form an absolutely convergent series, so by
Lemma 1.2 we may assume without loss of generality that the terms of (xn) are
positive. Clearly both b = xk and a =

∑∞
n=k+1 xn are in AS(xn). We claim

that AS(xn)∩ (a, b) is empty, which shows that (xn) is not a high achiever. Let
I ⊆ Z+. If i ∈ I for some i ≤ k, then since xi ≥ xk, we have

∑
i∈I xi ≥ xk = b.

On the other hand, if I omits every j ≤ k, then
∑
i∈I xi ≤

∑∞
i=k+1 xi = a.
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We now reap some of the fruits of Theorem 1.1; see also [10, Chapter 2].

Corollary 1.3. AS
(

1
n

)
= [0,∞)

Corollary 1.3 follows immediately from the fact that the harmonic series
diverges, and implies that every real number in [0, 1] can be expressed as a
(possibly infinite) Egyptian fraction. Indeed, such an Egyptian fraction can
even be taken with all denominators prime. This follows from the result of
Euler that

∑∞
n=1

1
pn

diverges [9, p. 59], where p1, p2, . . . is an enumeration of
the primes, implying that AS(1/pn) = [0,∞).

We also have an analogue of Riemann’s rearrangement theorem. Note that
in our setting we allow only omissions of terms, not rearrangements.

Corollary 1.4. Let (xn) be a sequence whose terms form a conditionally con-
vergent series. Then AS(xn) = R.

Proof. Let IP and IN be, respectively, the set of indices of the positive and
negative terms of (xn). Conditional convergence implies

∑
i∈IP

xi = ∞ and∑
i∈IN

xi = −∞. Theorem 1.1 then shows that AS(yi | i ∈ IP ) = [0,∞) and
AS(yi | i ∈ IN ) = (−∞, 0]. The corollary follows immediately.

Our final corollary gives us a practical method for showing that many se-
quences whose terms form absolutely convergent series are high achievers.

Corollary 1.5. Let xn be a sequence with limn→∞ xn = 0, and suppose |xn+1| ≥
1
2 |xn| for all n. Then (xn) is a high achiever.

Proof. By iterating our hypothesis, we have |xk+i| ≥ 1
2i |xk| for every k and i.

Thus for each k

∞∑
i=1

|xk+i| ≥
∞∑
i=1

1
2i
|xk| = |xk|

∞∑
i=1

1
2i

= |xk| .

It follows from Theorem 1.1 that (xn) is a high achiever.

Corollary 1.5 may be applied to the sequence of Fibonacci reciprocals (1/Fn).
When summed, they yield a series converging to β ≈ 3.36, a number of consid-
erable mystery whose irrationality was proven only in 1989 [1]. Since Fn+1 =
Fn + Fn−1 ≤ 2Fn, Corollary 1.5 shows that AS( 1

Fn
) = [0, β].

2 Cantor Sets.

As noted in the introduction, AS(2/3n) is the Cantor middle third set. We wish
to understand what kinds of sequences have Cantor sets as their achievement
sets, and in this section we give a sufficient condition that is similar to the one in
Theorem 1.1 (see Theorem 2.1). Recall that a generalized Cantor set, which we
refer to simply as a Cantor set, is a compact, perfect, totally disconnected subset
of the real numbers. Any Cantor set can be constructed in a manner similar to
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the Cantor middle third set: begin with a compact interval and remove an open
subinterval in such a way that two closed intervals of positive length remain.
These two intervals are called the intervals of stage one. Perform a similar
operation on each of the intervals of stage one, leaving four intervals of stage
two. Continue in this way, producing 2k disjoint intervals at stage k. If we let
Ck be the union of the intervals of stage k, then C =

⋂∞
k=0 Ck is a Cantor set.

For our purposes, we are interested primarily in central Cantor sets, namely
those that can be formed by following the recipe of the previous paragraph, but
all open subintervals removed at any given stage have the same length and must
be centered. The Cantor middle-third set is an example.

Theorem 2.1. Let (xn) be a real sequence, and suppose that for each k ≥ 1,

|xk| >
∞∑

i=k+1

|xi|. (5)

Then AS(xn) is a central Cantor set.

The removed intervals of stage k all have length |xk|−
∑∞
i=k+1 |xi|. It follows

that every central Cantor set with 0 as its left endpoint is the achievement set
of some sequence (see Section 4). Also, under the hypotheses of Theorem 2.1,
the measure of AS(xn) is

lim
k→∞

2k
∞∑

i=k+1

|xi|.

For more on the interesting question of how the measure and Hausdorff dimen-
sion of AS(xn) relate to (xn), see [7, 8].

In order to prove Theorem 2.1, it is certainly necessary to establish that
AS(xn) is closed. This result has interest in its own right, and is originally due
to Hans Hornich [5]. We give its proof as a separate theorem, following which
we prove Theorem 2.1.

Theorem 2.2 (Hornich). Let (xn) be a positive-term sequence, and suppose∑∞
n=1 xn converges. Then AS(xn) is closed.

Proof. Let (sj) be a sequence of elements of AS(xn) whose limit is s. Let
Ij ⊆ Z+ satisfy sj =

∑
i∈Ij

xi.
Suppose there are no positive integers n that belong to Ij for infinitely many

j. Then fixing an m > nk, we have that for all j sufficiently large,

sj ≤
∞∑

n=m+1

xn.

Letting m → ∞ and using the convergence of
∑∞
n=1 xn, we have s = 0 ∈

AS(xn).
Suppose now that there is a positive integer belonging to Ij for infinitely

many j, and let n1 be the smallest one. Thus there is an infinite set J1 such
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that for all j ∈ J1, n1 is the smallest element of Ij . Now suppose that n1, . . . , nk
have been chosen, and there is an infinite set Jk such that for all j ∈ Jk, the
first k elements of Ij are n1, . . . , nk.

If there are no n > nk that belong to Ij for infinitely many j ∈ Jk, then
fixing an m > nk we have that for all j ∈ Jk sufficiently large,

sj − (xn1 + · · ·+ xnk
) ≤

∞∑
i=m+1

xi. (6)

Letting m → ∞, we have s = xn1 + · · · + xnk
∈ AS(xn). If there is an n > nk

that belongs to Ij for infinitely many j, then let nk+1 be the smallest one. Then
there is an infinite set Jk+1 such that for all j ∈ Jk, the first k + 1 elements of
Ij are n1, . . . , nk+1.

This process either terminates or results in an infinite sequence n1, n2, . . ..
In the former case, from (6) we have s ∈ AS(xn). In the latter case, we can
choose for each k some sjk with

sjk − (xn1 + · · ·+ xnk
) ≤

∞∑
i=nk+1

xi. (7)

Since the original sequence (sj) approaches s, the subsequence (sjk) must too.
We thus obtain s =

∑∞
i=1 xni by taking k → ∞ in (6). Therefore s ∈ AS(xn),

as desired.

Proof of Theorem 2.1. An immediate consequence of (5) is that the series
∑∞
n=1 xn

is absolutely convergent. In particular, the sum of the negative terms of (xn)
must converge. Thus by Lemma 1.2, we may assume that each xn is positive,
since a translate of a central Cantor set is again a central Cantor set.

For k ≥ 1, let tk =
∑∞
i=k xi. For k ≥ 0, define Ck to be the set

AS(x1, . . . , xk) + [0, tk+1]. (8)

Since AS(x1, . . . , xk) is a finite set, Ck is a union of closed intervals. We also
clearly have Ck ⊇ Ck+1 for each k ≥ 0.

We claim that
⋂∞
k=0 Ck = AS(xn). If s ∈ AS(xn), then it follows immedi-

ately that s ∈
⋂∞
k=0 Ck. Suppose that s ∈ Ck. Then s− qk ∈ [0, tk+1] for some

qk ∈ AS(x1, . . . , xk) ⊆ AS(xn). In particular, |s−qk| ≤ tk+1. Because
∑∞
n=1 xn

converges, tk+1 → 0 as k →∞. So if we take s ∈
⋂∞
k=0 Ck, then there exists an

infinite sequence q1, q2, . . . of elements in AS(xn) such that limk→∞ |s−qk| = 0.
Because AS(xn) is closed by Theorem2.2, we have s ∈ AS(xn).

To complete the proof, we need only show that each Ck is central, i.e., that
each consists of 2k disjoint intervals and that Ck+1 is formed from Ck by deleting
a central open interval from each interval of Ck. Note that

C1 = [0, t2] ∪ [x1, x1 + t2] = [0, t2] ∪ [x1, t1] ⊆ [0, t1] = C0.

By (5), x1 > t2, so the intervals of C1 are disjoint. Moreover, t2 = t1 − x1, so
the removed subinterval (t2, x1) is a central interval of [0, t1] = C0.
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Now suppose inductively that Ck is central, which implies that it is a union
of 2k disjoint intervals. By definition, each interval of Ck is a translate of
[0, tk+1]. Thus Ck+1 consists of disjoint pairs of intervals that are translates
of [0, tk+2] ∪ [xk+1, tk+1]. By (5) we have xk+1 > tk+2, so each interval in a
given pair is disjoint and the removed subinterval has the same length. Because
tk+2 = tk+1−xk+1, the removed subinterval (tk+2, xk+1) is central. Hence Ck+1

is central. Thus by induction all the Ck are central.

Using Theorem 2.1 as well as results from Section 1, we can generalize The-
orem 2.2.

Corollary 2.3. Suppose limn→∞ xn = 0. Then AS(xn) is closed.

Proof. Let sN ≥ −∞ denote the sum of the negative terms of (xn). If sN is
infinite, then as in the proof of Theorem 1.1 (see (4)) AS(xn) is closed. If sN is
finite then by Lemma 1.2 we can assume that (xn) is positive term, because a
translate of a closed set is again closed. If

∑∞
n=1 xn converges, then AS(xn) is

closed by Theorem 2.2. If
∑∞
n=1 xn diverges then AS(xn) = [0,∞) by Theorem

1.1.

It is not true that all achievement sets are closed. For instance, suppose that
xn = 1 + 1/n for all n ≥ 1. Then AS(xn) does not contain its limit point 1.
In this example, AS(xn) is countable, so it is natural to ask if all uncountable
achievable sets are closed; the following example of Velleman [11], shows that
the answer is no.

Consider the two sequences given by

xn =
2
3n

and yn = 2− 1
2 · 3n−1

.

Make a new sequence zn by interleaving these two, so that the first few terms
of zn are 2/3, 3/2, 2/9, 11/6, 2/27, 35/18. Note that AS(xn) is the usual Cantor
one-third set, and hence AS(zn) is uncountable. Moreover, 2 is an accumulation
point of AS(yn), and thus also of AS(zn). We now show that 2 6∈ AS(zn).
Suppose a subsequence of zn sums to 2, and note that it can contain at most
one term of (yn), since yn > 1 for all n. Moreover, this subsequence must contain
at least one term of (yn), since summing all the xn yields 1. Therefore we have
a subsequence of (xn) whose terms sum to 1

2·3k−1 for some k. However, 1
2·3k−1

is halfway between 1
3k and 2

3k , and so is not contained in the Cantor one-third
set. This is a contradiction, proving that 2 6∈ AS(zn).

3 The Two Kinds of Achievement Sets.

Thus far we have seen that many achievement sets are intervals, and thus con-
nected (Section 1), and many are Cantor sets and thus totally disconnected
(Section 2). Examples of achievement sets that are unions of disjoint inter-
vals also abound: for instance, if x1 = 2 and xn = ( 1

2 )n−1 for n ≥ 2, then

8



AS(xn) = [0, 1] ∪ [2, 3]. This raises the question of whether there are achieve-
ment sets that contain an interval but are not unions of intervals. In fact, there
are such achievement sets, and we give one that comes from [11].

The idea is to construct an achievement set that consists of all numbers
representable by a certain kind of base a expansion, where a is a suitably chosen
real number less than 1. The allowable multiples of the powers of a come from
a set having additive properties that ensure no intervals are contained in the
extremities of the achievement set, but an interval is contained in the middle.

Define x1 = 3
5 , x2 = 2

5 , x3 = 2
5 , x4 = 2

5 , and for n > 4 put xn = a · xn−4,
where a is chosen so that

1
5
≤
∞∑
n=1

an <
2
9

(9)

For instance, a = 19/109 will do. Put b =
∑∞
n=1 a

n = a
1−a , and note that

AS(xn) ⊆
[
0, 9

5 (1 + b)
]
.

By (9) we have 9
5

∑∞
n=1 a

n < 2
5 , whence AS(xn) omits the interval

(
9
5b,

2
5

)
.

Similarly, AS(xn) omits the intervals
(

9
5ba

i, 2
5a
i
)

for all i ≥ 1. Thus 0 ∈ AS(xn)
but AS(xn) omits an interval in all neighborhoods of 0. It follows that AS(xn)
is not a finite union of intervals.

On the other hand, we claim
[
2
5 (1 + b), 7

5 (1 + b)
]
⊂ AS(xn). Consider the

sequence yn defined by yn = 1
5a
i for 5i + 1 ≤ n ≤ 5i + 5. Thus the first five

terms of yn are all 1/5, the next five are all a · 1/5, the next five are a2 · 1/5,
and so on. By Theorem 1.1, AS(yn) must be an interval provided that for all i
we have

1
5
ai ≤ 5

5

∞∑
n=i+1

an.

This holds by (9), and therefore AS(yn) = [0, 1 + b].
Now let c ∈

[
2
5 (1 + b), 7

5 (1 + b)
]
. Then c can be written as 2

5 (1 + b) plus an
element of AS(yn). We thus have

c =
2
5

∞∑
n=0

an +
[
k0

5
+
k1

5
a+

k2

5
a2 + · · ·

]
0 ≤ kn ≤ 5

=
2 + k0

5
+

2 + k1

5
a+

2 + k2

5
a2 + · · · 0 ≤ kn ≤ 5

All fractions of the form (2 + k)/5, 0 ≤ k ≤ 5 may be produced by sum-
ming subcollections of {3/5, 2/5, 2/5, 2/5}. Therefore c ∈ AS(xn), proving that[
2
5 (1 + b), 7

5 (1 + b)
]
⊂ AS(xn).

We remark that by Theorem 2.1 the sequences ( 3
5a
n) and ( 2

5a
n) both have

achievement sets that are central Cantor sets. Therefore AS(xn) is the arith-
metic sum of four central Cantor sets, and we have shown that this arithmetic
sum can contain an interval without being a disjoint union of intervals. In gen-
eral, the question of when an arithmetic sum of Cantor sets contains an interval
is difficult; see e.g. [3].
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We can, however, salvage some kind of dichotomy among achievement sets,
thanks to a result mainly from [11]. Recall that a set is nowhere dense if its
closure has empty interior, and meager (or of first category) if it is a countable
union of nowhere dense sets. By the Baire Category Theorem a meager subset
of the reals has empty interior, and hence is totally disconnected.

Theorem 3.1. Let (xn) be a sequence of real numbers. Then AS(xn) is either
a meagre set, and thus has empty interior, or the interior of AS(xn) is dense
in AS(xn).

Before embarking on the proof of Theorem 3.1, we give a proposition that
effectively reduces the proof to the case where xn → 0. This proposition has
some independent interest as well, and gives some justification for our emphasis
thus far on sequences whose terms approach 0.

Proposition 3.2. Let (xn) be any real sequence. Then AS(xn) is either count-
able, an infinite interval, or a countable union of translates of AS(xnk

), where
limn→∞ xnk

= 0.

Proof. Let E be the set of accumulation points of (xn). Suppose first that
E ∩ (0, ε) 6= ∅ for every ε > 0. Then there is a sequence e1, e2, . . . of elements
of e with en → 0 and en < 1 for all n. For each n, let kn be a positive
integer with 1/kn > en > 1/(kn + 2), whence there are infinitely many xj with
1/kn > xj > 1/(kn + 2). For each n, choose kn + 2 such terms and form an
infinite subsequence by concatenation. This subsequence approaches 0 but its
sum diverges, and thus it has achievement set [0,∞) by Theorem 1.1. It follows
that AS(xn) is an infinite interval. In the case where E ∩ (−ε, 0) 6= ∅ for every
ε > 0 a similar argument applies.

Now suppose that there is some ε > 0 such that E∩{r ∈ R | 0 < |r| < ε} = ∅.
Let (xnk

) be the subsequence consisting of the terms of (xn) with absolute value
at least ε

2 . Let (xmk
) be the complementary subsequence. Note that

AS(xn) = AS(xnk
) +AS(xmk

).

The first summand on the right-hand side consists only of sums of finitely many
terms, and thus is countable (see also Proposition 4.1). By our assumption about
E, the only possible accumulation point of (xn) in (−ε, ε) is 0, so the sequence
(xmk

) is either finite or has a limit of 0. In the first case, AS(xn) is countable,
while in the second it is a countable union of translates of AS(xnj ).

Note that in the case that AS(xn) is an infinite interval, it is clearly a
countable union of translates of AS( 1

2n ). Thus Proposition 3.2 implies that
AS(xn) is either countable or a countable union of translates of AS(yn), where
(yn) is some sequence whose terms approach zero. We are now ready to prove
Theorem 3.1.

Proof of Theorem 3.1. We first remark that translates of a meager set are mea-
ger, and a countable union of meager sets is also meager. Moreover, it is easy
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to see that the same two statements hold if “meager” is replaced by “has dense
interior.” Thus by Proposition 3.2, it is enough to prove the theorem in the case
that xn → 0.

Assume now that the theorem is true when xn → 0 and xn > 0. If xn → 0
but xn has both positive and negative terms, consider the sum of the negative
terms. If this sum diverges then by Theorem 1.1, AS(xn) is an interval and thus
has dense interior. If it converges, then by Lemma 1.2 we have that AS(xn) is a
translate of AS(|xn|). By assumption we have that AS(|xn|) has either empty
interior or dense interior, so the set AS(xn) must also fall into one of these two
classes.

Therefore it suffices to prove the theorem under the hypotheses that xn → 0
and xn > 0 for all n. In this case we first show that if 0 is in the closure of
the interior of AS(xn), then AS(xn) has dense interior. Let x ∈ AS(xn), and
fix ε > 0. Since x ∈ AS(xn), there is a subsequence of (xn) whose terms sum
to x. Therefore we can find a finite sum xn1 + · · · + xnk

such that x − ε <
xn1 + · · · + xnk

≤ x. Let δ = min{ε, xn1 , . . . , xnk
}. Since 0 is in the closure

of the interior of AS(xn), we can find a and b so that 0 < a < b < δ and
(a, b) ⊆ AS(xn). Notice that every element of (a, b) can be written as the sum of
a subsequence of (xn), but the terms xn1 , . . . , xnk

will not be used in any of these
sums, because they are too large. It follows that xn1+· · ·+xnk

+(a, b) ⊆ AS(xn).
But xn1 + · · · + xnk

+ (a, b) ⊆ (x − ε, x + ε). Since ε was arbitrary, this shows
that x is in the closure of the interior of AS(xn).

Now we show that if 0 is not in the closure of AS(xn), then AS(xn) is
meager. In this case there is some ε > 0 such that [0, ε) contains no elements of
the interior of AS(xn). Therefore AS(xn) is not a high achiever, and it follows
from Theorem 1.1 that

∑∞
n=1 xn converges. Hence we can choose some N such

that
∑∞
n=N xn < ε. Since AS(xN , xN+1, . . .) ⊆ AS(xn) ∩ [0, ε), we have that

AS(xN , xN+1, . . .) has empty interior, and moreover by Theorem 2.2 it is closed
and thus is nowhere dense. Now

AS(xn) = AS(x1, . . . , xN−1) +AS(xN , xN+1, . . .),

and since AS(x1, . . . , xN−1) is finite, AS(xn) is a finite union of nowhere dense
sets, and hence is meager.

If we restrict our attention to certain sequences, we can recover a dichotomy
stronger than that given in Theorem 3.1. For instance, AS( 1

cn ) is an interval if
1 < c ≤ 2 (Corollary 1.5), and a central Cantor set for c > 2 (Theorem 2.1). In
fact, we can generalize this remark:

Proposition 3.3. Let (xn) be a real sequence, and suppose limn→∞

∣∣∣xn+1
xn

∣∣∣ exists

and equals L. Then AS(xn) is a finite union of closed intervals if 1
2 < L < 1

and a finite union of central Cantor sets if 0 ≤ L < 1
2 .

Proof. Note that since L < 1, limn→∞ xn = 0. If 1
2 < L < 1, then for some

n0 > 0 we have |xn+1|
|xn| > 1

2 for all n ≥ n0. Hence by Corollary 1.5, we have
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that AS(xn0 , xn0+1, xn0+1, . . .) is a closed interval. It then follows from the
decomposition

AS(xn) = AS(x1, . . . , xn0−1) +AS(xn0 , xn0+1, xn0+1, . . .)

that AS(xn) is the union of a finite number of translates of a closed interval.
If 0 ≤ L < 1

2 , then for some n0 > 0, we have |xn+1|
|xn| < 1

2 for all n ≥ n0. Thus
for any i ≥ 1 and any n ≥ n0, we have |xn+i| < 1

2i |xn|. Therefore

∞∑
i=1

|xn+i| <
∞∑
i=1

1
2i
|xn| = |xn|

∞∑
i=1

1
2i

= |xn| .

It now follows from Theorem 2.1 that AS(xn0 , xn0+1, xn0+1, . . .) is a central
Cantor set. Therefore AS(xn) is a finite union of central Cantor sets.

We can extend Proposition 3.3 in a few ways. If L > 1, then no infinite
subsequence of (xn) can have a convergent sum, and thus AS(xn) is countable.
In addition, if L = 1 and limn→∞ xn = 0, then AS(xn) is a finite union of closed
intervals by the same argument used in the case 1

2 < L < 1. However, if L = 1
2

or if L = 1 and limn→∞ xn 6= 0, many behaviors are possible.
To illustrate the variety of behaviors possible when L = 1

2 , consider the

three sequences
(

1
2n − 1

3n

)
,
(

1
2n + 1

3n

)
, and

(
1
2n + 1

(−3)n

)
. One can easily verify

that the first satisfies, for each k, condition (1) of Theorem 1.1, namely |xk| ≤∑∞
n=k+1 |xn|. Thus its achievement set is a closed interval. Similarly, the second

satisfies, for each k, condition (5) of Theorem 2.1, namely |xk| >
∑∞
n=k+1 |xn|.

Thus its achievement set is a Cantor set.
However, the third sequence has a mysterious achievement set. The sequence

satisfies (1) for k odd and (5) for k even, and we give an intuitive description of
how this alternation affects the achievement set. Recall the sets Ck as defined in
(8) on p. 7. For a general sequence (xn), each Ck consists of 2k not necessarily
disjoint intervals, while Ck+1 is formed by splitting each interval of Ck into two
not necessarily disjoint intervals, which we refer to here as “new intervals.” If
(1) holds for k then each pair of new intervals is overlapping, while if (5) holds
for k then each pair of new intervals is disjoint. Each pair of new intervals is
disjoint when k is even and overlapping when k is odd. Because Ck is the union
of all new intervals at stage k, the gaps that are introduced when k is even may
be covered by the overlap of the previous stage. See Figure 1 for an illustration.

This interaction appears to be complicated. In particular, it is not clear
if any intervals survive all stages unpunctured (though it is easy to see that
AS(xn) is not itself an interval).

Question 1. Let (xn) =
(

1
2n + 1

(−3)n

)
. Does AS(xn) have empty interior?

Give a topological description of AS(xn).

Note that from the proof of Theorem 3.1, one sees that to answer Question 1,
it is enough to determine whether 0 is in the closure of the interior of AS(xn).

12



An interval
of stage 2m.

A pair of
new intervals

of stage 2m+ 1.

Four new intervals
of stage 2m+ 2

Figure 1: Intervals in three successive stage approximations to
(

1
2n + 1

(−3)n

)
In other words, does there exist ε > 0 such that AS(xn) ∩ [0, ε] contains no
elements of the interior of AS(xn)?

In the same vein as Question 1, we pose the following:

Question 2. Does there exist a sequence (xn) such that limn→∞ |xn+1/xn|
exists and AS(xn) contains an interval but is not a union of intervals?

4 Achievable Sets.

Call a subset of R achievable if it can be obtained as AS(xn) for some real
sequence (xn). In this section we give some examples of classes of achievable
sets, and examine the achievability of some well-known subsets, such as Q.

As a simple starting example, any closed interval with 0 as an endpoint
is achievable: for r ∈ R, we have AS( r

2n ) = [0, r] (or [r, 0] if r < 0). Now
let s ∈ R, and consider the sequence (xn) = s, r2 ,

r
22 , . . .. Then AS(xn) =

[0, r] ∪ [s, s+ r], with appropriate alterations made for r < 0. More generally if
S is any achievable set and r ∈ R, then both

⋃
s∈S [s, s+r] and rS = {rs : s ∈ S}

are achievable.
Consider now a central Cantor set C whose original interval has its left

endpoint at 0. To specify such a set, one needs only the length L of the original
interval and the length an of each of the central intervals removed at stage n. If
(xn) satisfies |xn| >

∑∞
k=n+1 |xk| for each n, Theorem 2.1 shows that AS(xn) is

a central Cantor set and the length of each of the 2n removed intervals at stage
n is |xn|−

∑∞
k=n+1 |xk|. Thus one constructs a sequence (xn) with AS(xn) = C

by taking x1 = 1
2 (L+ a1) and

xn =
L+ 2n−1an −

∑n−1
k=1 2k−1ak

2n

13



for each n ≥ 2. It is straightforward to check that x1 + x2 + · · · = L and
xn − xn+1 − xn+2 − · · · = an for each n.

We now give some properties of achievable sets. Theorem 2.2 shows that any
bounded achievable set must be closed, and Theorem 3.1 shows an achievable
set must be meager or have dense interior. Any bounded achievable set must
also be symmetric about its midpoint. Indeed, such a set S is the achievement
set of (xn), where

∑∞
n=1 xn converges absolutely to r. if s is in AS(xn), then

s =
∑
i∈I xi for some I ⊆ Z+. Letting J = Z+\I, we have r − s =

∑
j∈J xj ,

which is in AS(xn), showing that AS(xn) is symmetric about r
2 .

Our next two results furnish additional properties of achievable sets.

Proposition 4.1. Let (xn) be an infinite real sequence. Then AS(xn) is un-
countable if and only if (xn) has a subsequence converging to 0.

Proof. Suppose first that (xn) contains a subsequence converging to 0. With-
out loss of generality we may assume that xn → 0; we show that AS(xn) is
uncountable.

If there is a k0 such that whenever k > k0 we have

|xk| ≤
∞∑

n=k+1

|xn|, (10)

then it follows from Theorem 1.1 that AS(xnk
) contains an interval, and is thus

uncountable. If there is no k0 such that (10) is satisfied for k ≥ k0, then there
must be a sequence k1, k2, . . . such that for each kj ,

|xkj
| >

∞∑
n=kj+1

|xn| ≥
∞∑

i=j+1

|xki
|.

By Theorem 2.1 AS(xkj
) is a central Cantor set, and thus uncountable.

Now suppose that (xn) contains no subsequence converging to 0. Then no
infinite sum of terms can converge, so all elements of AS(xn) are finite sums of
terms. Hence AS(xn) is countable.

Proposition 4.2. If AS(xn) is uncountable, then it is without isolated points.

Proof. Note that by Proposition 4.1 there is a subsequence (xnj ) whose limit
is 0. let s =

∑
i∈I xi ∈ AS(xn). If I is finite, let k be its greatest element

and let l be minimal such that xnl
> k. Then s + xnl

, s + xnl+1 , s + xnl+2 , . . .
is an infinite sequence of elements of AS(xn) converging to s. If I is infinite,
the partial sums of

∑
i∈I xi form an infinite sequence of elements of AS(xn)

converging to s. Therefore AS(xn) has no isolated points.

With these properties of achievable sets now established, we can examine
the achievability of certain well-known sets.

Corollary 4.3. If S ⊂ R is a countable set of nonnegative numbers having 0
as an accumulation point, then S is not achievable. In particular, the set of
nonnegative rational numbers Q+ is not achievable.
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Proof. Suppose AS(xn) = S. Clearly (xn) can have no negative terms. Thus
if xn > ε for all n and some ε > 0, then AS(xn) ∩ (0, ε) is empty, which
contradicts the fact that 0 is an accumulation point of S. Hence (xn) must have
a subsequence converging to 0. By Proposition 4.1, AS(xn) is then uncountable,
and we have a contradiction.

It is interesting to note that if we adjoin a single negative number to Q+

the resulting set is achievable. For instance, let q1, q2, . . . be an enumeration of
Q+. Set x1 = −1 and for n ≥ 2, let xn = 1 + qn−1. Clearly Q+ ⊆ AS(xn) and
−1 ∈ AS(xn). But the terms of any finite subsequence of (xn) sum to −1 or a
nonnegative rational number, while the terms of any infinite subsequence form
a divergent series. Hence AS(xn) = {−1} ∪ Q+. Using similar reasoning one
can show that if G is any countably infinite additive subgroup of R and g ∈ G+,
then {−g} ∪G+ is achievable.

The full set Q of rationals is also achievable. Let (xn) be an enumeration
of the rationals with absolute value at least 1. Since (xn) has no subsequences
with limit 0, no infinite sum of terms can converge. Finite sums of terms are
rational numbers, so AS(xn) ⊆ Q. On the other hand, clearly AS(xn) contains
all rationals of absolute value at least one. If q ∈ Q ∩ (−1, 1), then we have
2 + (q−2) ∈ AS(xn). Thus AS(xn) = Q. A similar result can be shown for any
countably infinite subgroup of R.

Let us now consider I = {r ∈ R | r irrational} ∪ {0}. The interior of I, being
empty, cannot be dense in I. Hence if I is achievable, then by Theorem 3.1 it
must be meager. To see that this cannot be the case, note that the rationals
are meager, and since unions of meager sets are again meager, we have that R
is meager. But complete metric spaces cannot be meager by the Baire category
theorem. A similar argument applies to the positive irrationals I+.
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[1] R. André-Jeannin, Irrationalité de la somme des inverses de certaines suites
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