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Figure 1 Graphical analysis of 1/37 base 35

Introduction and preliminaries

In America’s visually-oriented, quantitatively illiterate culture, images have a great
deal of power, so if a picture is today worth a thousand words, it must be worth a
least a billion numbers. This power of the image is a hallmark of the postmodern
era, in which the critical role of the observer has come to be recognized, and an
understanding of the viewpoint has become inseparable from that of the object.

In some ways, the blossoming of chaos theory marked the arrival of mathemat-
ical postmodernism. Not so long ago, mathematical ideas were virtually unseen in
American popular culture, and it took the enthralling fractal images of chaos theory
to change that: the studies of chaos and fractals became some of the most widely
discussed mathematical topics ever, and pictures of fractal images such as the Man-
delbrot set began cropping up on T-shirts and posters selling in American malls.
The power of an image is difficult to underestimate, particularly when it comes
to creating interest in a topic widely regarded as bland. Perhaps we could fuel a
greater excitement in traditionally underappreciated areas of mathematics if only
we could present them in a flashier graphical fashion. Take fractions, for instance,
which to many people appear to be merely seas of numbers; after all, infinitely many
fractions have infinitely long strings of digits as their decimal expansions. Wouldn’t
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it be nice if we could see fractions as simple images? Wouldn’t it be even nicer
if, as for the Mandelbrot set, those graphical images exposed something about the
inherent mathematical structure that the concise algebraic expression only implied?

In this paper, we apply to the study of certain fractions the same graphical
techniques used to transform the Mandelbrot set from algebra to image. This will
enable us to turn arcane algebraic objects, like 1

37 base 35, into eye-catching designs,
such as the one pictured in Diagram 1. What’s more, the mathematics behind this
metamorphosis is not very hard to describe. We begin by adopting a somewhat
unusual method of representing a fraction... We begin by describing a somewhat
unusual method of representing a fraction, which will be useful for our purposes.
Fractions can be viewed in a number of ways, many of which are base-dependent:
reduced or unreduced, as pieces of a pie, expanded into decimal, binary, octal,
etc. The method we adopt is quite base-dependent, and relies upon the remainders
generated at each stage of the long-division process in base b. Consider 1

7 , which has
a base 10 (decimal) expansion of 0.142857. We can calculate this using the usual
long division process in base 10 as follows:

0.142857
7)1.000000

7
30
28
20
14
60
56
40
35
50
49
1

We can equivalently represent 1
7 base 10 by writing the sequence of remainders

produced in the above long division: 1 → 3 → 2 → 6 → 4 → 5 → 1, a that repeats
infinitely. Note that what makes this a base ten long division is that we multiply
the dividend by ten at every step; we could easily make it into a base b long division
by multiplying by b at each step. This new long division would yield the sequence
of remainders for 1

7 base b; in fact, one can find the sequence of remainders for any
fraction in any base simply by performing the appropriate long division. However,
the laboriousness and iterative nature of long division make it desirable to have a
simpler, more concise method of finding sequences of remainders. Happily, such a
method exists, and it is simply the evaluation of the following function:

Definition 1 Let a, b, and n be positive integers with (n, a) = 1 and b > 1. If ri
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is the remainder produced at step i of the base b long division of a
n , the remainder

produced at the (i + 1)st step is given by ri+1 = Fb:n(ri) = b× ri (mod n). We call
Fb:n the remainder function, since if we begin with r0 = a, iteration of Fb:n yields
the sequence of remainders of a

n long divided in base b.

We can see the remainder function in action with the fraction used above, 1
7

base 10. We begin with r0 = 1. Next we have r1 = F10:7(r0) = 10× 1 (mod 7) = 3,
followed by r2 = F10:7(r1) = 10×3 (mod 7) = 2, r3 = F10:7(r2) = 10×2 (mod 7) =
6, r4 = F10:7(r3) = 10 × 6 (mod 7) = 4, r5 = F10:7(r4) = 10 × 4 (mod 7) = 5,
and r6 = F10:7(r5) = 10 × 5 (mod 7) = 1. Since r6 = r0 = 1, the sequence
repeats. Note that each iteration of the remainder function simply multiplies by b

and mods by n. Then, since r0 is a, we can calculate the ith remainder directly using
the formula ri = abi (mod n). This compact formula simplifies many arguments
involving sequences of remainders, and you will see it often in the pages to come.
We will assume that all fractions are in reduced form.

In the analysis above, our friend 1
7 base 10 displays some surprising qualities.

For example, ri + ri+3 = 7 for all i. Moreover, if we let di represent the digit of
the decimal expansion that is i places to the right of the decimal point, then in this
example di + di+3 = 9 for all i. These symmetries, as we shall see, have more than
a numerical significance.

Before moving on to graphical topics, it will serve us well to discuss the three
kinds of behavior a sequence of remainders (as well as the corresponding expansion)
can exhibit. First, the sequence of remainders of a

n in base b (as well as the cor-
responding base b expansion) may terminate; this happens if each remainder (and
digit) is zero after some point, and such a fraction will have a graphical analysis
graph that begins at some point and ends at some different point. This is the case if
and only if every prime factor of n is also a prime factor of b. Second, the sequence
may have a periodic cycle, but one that begins only after some initial string of re-
mainders that never reappears. In this case, the graphical analysis graph will be an
infinitely repeated figure, but with a tail created by the initial unrepeated string of
remainders. This happens if and only if n has some factors that divide b and some
that do not. Thirdly, the sequence may have only repeated cycles with no initial
unrepeated string of remainders; this occurs if and only if n and b are relatively
prime. This sort of fraction produces the neatest graphical analysis graph: a figure
that retraces itself infinitely, with no unrepeated points.

The remainder function described above will allow us to work more easily with
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sequences of remainders. That it is function also makes it a nice candidate for a
graphical technique we will now introduce.

Graphical analysis

Graphical analysis or graphical iteration [2] gives us a visual way to explore function
iteration. To graphically analyze a function F (r), one does the following: Let r0

be some number. Then, beginning with i = 0, draw a vertical line from (ri, ri) to
the point (ri, F (ri)) = (ri, ri+1). (See Fig. 2) From there, draw a horizontal line
to (F (ri), F (ri)) = (ri+1, ri+1). Then increase i by one iteratively and repeat the
preceding steps. Here, we will apply graphical analysis to our function Fb:n(r). In
order to avoid minor difficulties, we will say that if the remainder becomes zero at rn,
we stop the process at rn−1. Although graphical analysis works only on functions,
the remainder function associated with a given fraction is so closely tied to the
fraction that we will refer to the graphical analysis of Fb:n(ri) = b × ri (mod n),
with r0 = a, as the graphical analysis of a

n in base b.

Figure 2 Graphical analysis of 1
5 in base 2

Note that the remainder function F2:5(x) = 2x (mod 5) plays a crucial role in
Figure 2. However, the reader may have noticed that this function does not appear
in the graphical analysis graph of 1

37 in base 35 (see Fig. 1). The reason is that for
so complex a picture, the slanted parallel lines of the remainder function become
so dense as to obscure the image. Thus, despite their importance, for the sake of
clarity we will omit them in the images to come.

Also, although the remainder function is theoretically important, one may graph-
ically analyze a fraction without drawing the graph of the remainder function itself.
In effect, the graphical analysis begins at the point (r0, r0), proceeds first verti-
cally then horizontally to (r1, r1), then moves vertically then horizontally again to
(r2, r2), and continues in this fashion. Hence in practice one can graphically ana-
lyze a fraction in a given base as follows: Compute the sequence of remainders; for
each remainder, draw the appropriate dot on the line y = x; then connect the dots
(following the order of the sequence of remainders), moving vertically then hori-
zontally. Thus the sequence of remainders entirely determines the graphical anlysis
of the fraction. So when proving certain properties of graphical analyses, such as
various symmetries, we need not consider the entire image, but only the distribution
of remainders.
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Since the graphical analysis of a fraction varies from base to base, one might
wonder how many distinct graphical pictures exist for a given fraction a

n . Bases
zero and one are exempt from consideration. If b1 and b2 are bases such that b1 ≡ b2

(mod n), then ab1
m ≡ ab2

m (mod n), so a
n will generate identical sequences of

remainders in both bases. Thus, we only have to consider for our bases a single
representative from each equivalence class of n. This means, of course, that at most
n bases may produce distinct graphs. Further narrowing the field is the fact that
if b is a base such that b ≡ 0 (mod n) or b ≡ 1 (mod n), the pictures are not very
interesting: in the former case, all remainders save the first are zero, so the graphical
analysis graph is merely a single point, since the analysis ends with the last nonzero
remainder. In the latter case, if m is a positive integer, then 1

n written in base
mn+1 is 0.1, and the sequence of remainders is an infinite string of ones; again, the
graphical analysis graph is a single point. We will exclude bases in the 0 equivalence
class in many later considerations. However, we will often be interested in all bases
in which a fraction has a periodic expansion, and thus we will include bases in the
1 equivalence class in spite of their graphical shortcomings.

The various graphs of a fraction in different bases often bear some relation to
one another. The following definition will help us relate some of them to others.

Rotational graph pairs

Definition 2 a1
n1

and a2
n2

are rotational graph pairs if the graphical analysis graph
of a1

n1
, when rotated 180◦ about the point (n

2 , n
2 ), produces the graphical analysis

graph of a2
n2

.

These pictures exemplify rotational graph pairs:

Figure 3 Graphical analysis of 17/19 base 5 vs. 2/19 base 5

Since the graph of a fraction in base b depends entirely on its sequence of remain-
ders, we can show that two fractions are rotational graph pairs simply by showing
that “rotating” the sequence of remainders of one fraction about the point (n

2 , n
2 ),

produces precisely the other sequence. In other words, the sequences must be zero
in exactly the same places, and whenever the ith remainders of both sequences
are nonzero, they must be equidistant from the point (n

2 , n
2 ). This is true if and

only if the remainders in question sum to n. Thus we need only show that adding
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corresponding nonzero terms in the two sequences of remainders invariably yields
n.

Theorem 1 In each base b, a
n and n−a

n are rotational graph pairs.

Proof. First note that the only possible remainders at any stage of the long
division of a

n in base b belong to the set {0, 1, 2, . . . , n − 1}. Now, for any i, abi

(mod n) + (n − a)bi (mod n) = (abi + (n − a)bi) (mod n) = nbi (mod n). Since
nbi ≡ 0 (mod n) we have that the sum of the ith remainders of each sequence must
be either 0 or n. Note that it is impossible for the ith remainder of one sequence to
be zero and the ith remainder of the other nonzero: the nonzero remainder would
make the sum necessarily greater than zero, and the zero remainder would make
the sum necessarily less than n. Hence the sequences are zero in precisely the same
places. Finally, if corresponding terms in the two sequences are nonzero, they cannot
sum to zero, and so must sum to n. �

Part of the appeal of Theorem 1 lies in its breadth: it applies to any fraction
in any base, regardless of the behavior of the fraction’s sequence of remainders.
However, in order to have breadth, one often must sacrifice depth. If we consider
more restricted classes of fractions, we will be able to prove several stronger, more
penetrating results.

We can extend Theorem 1 significantly if we restrict ourselves to fractions and
bases that produce purely periodic sequences of remainders — that is, those satisfy-
ing (b, n) = 1. Since the graphs of these fractions consist of a single repeated figure,
beginning with any point in the cycle will yield the same image. Thus if c1 is a term
in the sequence of remainders for a

n base b, then the sequence of remainders of c1
n

base b will go through exactly the same cycle, beginning at c1 instead of a. Hence
the two fractions a

n and c1
n will produce identical graphs. Similarly, if c2 is a term in

the sequence of remainders of n−a
n , then c2

n and n−a
n will produce identical graphs.

This corollary then follows immediately from Theorem 1:

Corollary 2 Suppose b and n are relatively prime. If abi ≡ c1 (mod n) for some i

and (n − a)bj ≡ c2 (mod n) for some j, then c1
n and c2

n are rotational graph pairs
in base b.

For example 2 × 100 ≡ 10 (mod 19) and 17 × 10 ≡ 18 (mod 19), so 10
19 base 10

and 18
19 base 10 are rotational graph pairs.
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Although we will return to this limited class of fractions later, in the next section
we enlarge our consideration to include all sequences of remainders that do not
terminate. The discussion hinges on a different sort of symmetry in the graphical
analysis graph of a fraction: a rotational symmetry of a single graph, rather than
of one graph to another.

Rotational symmetry

Consider the following two very different images in Figure 4:

Figure 4 Graphical analysis of 1/7 base 10 vs. 1/37 base 10

The lovely rotational symmetry present in the graphical analysis graph of 1
7 base

10 is strikingly absent in the graph of 1
37 . One might wonder why: after all, both 7

and 37 are not only relatively prime to 10, but also prime numbers. The following
theorem will help to explain this difference.

Theorem 3 If (n, a) = 1 and n contains at least one prime factor that does not
divide b then the following are equivalent:

A. n− a appears among the remainders of the long division alogorithm in base
b of a

n (i.e. rm = n− a for some m).

B. There exists an m, 0 < m < n, such that for each natural number i, we have
ri + ri+m = n.

C. The graphical analysis graph of the function Fb:n beginning with r0 = a has
180◦ rotational symmetry about the point (n

2 , n
2 ).

Proof. We will show A ⇒ B by induction on i. By hypothesis, r0 + rm =
a + (n− a) = n, so induction begins. Assuming that ri + ri+m = n, we must show
that ri+1 + ri+m+1 = n. Using the remainder function, we have

ri+1 + ri+m+1 = Fb:n(ri) + Fb:n(ri+m) = b× ri (mod n) + b× ri+m (mod n)

= b× (ri + ri+m) (mod n) = b× n (mod n) = 0.

Thus ri+1 + ri+m+1 ≡ 0 (mod n). Since n contains at least one prime factor that
does not divide b, the sequence of remainders of a

n base b does not terminate, so no
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remainder can be zero. Therefore 0 < ri+1 + ri+m+1 < 2n, implying that ri+1 +
ri+m+1 = n.

We now turn to B ⇒ C. Condition B guarantees the existence of some positive
integer m such that ri+rm+i = n for each i. Let s be the smallest such integer. Since
rs + r2s = n = rs + r0, it follows that r0 = r2s, and thus the length of the periodic
cycle of the sequence of remainders is 2s. Furthermore, the cycle is composed of
the two halves r0, r1, . . . , rs−1 and rs, rs+1, . . . , r2s−1. Since ri + rs+i = n for each
i, these halves are essentially rotational graph pairs, and thus the whole graph is
rotationally symmetric by itself.

Finally we address C ⇒ A. Condition C means that our graph is rotationally
symmetric about (n

2 , n
2 ), and since r0 = a, (a, a) must be a point on the graph.

Because of the graph’s symmetry, (n− a, n− a) must also be a point on the graph,
implying that n − a is a term in the sequence of remainders. Thus rm = n − a for
some m. �

Remarks and observations

In the example given above, 36 is indeed nowhere to be found in the sequence of
remainders for 1

37 base 10, which is 1 → 10 → 26, whereas 6 is the fourth number
in the sequence for 1

7 base 10. The equivalence of parts A and B thus predicts
the visual discrepancy. In general, one need not go to the trouble of graphically
analyzing a fraction to see if it’s symmetric: it’s enough to compute the sequence
of remainders and examine it for a single number, n− a.

Interestingly, the symmetry among the remainders mentioned in part B of Theo-
rem 3 is related to a similar symmetry among the digits. Suppose that the condition
described in part B holds for a fraction a

n in base b. The long division algorithm
tells us that for each i, b × ri−1 = ndi + ri where di is the ith digit in the decimal
expansion of a

n base b. Thus ndi +ndi+m = b(ri−1 + ri+m−1)− (ri + ri+m) = bn−n.
This implies that di + di+m = b− 1 for each i, a symmetry that we noted regarding
1
7 base 10. A similar argument shows that the symmetry of remainders follows from
the symmetry of digits, implying that the two are inseparable.

Symmetries in fractions with (b, n) = 1

Already the subject of Corollary 2, this class of fractions and its subclass of fractions
with prime denominators will prove worthy of close scrutiny. Members of the larger
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class share one outstanding quality: in a given base b, rotational symmetry depends
only on the denominator of the fraction in question (provided, of course, that the
fraction is reduced). We make this precise in the next theorem.

Theorem 4 Let a
n be a reduced fraction in base b, where (b, n) = 1. Then the

graphical analysis graph of a
n is rotationally symmetric in base b if and only if the

graphical analysis graph of 1
n is rotationally symmetric in base b.

Proof. Suppose that the graphical analysis graph of 1
n is rotationally symmetric

in base b. The formula bi (mod n) gives us the ith remainder of the long divison
of 1

n and abi (mod n) gives us the ith remainder of the long divison of a
n . Since 1

n

is rotationally symmetric, by Theorem 3 we have bi (mod n) + bm+i (mod n) = n

for each i and for some m satisfying 0 < m < n. Thus bi + bm+i ≡ 0 (mod n).
Multiplying through by a yields abi + abm+i = an ≡ 0 (mod n), implying that abi

(mod n) + abm+i (mod n) = 0 or n. Since (b, n) = 1, the sequence of remainders
of a

n base b does not terminate, and thus no remainders can be zero. We therefore
conclude that abi (mod n) + abm+i (mod n) = n, proving the rotational symmetry
of a

n in base b.

The converse argument is quite similar. Supposing abi (mod n)+abm+i (mod n) =
n for all i and for some m, we clearly have abi + abm+i ≡ 0 (mod n). We need only
find a positive integer c such that ca ≡ 1 (mod n), and we will be able to mutiply
through by c and complete the approach used above. Since our fraction is reduced,
(a, n) = 1, so there exist positive integers c and d such that ca + dn = 1. This
implies that ca = 1 − dn ≡ 1 (mod n), so the desired positive integer does indeed
exist. �

This theorem guarantees, that for our limited class of fractions, if 1
n is rota-

tionally symmetric in base b, then a
n will be as well, provided (a, n) = 1. It often

happens that 1
n and a

n in fact produce identical graphs in base b; this is the case
for 1

7 and a
7 in base 10, where (a, 7) = 1. However, this need not happen, as the

following pictures show:

Figure 5 Graphical analysis of 1/13 base 10 vs. 5/13 base 10

Theorem 4 allows us to say that every reduced fraction with denominator n is
either symmetric or not symmetric in any base b satisfying (b, n) = 1, since the value
of the numerator plays no role. Thus for short, we will occasionally say simply that
n is symmetric or not symmetric in base b.



JONES and PEARCE 10

The Euler totient function

Some interesting results will be obtained by introducing the Euler totient function,
ϕ(n), which takes as input a positive integer n and produces as output the number
of positive integers m that are less than or equal to n and satisfy (m,n) = 1. Some
examples are ϕ(4) = 2, ϕ(6) = 2, ϕ(12) = 4, and, for any prime p, ϕ(p) = p−1. The
Euler totient function boasts two convenient properties, that allow us to evaluate it
easily for any positive integer: First, if m and n are relatively prime positive integers,
then ϕ(mn) = ϕ(m)ϕ(n); and second, if p is prime and j is a positive integer, then
ϕ(pj) = pj−1(p − 1) [3]. Thus, ϕ(12) = ϕ(223) = ϕ(22)ϕ(3) = 2(2 − 1)2 = 4. One
of the better known theorems involving the Euler totient function is:

Lemma 5 Euler’s Formula If a and m are positive integers and (a,m) = 1, then
aϕ(m) ≡ 1 (mod m)

The Euler totient function will prove particularly useful in determining under
what conditons the graphical analysis graph of 1

n is rotationally symmetric.

Fractions with prime denominators

Consider for a moment a reduced fraction with a prime denominator p in a base b

that is not a multiple of p. Clearly (b, p) = 1, so this fraction belongs to the class
discussed above. Theorem 4 thus applies, showing that the value of the numerator
does not affect the symmetry of the fraction’s graph. So to determine if p is sym-
metric in base b, it is enough to examine the behavior of 1

p in base b. Although
this is nice, we can use our restriction to fractions with prime denominators to get
something even nicer: a convenient characterization of rotational symmetry.

Any reduced fraction with prime denominator p in a base b satisfying (b, p) = 1
must have a purely periodic sequence of remainders. The length of the repeating
cycle of the sequence of remainders (also known as the sequence’s period) has ev-
erything to do with the rotational symmetry of the fraction: an even period means
symmetry, an odd period no symmetry. We enshrine this convenient characteriza-
tion in the following theorem:

Theorem 6 Let m be the smallest positive integer such that bm ≡ 1 (mod p), where
p is an odd prime and (b, p) = 1. Then 1

p is rotationally symmetric in base b if and
only if m is even.
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Proof. First note that because (b, p) = 1 and p is prime, it follows from Euler’s
Formula that bp−1 ≡ 1 (mod p), so there exists some positive integer satisfying
bm ≡ 1 (mod p). [See Lemma 5.] Hence it makes sense to discuss the smallest such
integer. Now suppose 1

p is rotationally symmetric in base b, and let c1 be a term in
the sequence of remainders of 1

p base b. Then for some i, bi ≡ c1 (mod p). Since
0 < c1 < p, we have (c1, p) = 1, so, by Theorem 6, c1

p must be rotationally symmetric
in base b. Thus, by Theorem 3, p− c1 must appear in the sequence of remainders of
c1
p base b. Hence for some j, c1b

j ≡ p− c1 (mod p). Since bi ≡ c1 (mod p), we have
bi+j ≡ c1b

j ≡ p− c1 (mod p), implying that p− c1 is in the sequence of remainders
of 1

p base b. Thus each remainder r in the periodic cycle of 1
p base b occurs together

with p − r. Since p is odd, we cannot have r = p − r, so the elements of the cycle
occur in distinct pairs. Hence the cycle length must be even. Given that the first
remainder is b0 (mod p) = 1, this means that the smallest positive integer satisfying
bm ≡ 1 (mod p) is even.

To show the converse, let m be the smallest positive integer satisfying bm ≡ 1
(mod p), and suppose m is even. Then m = 2d for some positive integer d. Hence
bm = b2d = (bd)2 ≡ 1 (mod p). Thus (bd + 1)(bd − 1) ≡ 0 (mod p) and since p is
prime either bd ≡ 1 (mod p) or bd ≡ −1 (mod p). The first case is clearly impossible
since d = m

2 < m, and m was assumed to be the smallest positive integer such that
bm ≡ 1 (mod p). Thus we conclude that bd ≡ −1 ≡ p− 1 (mod p). Therefore p− 1
is the dth remainder of 1

p base b, so by Theorem 3 1
p is rotationally symmetric in

base b. �

Note that p must be prime for the above theorem to hold. Consider Figure 6,
for example, 2m ≡ 1 (mod 15) gives us a smallest m of 4.

Figure 6 Graphical analysis of 1/15 base 2

By Lemma 5, if p is prime, then for any a not a multiple of p, we have ap−1 ≡ 1
(mod p) which gives us access to an important property of the period of purely peri-
odic sequences of remainders: If (b, n) = 1, the period of the sequence of remainders
of 1

n base b must divide ϕ(n). The reason is that, by Lemma 5, bϕ(n) ≡ 1 (mod n).
Since the period of 1

n base b is the smallest positive integer m satisfying bm ≡ 1
(mod n), it must divide ϕ(n). In particular, if p is prime and (b, p) = 1, the period
of the sequence of remainders of 1

p base b must divide p−1. We will use this property
as well as several others mentioned above in the next section.
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Counting bases that produce symmetry

One might be tempted to guess that a prime number is symmetric in some randomly
distributed number of bases; delightfully, this is not so. As we noted earlier, to find
the ratio of bases in which a prime p is symmetric, we need only consider a single
base b from each equivalence class of p. We will be interested here only in the bases
in which 1

p has a periodic sequence of remainders. Therefore our considered bases
will be all bases except those in the 0 equivalence class.

For example, the reciprocal of 19 is symmetric in 9 of the 18 bases between 2
and 20, excluding 19; thus it is symmetric in half of the considered bases. The
reciprocals of many other prime numbers are also symmetric in 1

2 of the considered
bases; some examples are 3, 7, 11, 23, 31, and 59. Other primes have reciprocals
that are symmetric in 3

4 of the considered bases; the first few are 5, 13, 29, 37, and
61. Still other primes, including 41, 73, and 89, have reciprocals symmetric in 7

8

of the considered bases. In fact, one can find prime numbers that are symmetric
in (2n−1)

2n of the considered bases for many positive integers n. We can explain this
separation of the prime numbers into families, but to do so we will need a couple of
number-theoretic results. [For details, see for example [3].]

Lemma 7 If n = pα1
1 pα2

2 , ..., pαn
n is the prime factorization of n, then n =

∑
d|n ϕ(d)

where the sum is taken over all divisors of n.

Lemma 8 Let p be a prime number and d a positive divisor of p−1. Then there are
exactly ϕ(d) numbers b that are incongruent (mod p) and have the property that d

is the smallest positive integer satisfying bd ≡ 1 (mod p).

To illustrate Lemma 8, let p = 7 and choose d = 3. Lemma 8 tells us that there
are ϕ(3) = 2 possible bases b which are not congruent (mod 7) with the property
that while b1 and b2 are not congruent to 1 (mod 7), b3 is congruent to 1 (mod 7).
In other words, were we to compute the sequence of remainders for 1

7 in one base
from each of the seven equivalence classes of 7, we would find that exactly two of
them produce a sequence of period 3. If we want to know how many will yield a
sequence with period 6, we simply have to calculate ϕ(6), which is 2. The same
holds for any other divisor of 6. To find the number of these bases in which the
graph of 1

7 is rotationally symmetric, Theorem 6 tells us we need only determine in
how many of them 1

7 has a sequence of remainders of even period. Since we ignore
bases in the zero equivalence class, all the bases we consider satisfy (b, 7) = 1. Since
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the period of 1
7 in any of these bases must divide ϕ(7) = 6, the only possible even

periods are 6 and 2. Thus our answer is ϕ(6) + ϕ(2) = 3, and we see that 1
7 is

symmetric in one half of the considered bases. This sort of analysis underlies the
following proof.

Theorem 9 Suppose p is an odd prime number and n is the largest integer satisfying
2n | p − 1. Then, excluding bases b ≡ 0 (mod p), 1

p is symmetric in 2n−1
2n of the

remaining bases.

Proof. We need only consider a single representative base from each nonzero
equivalence class mod p. By Theorem 6, it suffices to find the number of bases in
which 1

p produces a sequence of remainders of even period. The period of 1
p in any

representative base must divide ϕ(p) = p−1, so we want to find for each even divisor
m of p − 1 the number of bases in which 1

p has a sequence of period m. Lemma 8
tells us that for a divisor q of p− 1, 1

p will produce a sequence of period q in exactly
ϕ(q) of the representative bases. Hence we need only compute

∑
ϕ(m), where m

varies over the even divisors of p− 1. We will call the value of this sum k.

Suppose 2 divides p− 1 exactly n times. Then the prime factorization of p− 1 is
2npα1

1 pα2
2 · · · pαN

N , where each pj is an odd prime. The largest odd divisor of p− 1 is
thus D = pα1

1 pα2
2 · · · pαN

N . Now every even divisor m of p− 1 has the form 2it, where
1 ≤ i ≤ n and t divides D. So we have

k =
n∑

i=1

∑
t|D

ϕ(2it).

Now since t | D and D is odd, t must be odd. So (2i, t) = 1 for any i, and by
the first convenient property of the Euler function, we have ϕ(2it) = ϕ(2i)ϕ(t), so

k =
n∑

i=1

∑
t|D

ϕ(2i)ϕ(t) =
n∑

i=1

ϕ(2i)
∑
t|D

ϕ(t).

By Lemma 7,
∑

t|D ϕ(t) = D = pα1
1 pα2

2 · · · pαN
N , so

k = pα1
1 pα2

2 · · · pαN
N

n∑
i=1

ϕ(2i).

Now
∑n

i=1 ϕ(2i) = ϕ(2)+ϕ(22)+ · · ·+ϕ(2n). By the second convenient property
of the Euler function, the right side is 20(1)+21(1)+22(1)+ · · ·+2n−1(1) = 2n− 1,
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so we have
∑n

i=1 ϕ(2i) = 2n − 1. Finally we arrive at our value for k:

k = (2n − 1)pα1
1 pα2

2 · · · pαN
N .

Since we are considering only a single base from each of the p − 1 nonzero
equivalence classes of p, we have that 1

p is symmetric in

k

p− 1
=

(2n − 1)pα1
1 pα2

2 · · · pαN
N

2npα1
1 pα2

2 · · · pαN
N

=
2n − 1

2n

of the considered bases. �

Corollary 10 Suppose p is an odd prime and D is the largest odd divisor of p− 1.
Then, excluding bases b ≡ 0 (mod p), 1

p fails to be symmetric in D
p−1 of the remaining

bases.

Proof. Suppose 2 divides p − 1 exactly n times. Applying Theorem 9 we get
that 1

p fails to be symmetric in 1− 2n−1
2n = 1

2n of all the considered bases. The prime
factorization of p − 1 is 2nD. Thus 1

p fails to be symmetric in 1
2n = D

2nD = D
p−1 of

the possible bases. �

We noted earlier that in a base of the form ap + 1, where a is a positive integer,
1
p will have a sequence of remainders that is simply an infinite string of ones. This
leads to a graph consisting only of the fixed point (1, 1). If p = 2, this graph is in
fact symmteric about (p

2 , p
2), but for any odd prime it fails to be symmetric. Thus

an odd prime must fail to be symmetric in all bases belonging to the one equivalence
class of p. However, there exist odd primes that are symmetric in all of the other
considered bases, and thus are as symmetric as it is possible for an odd prime to be.

Perfectly symmetric numbers and Fermat primes

Definition 3 A positive integer n > 1 is perfectly symmetric if its reciprocal is
symmetric in any base b provided b 6≡ 0 (mod n) and b 6≡ 1 (mod n).

Clearly, 2 is trivially perfectly symmetric. This membership in the set of per-
fectly symmetric numbers makes 2 a spectacularly rare positive integer, joined only
by widely-spaced comrades:

Theorem 11 The only perfectly symmetric numbers are 2 and the Fermat primes.
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Proof. Recall that a Fermat prime is a prime of the form 22m
+ 1, where m is

a natural number. Suppose n is a perfectly symmetric number. Suppose also that
n is composite. Then there is some base b that divides n and satisfies 1 < b < n.
Clearly b and n are not relatively prime. So the sequence of remainders of 1

n in
base b cannot be purely periodic: either it terminates or has an initial string of
unrepeated remainders. In the latter case, the string of unrepeated digits creates a
tail in the graphical analysis graph of 1

n base b, and the tail ruins any symmetry. In
the former case, n− 1 cannot appear in the sequence of remainders, for if it did, we
would have rk = n− 1 for some nonzero k, implying that r2k = 1. But the sequence
of remainders terminates, so this is not possible. In either case n is not symmetric
in base b, contradicting our assumption.

Therefore n must be prime. We have already seen that 2 is perfectly symmetric.
If n is an odd prime, then, by Corollary 10, 1

n will fail to be symmetric in bases
belonging to D of the n− 1 nonzero equivalence classes of n, where D is the largest
odd divisor of n − 1. Any odd prime must fail to be symmetric in at least one of
these base equivalence classes, but since n is perfectly symmetric, it cannot fail in
any of the others; therefore D = 1. Thus no odd number greater than one can divide
n− 1, implying that n− 1 is of the form 2i for some i. Therefore n = 2i + 1 and n

is prime. If i = uv, where u is odd, then 2v + 1 | 2i + 1, so 2i + 1 fails to be prime.
Thus in this case our i must be of the form 2k, where k ∈ N. Therefore our prime
n is of the form 22k

+ 1, and is thus a Fermat prime.

Conversely, if n is either 2 or a Fermat prime, then clearly either n = 2, and is
thus perfectly symmetric, or n is odd. In the latter case, by Corollary 10 we have
that 1

n fails to be symmetric in bases belonging to D of the n−1 nonzero equivalence
classes of n, and must be symmetric in all the rest. Here n− 1 = 2i, so D = 1. But
the reciprocal of any number m must fail to be symmetric in bases belonging to the
one equivalence class of m. Hence if x > 1 and b ≡ x (mod n), 1

n is symmetric in
base b. Therefore n is perfectly symmetric. �

Currently there are only five known Fermat primes: 3, 5, 17, 257, and 65537.
Thus, only six known perfectly symmetric numbers lurk among all the positive
integers greater than one, suggesting that perfect symmetry is among the more
unusual properties a number can have. However, precisely how many perfectly
symmetric numbers exist remains an open question.



JONES and PEARCE 16

Questions and conclusions

Our discussion of the number of symmetry-producing bases for various fractions
raises two questions about certain kinds of prime numbers:

Question 1 Does there exist, for each positive integer n, a natural number k such
that 2n(2k + 1) + 1 is prime?

If so, then for any positive integer n one can find a prime p such that 2 divides
p−1 exactly n times. This would mean that for any positive integer n, primes exist
that are symmetric in 2n−1

2n of the considered bases.

Question 2 How many Fermat primes are there?

No one has any idea; we know only that there are at least five. Pierre de
Fermat thought that all numbers of the form 22k

+ 1 were prime, but history has
proven otherwise: All the numbers generated using k = 5, . . . , 11 have turned out to
be composite, as well as selected others, including the monstrous 2223471

+ 1. There
remain, however, infinitely many more as-yet-undetermined possibilities. An answer
to this question would also tell how many perfectly symmetric numbers exist.

Thus ends our exploration of fractions and symmetry. Postmodernism has taught
us that all ways of looking at a problem are not equivalent: different perspectives
highlight different properties. Adopting our society’s penchant for images led us to
examine more closely the symmetries of certain fractions, and opened our eyes to
unexpected visions.

Note on the computer program

During the course of this project, we wrote a relatively simple computer program
that graphically analyzes any fraction in any base. We found some of the images
quite striking and beautiful, and were sorry not to be able to include all of them
in this article. For those of you who would like to generate some of these images
themselves, our program is in an electronic supplement at ¡¡insert appropriate URL
here¿¿ on the MAA Web Site.
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The following is a version of our graphical analysis graphing program, written
in qBASIC:

PRINT ”Which fraction shall I analyze? Use the form numerator, denominator”
INPUT a,n
PRINT ”In which base?”
INPUT b
LET r1 = a
FOR i = 1 TO (n - 1)
LET temp = (rem1 * b)
LET r2 = ((temp/n) - INT((temp/n))) * n
REM the previous two lines multiply by b and mod by n to find the new remainder
IF (rem2 - FIX(rem2)) ¿= .5 then LET rem2 = FIX(rem2) + 1
IF (rem2 - FIX(rem2)) ¡ .5 then LET rem2 = FIX(rem2)
REM these two lines round the new remainder to the nearest integer to avoid
REM the introduction of small errors which, because of the iteration, grow rapidly
SCREEN 12
LET s = 400 / (n - 1)
REM this is a scaling factor, needed because image size depends on the
REM size of the denominator. It puts the image in a 400-pixel square
LINE (rem1 * s, 400 - (rem1 * s)) - (rem1 * s, 400 - (rem2 * s))
REM draws vertical line
LINE (rem1 * s, 400 - (rem2 * s)) - (rem2 * s, 400 - (rem2 * s))
REM draws horizontal line
IF rem2 = a then GOTO 1
LET rem1 = rem2
NEXT i
1 END

Some of our favorites are 1
167 base 97, 1

307 base 28, 1
37 base 2, 1

127 base 42, and
1

313 base 34. The series 1
157 bases 20-29 is also fairly neat. Happy drawing!


