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ABSTRACT
Within its observational band the Laser Interferometer Space Antenna, LISA, will simultaneously observe orbital modulated
waveforms from Galactic white dwarf binaries, a binary black hole produced gravitational-wave background, and potentially a
cosmologically created stochastic gravitational-wave background (SGWB). The overwhelming majority of stars end their lives
as white dwarfs, making them very numerous in the Milky Way. We simulate Galactic white dwarf binary gravitational-wave
emission based on distributions from various mock catalogues and determine a complex waveform from the Galactic foreground
with 3.5 × 107 binaries. We describe the effects from the Galactic binary distribution population across mass, position within
the Galaxy, core type, and orbital frequency distribution. We generate the modulated Galactic white dwarf signal detected by
LISA due to its orbital motion, and present a data analysis strategy to address it. The Fisher Information and Markov Chain
Monte Carlo methods give an estimation of the LISA noise and the parameters for the different signal classes. We estimate
the detectable limits for the future LISA observation of the SGWB in the spectral domain with the three LISA channels A, E,
and T. We simultaneously estimate the Galactic foreground, the astrophysical and cosmological backgrounds. Assuming the
expected astrophysical background and a Galactic foreground, a cosmological background energy density of around �GW,cosmo

≈ 8 × 10−13 could be detected by LISA. LISA will either detect a cosmologically produced SGWB, or set a limit that will have
important consequences.

Key words: gravitational waves – white dwarfs – early Universe.

1 IN T RO D U C T I O N

The latest Gaia data release, the Early Data Release 3 (EDR3), was
recently presented (Gaia Collaboration 2020). Gaia is an astrometry
mission, it measures with great precision the position, parallax, and
movement of hundreds of millions of stars in our Galaxy. Moreover,
with its spectrometer, it is possible to know the type of most of the
stars observed. This is the most accurate stellar map to date giving
the position, the luminosity, and the spectrum of more than 1.8 × 109

stars. Among these, 105 white dwarfs (WDs) have been observed and
well separated from other stars in the Hertzsprung–Russell diagram
(Gentile Fusillo et al. 2019). Stars with an initial mass between 0.9
and 8 solar mass (M�) will become a WD within a Hubble time. This
implies that 97 per cent of stars in the Galaxy will finish as a WD
(Fontaine, Brassard & Bergeron 2001; Napiwotzki 2009), resulting
in 10–50 billion WDs in the Milky Way. For 50 billion WDs, we
use the density of 5 × 10−3 pc−3. In Ledrew (2001), the distribution
of the star class differences in our Galaxy is given. The calculation
is based on the number stars of each type in a volume of 104 pc3

around the Sun.
WDs are stellar core remnants, have typical radii around 10 000 km

and masses between 0.25 M� for the He WDs and up to the

� E-mail: guillaume.boileau@oca.eu

Chandrasekhar mass 1.4 M�, which makes them compact objects
(Chandrasekhar & Milne 1931). There are a significant number
of WDs that form double WDs (DWD; Nelemans et al. 2001).
Ultracompact WD binaries with a short orbital period, from a few
hours down to a few minutes, can have a significant electromagnetic
(EM) signal, making them observable. Among these are cataclysmic
variable (CV) systems (Kupfer et al. 2020) made of a WD and a
companion star, which transfers part of its mass after having filled
its Roche lobe. When matter falls towards the WD, there is a strong
periodic emission of UV and sometimes X-rays (Warner 1995). Such
interacting binaries are possible progenitors of Type Ia supernova
(Webbink 1984; Hillebrandt & Niemeyer 2000).

DWDs in our Galaxy are sources of gravitational waves (GW) that
will be detectable with LISA (Amaro-Seoane et al. 2017), the future
space mission of the European Space Agency (ESA) whose objective
is to detect low frequency GW from space. Its observational band is
a great source for understanding the astrophysical properties of our
Galaxy and the DWD population.

Gaia DR2 provided astrometry for some WDs. We cannot yet
distinguish individual DWDs binaries, but for some known binaries
the estimate of their GW emission could be refined. Gaia DR4 will
identify many sources that will be detectable by LISA with a signal-
to-noise ratio (SNR) larger than five (Kupfer et al. 2018); note also
that many systems which can be found by Gaia will not have a larger
SNR for LISA (Korol et al. 2017; Gentile Fusillo et al. 2019). From
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the light curves, it will be possible to extract an estimate of the DWD
population that is detectable by LISA (Hollands et al. 2018). The GW
emission will be at frequencies less than one 10−3 Hz. The study and
measurement of these systems are some of the key science goals of
the LISA mission. In addition, there are binary systems known as
‘verification binaries’ (Kupfer et al. 2018). For example, recently the
Zwicky Transient Facility (ZTF) has measured a DWD with an orbital
period measured at 7 min (Burdge et al. 2019), which corresponds to
a GW emission of � 3 × 10−2 Hz. Well studied systems like this can
be used to verify the LISA performance, acting as a way to confirm
the sensitivity of LISA.

The band 10−5–10−4 Hz, if usable with LISA data, would be
important for the detection and separation of the stochastic grav-
itational wave backgrounds (SGWBs). The high frequency (up to
0.1 Hz) is dominated by the LISA noise, so it is difficult to separate
a SGWB from this noise. However, the high frequency data do
provide some important information about the LISA noise. The
goal of the LISA mission (Amaro-Seoane et al. 2017) is to detect
GWs in the [10−4,0.1] Hz frequency band, possibly extendable to
[10−5,1] Hz. This corresponds to orbital periods between 12 seconds
and 15 d.

The study of the population of DWDs is an important goal for the
LISA mission. LISA is being led by the ESA, with participation
from NASA. The launch is currently planned for 2034, with at
least 4 yr of observations, possibly extended to 10 yr. The LISA
constellation will consist of three spacecrafts separated from one
another by L = 2.5 × 109 m. There are many GW signals expected
to be detected in the LISA band. Galactic sources will be significant
for LISA, for example from DWD systems (Nelemans et al. 2001;
Cornish & Littenberg 2007; Ruiter et al. 2010; Adams & Cornish
2014; Eldridge et al. 2017; Lamberts et al. 2019; Hernandez et al.
2020). The stochastic GW signal from the DWDs, or the Galactic
foreground, is anisotropic and the representation of its energy density
is not a simple power law (Ungarelli & Vecchio 2001). Many
studies have addressed populations of DWDs in our Galaxy and
their detectability in the LISA band. Nissanke et al. (2012) compute
the stochastic signal of Galactic origin according to different DWD
models. Breivik, Mingarelli & Larson (2020) present a method
of calculating the Galactic foreground and discusses the power
distribution and resolvability by LISA as a function of distance to the
source. Adams and Cornish introduce the calculation of the orbitally
induced modulation of the Galactic foreground in the context of
detecting a stochastic GW background (SGWB) of cosmological
origin (Cornish 2002; Adams & Cornish 2014, 2010). Korol et al.
(2020) and Roebber et al. (2020) explore the possibility of observing
DWDs in satellite Galaxies.

The SGWB is the superposition of the large number of independent
GW sources (Romano & Cornish 2017; Christensen 2019). We can
distinguish three types of SGWB in the LISA band, depending on
their origin. The most important by its amplitude is the Galactic
foreground produced by the DWDs in our Galaxy. We note that
it mainly consists of DWDs, but there are other types of Galactic
sources which contribute to the Galactic foreground, CVs, stripped
stars or WD + M-dwarfs for example. We simulate this foreground
with mock catalogues of DWDs. The second source is the background
from extragalactic binary black holes (BBH) and binary neutron
stars (BNS) throughout the Universe which we call the astrophysical
background. This background is also present in the LIGO and
Virgo band (roughly between 20 and 1000 Hz) and by considering
this background as a power law, it is possible to extrapolate this
background in the LISA band (Chen, (Abbott et al. 2016; Chen,
Huang & Huang 2019).

It is also possible to use binary population synthesis models to
construct an astrophysical population of BBH and BNS and to
predict the associated SGWB (Périgois et al. 2021). Finally, the
cosmological background (Caprini & Figueroa 2018a) denotes the
stochastic background coming from the primordial processes such
as inflation, phase transitions, or cosmic strings (Sakellariadou 2009;
Chang & Cui 2020). The cosmological SGWB originates in the early
Universe (Mendes, Henriques & Moorhouse 1995; Garcia-Bellido &
Figueroa 2007), and its measurement may allow for the estimation
of parameters related to the physical processes at this initial period
(Campeti et al. 2020).

The cosmic string study of Auclair et al. (2020) describes the pos-
sibility for LISA of detecting a minimum string tension around Gμ ≤
10−17, which corresponds to a plateau around �

plateau
GW � 5 × 10−12.

The review of Caprini & Figueroa (2018b) states that it will be
possible with LISA to measure an SGWB from a phase transition
with �GW � 10−13; there is much uncertainty as to the existence of
a phase transition SGWB source in the LISA observation band, let
alone its signal strength. The review by Christensen (2019) describes
a limit of detectability with LISA of �GW(f � 10−3 Hz) � 5 × 10−13

for a standard inflation produced SGWB. The SGWB level from
inflation is probably �GW(f � 10−3 Hz) ≈ 10−15, or lower. See
these reviews (Caprini & Figueroa 2018b; Christensen 2019) for
descriptions of other possible cosmogically produced SGWBs. These
studies cited above correspond to an ideal case of a cosmological
source and LISA noise, and have not included the effects of a Galactic
foreground nor an astrophysical background (as we do in this paper).

Many recent studies explore avenues to detect a cosmological
SGWB in the presence of an astrophysical SGWB, and a brief review
is presented in our previous study (Boileau et al. 2021). The goal of
this paper is to address the possibility for LISA to observe a SGWB
of cosmological origin in the presence of other stochastic signals.
Our previous study (Boileau et al. 2021) addressed the detectability
by LISA of a cosmologically produced SGWB in the presence of
different levels of a BBH produced astrophysical background. This
study did not consider the Galactic foreground, but did demonstrate
the utility of using Bayesian parameter estimation methods for
spectral separability. Adding the Galactic foreground is the goal of
the study given in this paper. We present an algorithm to calculate the
parameters associated with the Galactic foreground seen by LISA.
The calculation is aided by the fact that the Galactic foreground
experiences a modulation over a year as the LISA constellation orbits
the sun and changes its orientation with respect to the Galactic center.
We use a mock Galactic DWD catalogue as the input for calculating
the GW foreground. We highlight the quantities that introduce the
most variation in the energy spectrum of the Galactic foreground and
use that knowledge to predict its form. We also present a strategy
to separate the three stochastic signals (Galactic, astrophysical, and
cosmological), as well as the inherent LISA detector noise, using a
Bayesian strategy (Christensen & Meyer 1998; Cornish & Littenberg
2007) based on an Adaptive Markov chain Monte Carlo (A-MCMC)
algorithm.

The remainder of this paper is organized as follows. In Section 2,
we present the DWD catalogue and the production of GWs from
binary systems. In Section 3, we calculate the waveform for each
binary, and how LISA responds to this Galactic foreground. The
spectrum of the Galactic DWD foreground is calculated and pre-
sented in Section 4, as well as a brief summary of the A-MCMC
methods. Section 5 gives a description of the LISA data channels and
methods used to describe the LISA detector noise. Section 6 presents
the strategy to identify the Galactic foreground using the information
from the orbital modulation of the LISA signal. The limits for LISA
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to observe a cosmological SGWB are presented in Section 7. The
conclusions for our study are given in Section 8.

2 D E S C R I P T I O N O F TH E C ATA L O G U E S O F
DOUBLE WHITE DWARFS (DWDS)

2.1 Simulation of the DWDs

Lamberts et al. (2019) provide a cataloguec of short-period WD
binaries producing GWs in LISA’s observational frequency band.
We refer the reader to this publication for a detailed description of
the catalogue. This simulation of the large population of binaries
(�3.5 × 107) is based on the ‘Latte’ (Hopkins et al. 2014; Wetzel
et al. 2016) model of a Milky Way-like Galaxy from a cosmological
simulation in the FIRE project (Hopkins et al. 2018). The simulation
provides a realistic model for the star formation history, metallicity
evolution, and morphology of the Milky Way, including statistical
properties of its satellite population.

It is of course possible to calculate the Galactic foreground from
other catalogues and compare the effects of the different populations.
Here, we also use the MLDC catalogue.1 The Galaxy model is
combined with a distribution of DWDs based on a binary population
synthesis model (Hurley, Tout & Pols 2002) which naturally pro-
duces DWDs with different core compositions depending on initial
conditions. Each core composition has a different mass distribution;
the He cores are less massive than CO and NeO cores. The formation
of CO–CO DWDs typically occurs on time-scales shorter than 2
Gyrs while He–He DWDs form on time-scales of at least 3 Gyr.
These different delay times result in a distinct distribution of He–He,
DWDs dominating in the older regions of the Galaxy (thick disc,
bulge, and halo) and the CO–CO DWDs dominating in regions of
more recent star formation (thin disc). The simulations converge to
parameters similar to those of the Milky Way (Sanderson et al. 2020).
The simulation calculates the stellar formation with the position of
object in the Galaxy (X, Y, Z), and the metallicity Z over time;
it also uses a modified version of the publicly available Binary
Star Evolution (BSE; Hurley, Tout & Pols 2002) to replicate the
population of DWDs.

The LISA LDC 1-4 catalogue is a Galactic white dwarf binaries
population comprising about 30 million systems (Babak et al. 2008).
The catalogue contains for each binary the ecliptic latitude and
longitude, the amplitude, the frequency, the frequency derivative, the
inclination, and the initial Polarization. All these parameters respect
the distribution given by Nelemans et al. (2001).

The results of the simulation and the mock LISA catalogue are
compatible. The study compares the simulations with what has been
observed in our Galaxy.

2.2 Comparison of catalogues

The catalogue of Lamberts et al. (2019) contains for each binary:
the mass of the two stars, M1 for the biggest object and M2 for the
smaller; the nature of the core of the star, helium core He, carbon–
oxygen core CO, or neon-oxygen core NeO; the orbital frequency of
the binary forb; and the Cartesian position in the Galaxy X, Y, Z.

It is straightforward to derive the quantities necessary to describe
GW emission from these parameters. The chirp mass is given by

Mc = (M1M2)3/5

(M1 + M2)1/5 . (1)

1https://lisa-ldc.lal.in2p3.fr/

Figure 1. Map of the distribution of the log-amplitude of GW from the
Galactic WD binaries for fGW ≥ 1 × 10−5 Hz. The DWD distribution in
position (X, Y, Z) is from the simulation of Lamberts et al. (2019). This map
is made with the Galactic coordinates GLON, GLAT with Nside = 256.

Figure 2. Map of the distribution of the log-amplitude of the GW from the
Galactic WD binaries for fGW ≥ 1 × 10−4 Hz. The DWD distribution is from
the population presented in Nelemans et al. (2001).

The frequency of the GW emitted by each binary is

fGW = 2fOrb , (2)

with fOrb the orbital frequency; we assume that the orbits are circular.
The GW frequency derivative is given by

ḟGW =
(

GMc

c3

)5/3 96

5
π8/3f

11/3
GW . (3)

The distance between the binary and LISA (approximating the LISA
constellation position at the Sun)

R =
√

(X − X�) + (Y − Y�) + (Z − Z�) (4)

with (X�, Y�, Z�) = (8.178, 0, 0.659) kpc the position of the Sun in
the Galactic Cartesian coordinates.

For a DWD, according to Cornish & Littenberg (2007) we can
compute the GW amplitude for an optimally polarized and aligned
binary at a distance R as

hopt = 4(π )2/3f
2/3
GW

G5/3

c4

M5/3
c

R
. (5)

This is sufficient for mapping the amplitude. We use the HEALPIX

(Górski et al. 2005) view in Fig. 1, with Nside = 256 (see definition
Nside in Górski et al. 2005). For each pixel on the map we stack
the amplitudes of binaries present; Figs 1 and 2 are the logarithm
of the sky GW amplitude background of Lamberts et al. (2019) and
Nelemans et al. (2001), respectively. The LISA constellation position
is displayed in Fig. 3. Fig. 1 is constructed with the positions of the
binaries of Lamberts et al. (2019). As introduced in Section 2.1, this
is the result of a simulation having as input the astrophysical pa-
rameters, while the figure is constructed with positions independent
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Figure 3. LISA constellation of three spacecraft. They will be placed in a
heliocentric orbit and form an equilateral triangle of 2.5 million kilometer
arm length. Each satellite’s distance to another will be measured by laser
beams. The constellation’s orbit forms an angle of delay of 20◦ with respect
to that of the Earth’s. Just as LISA makes an orbit of period 1 yr, during this
time, it also performs a revolution on itself.

of the frequencies; the positions follow an exponential distribution
simulating the shape of the Galaxy (McMillan 2011). For our study,
we generate GW signals starting at 10−5 Hz.

We introduce as well the DWD population from the LISA DATA
Challenge (LISA Data Challenge Working Group 2019). LDC 1-4
uses the Galactic position distribution from Nelemans et al. (2001).
The Galactic population is symmetrically chosen in a random fashion
for the disc and the bulge. The other parameters are also randomly
chosen with distributions that address the Galactic birth rate and
evolution scenario.

This model gives a binary rich Galactic center and the arms.
However, there are few binaries in the rest of the sky. In comparison,
the population of Lamberts et al. (2019) (see Fig. 1) has a distribution
closer to our Galaxy. Indeed the simulated Galaxy contains a disc, a
bulge, a halo, and satellite Galaxies. In addition, there is the presence
of DWDs all over the sky but with an anisotropy.

2.3 Amplitude calculation

The GW amplitudes for the two polarizations from a binary are given
by

A+(M1,M2, R, f , ι) = 2G2M1M2

c4R

(
(πf )2

G(M1 + M2)

)1/3

(1 + cos2(ι)), (6)

A×(M1, M2, R, f , ι) = −4G2M1M2

c4R

(
(πf )2

G(M1 + M2)

)1/3

cos(ι).

(7)

In the calculation of Lamberts et al. (2019) there is no inclination
for the orbital plane of the binary, ι. We assume the distribution
of the inclination will be uniform for cos (ι). We integrate the two
amplitudes over cos (ι):

A =
√∫ 1

−1
(A+(ι)2 + A×(ι)2)d(cos(ι))

= 4G2M1M2

c4R

(
(πf )2

G(M1 + M2)

)1/3

Aι (8)

with Aι =
√∫ 1

−1((1 + y2)2/4 + y2)dy =
√

8
5 , which gives

A = 4(π )2/3f
2/3
GW

G5/3

c4

M5/3
c

R
Aι. (9)

Below, Section 3, we give the response of LISA to both gravitational-
wave polarizations, and in deriving the final results for our study we
average over cos(ι).

For the DWD population we can compute the polarization-
averaged h. We use equation (5) for a binary located at 1 kpc from
the LISA constellation with an orbital period of 1 h and with a chirp
mass of 1 solar mass

h = 1.08 × 10−21

( Mc

1 M�

)5/3 (Porb

1 h

)−2/3 (
R

1 kpc

)−1

, (10)

where R is the distance between LISA and the binary in kpc and the
orbital period Porb = 1

forb
. An orbital period of 1 h corresponds to

an orbital frequency forb = 2.8 × 10−4 Hz. We define the amplitude
spectral density (ASD) as√

Sh(f ) = ASD(f ) = h√
2TObs

(11)

with TObs = 4 yr and Sh(f) is the power spectral density of the binary
signal (see Robson, Cornish & Liu 2019, equation 19). We can
predict the amplitude spectral density for each binary, and compare
the population with the LISA sensitivity Sn(f) (Robson et al. 2019):

Sn(f ) =
[

1.2 × 10−40 Hz−1

(
1 +

(
2 × 10−3 Hz

f

)4
)

+9.6 × 10−48 s−4Hz−1

(
1 + cos2 f

fref

) (
1 + 4×10−4 Hz

f

)2

(2πf )4

×
(

1 + f(
8 × 10−4 Hz

)4

)(
1 + 0.6

(
f

fref

))2
]1/2

. (12)

In Fig. 4, the black scatter plot shows the amplitude spectral
density (ASD) of all the binaries from Lamberts et al. (2019); the
red dots are the identifiable binaries, and the blue dots are resolved
binaries. In the LISA band fGW ≥ 10−5Hz, we expect signals from
∼35 million binaries. We restrict our study to binaries with a GW
frequency greater than 10−5 Hz. Approximately one in a thousand
binaries will be resolvable, leaving the large majority of the Galactic
binaries unresolved in a stochastic signal. A DWD is resolved if is
uniquely identified in its frequency bin and has SNR > 7 (Timpano
et al. 2006). The presence of a signal from a DWD can be identified
for SNR > 7, but if there is more than one signal per bin it will
not be possible to resolve it individually, we refer such binaries as
identifiable. A resolved source has a frequency difference with any
other binary larger than the LISA bin 1

TObs
. The frequency derivative

of the gravitational wave is ḟGW ∝ M5/3
c f

11/3
GW . Considering the

example at low frequency of fGW = 0.06 Hz and Mc = 1 M�; this
implies ḟGW = 2.48 × 10−11 Hz s−1.

For a 4 yr duration, we have a maximum frequency shift ḟGWTObs

of 0.0003 Hz; the maximum relative frequency shift ḟGWTObs
fGW

in the
catalogue is 0.5 per cent. Hence, the orbital GW emission can be
considered as monochromatic. We can also calculate the coalescence
time

τc = 5

256

c5a4

G3M1M2(M1 + M2)
, (13)

with a the initial separation between the two WDs, given by Kepler’s
third law, forb

2a3 = G(M1 + M2). The smallest coalescence time of
the population is 23 500 yr and the biggest is 26 600 times the age
of the Universe. Resolved binaries are separated in two populations
(see Fig. 4). The blue (identifiable binaries for a LISA bin = �f =

1
TObs

) left population fGW ∈ [1 × 10−4, 2 × 10−4] Hz consists of
small binaries (less mass); there a large number of sources at low
frequencies. The LISA noise is relatively high, so a large number of
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SGWB spectral separation: Galactic foreground 807

Figure 4. Amplitude spectral density for the GW from the Galactic WD binaries for four years of duration of science time with the LISA strain sensitivity Sn(f)
(black line). The black scatterplot displays the totality of binaries from the Lamberts et al. (2019) catalogue of DWD. We calculate for each DWD the amplitude
spectral density (ASD); see equation (11). In red, we calculate the ‘identifiable’ binaries; these are binaries of SNR > 7 (Timpano, Rubbo & Cornish 2006). The
blue population corresponds to ‘resolved’ binaries, namely no more than one per LISA bin; we calculate for each binary a spectral separation from all the other
binaries in comparison to the LISA frequency bin size of 1

TObs
.

these binaries are not identifiable. However, there are some resolved
binaries because they are located close to LISA. In Fig. 4, the blue
right population fGW ∈ [7 × 10−4, 5 × 10−2] Hz is produced by the
largest objects in terms of mass, but with a small number of them
and a dispersion of amplitudes. The middle part fGW ∈ [2 × 10−4,
7 × 10−4] Hz is where there are many observable binaries, a region
where the LISA noise is low. Because of a large number of sources,
separation in frequency is smaller than the frequency bin size 1

TObs
.

When LISA will be observing Galactic binaries there will be only
four pieces of information per frequency bin, namely the real and
imaginary parts in the A and E channels. As such, when there are
more than one binary per two frequency bins, there will be more
parameters than data points, and resolution of an individual binary
will be challenging. However, recent studies have made progress in
characterizing the Galactic foreground coming from an astrophysical
population of binaries, as in Karnesis et al. (2021).

Fig. 5 shows the GW amplitude spectral density for the different
cores of DWD. We have evidence of the domination of the type
He–CO and He–CO for the resolved binaries. The distributions for
all binary types from the catalogue, and the resolved binaries are
presented in five plots. The black line corresponds to the LISA
strain sensitivity Sn(f). The figure at the bottom right is the total
distribution of binaries for the different core compositions. We cannot
estimate the distribution of the unresolved binaries with the help of
the distribution type of the resolved DWD. The gaps (black scatter)
seen in the plots below 10−3 Hz correspond to the large number of
sources close in terms of frequency. Indeed, this part of the spectrum
comprises a large number of sources, that to be resolvable, must have
a frequency difference greater than the frequency resolution of LISA.

2.4 Galactic confusion noise

In Fig. 4, the sensitivity curve can be further updated with the
contribution from the Galactic confusion noise Sc(f) (Cornish &

Robson 2017), which corresponds to the unresolved binaries of the
Galactic population. This has been modelled with the catalogue
from Nelemans & Tout (2005) as a kind of broken power law. This
model depends on the measurement duration, and for a duration of
4 yr the model gives α = 0.138, β = −221, κ = 521, γ = 1680,
and fk = 0.00113:

Sc(f ) = Af −7/3e−f α+βf sin(κf ) [1 + tanh (γ (fk − f ))] . (14)

A is the amplitude of the Galactic confusion noise in the low-
frequency limit from the power spectrum of a quasi-circular binary
population. This noise can be seen as adding further noise to the
LISA sensitivity.

In our calculation, we introduce for each binary the amplitude gap
from the other binaries in the local frequency band of the binary
considered. We generate a catalogue of resolved binaries; see Fig. 5.
We note that the distribution of resolved binaries depends on the
catalogue used and the number of sources considered. Our study
here is firstly an estimation of the ability to observe a cosmologically
produced SGWB in the presence of a Galactic foreground. These
estimates of resolved and unresolved binaries depend on the cata-
logue, but we find no evidence of any significant influence of the
Galactic foreground with the presence or not of resolved binaries in
the foreground, or how they are defined (see Fig. 6).

3 C A L C U L AT I O N O F TH E WAV E F O R M

In this section, we present the calculation of the waveform of the
Galactic foreground.

3.1 Amplitude of the waveform

The GW strain h(t) is given by the polarization decomposition of the
waveform

h(t) = h+(t)e+ + h×(t)e×, (15)
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808 G. Boileau et al.

Figure 5. The GW amplitude spectral density for the different core compositions from the resolved Galactic DWD for four years of science time duration with
the LISA strain sensitivity Sn(f).

Figure 6. PSD of the GW signal for the WD binary modulation seen by LISA (see Fig. 9). The set of binaries is in black, while the resolved and unresolved are,
respectively, in blue and orange. These are the same as the Fig. 4.

where the two polarization tensors e+ and e× given by

e+ = E

⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠ET e× = E

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠ET (16)

with the polarization coordinate matrix E; β, λ are the ecliptic
latitude and longitude, while ψ is the rotation around the direction

of gravitational-wave propagation (see Fig 7)

E =
⎛
⎝ λsψc − λcβsψs −λsψs − λcβsψc −λcβs

−λcψc − λsβsψs λcψs − λsβsψc −λsβc

βcψs βcψc −βs

⎞
⎠ (17)

The s and c subscripts refer to the sinus and cosinus operators,
respectively.
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SGWB spectral separation: Galactic foreground 809

Figure 7. Generic plane waveform reference for a binary localized at ecliptic
latitude β and longitude λ. The LISA constellation is in the centre of the
coordinate system. We use the conventional definition from Królak, Tinto &
Vallisneri (2004) for the GW polarizations: + (in red) and × (in blue). The
coordinate � is the rotation around the direction of wave propagation.

In Fig. 7, we define the elliptical coordinates. For a DWD, the GW
is a plane wave, quasi-monochromatic (there is a frequency drift over
time). The frequency changes slightly for each orbit of the binary,
the reason for this is energy loss from the emission of GW. For a
DWD the drift is very small. The binary can be just considered as
essentially monochromatic, and the polarizations given by(

h+(t)
h×(t)

)
=

(
A+(t) cos(2πf t + ḟ t2 + φ0)
A×(t) sin(2πf t + ḟ t2 + φ0)

)
(18)

with φ0 an initial phase. In the calculation, we have a uniform
distribution between 0 and 2π . The parameter ḟ characterizes the
frequency change from the loss of orbital energy. To calculate the
response of the detector arms,H+(t) and H×(t), we need to calculate
the one arm detector tensor D:

D = 1

2
u ⊗ u − v ⊗ v, (19)

where u =
⎛
⎝ 1/2

0√
3/2

⎞
⎠ and v =

⎛
⎝−1/2√

3/2
0

⎞
⎠. Finally, we have:

H+(t) = A+(t) cos(2πf t + φ0)e+ : D

H×(t) = A×(t) cos(2πf t + φ0)e× : D (20)

where HA(t) = hA(t)eA : D and A the two polarizations A = +, ×.
HA are the two polarizations in the detector basis. This calculation
of the Galactic foreground is also presented in Cornish & Littenberg
(2007).

3.2 Detector response function

The detector response functions, F+ and F×, for the location of the
source at (θ , φ) at the time t in the basis vector u, v are given by (see
Fig. 8)

F+ = −
√

3

4
(1 + cos(θ ))2 sin(2φ) (21)

F× = −
√

3

2
cos(θ ) cos(2φ) (22)

with u.z = sin(φ + π/6) sin θ and v.z = sin(φ − π/6) sin θ , see
Cornish & Larson (2001). The orbit of LISA is 1 yr around the
sun, and also 1 yr in revolution about itself (see Fig. 3). We need to
consider the constellation orientation effects because LISA will not
see the sky uniformly.

Figure 8. (u, v) coordinate system where the LISA constellation is the red
hexagons.

3.3 Signal of the DWD foreground measure by LISA

We can build the total signal of the DWD foreground measured by
LISA; this is the sum of the waveforms for each DWD,

s(t) =
N∑

i=1

∑
A=+,×

hA,i(forb,i , M1i , M2i , Xi, Yi, Zi, t)

×FA(θ, φ, t)D(θ, φ, f )A : eA (23)

with FA the beam pattern function for the polarizations A = +, ×,
hA,i = hA,ieA the tensor of the amplitude of the GW, and D the one-
arm detector tensor and hA,i the dimensionless GW amplitude of the
binary i (see equations 15 and 18). Fig. 9 shows the gravitational
waveforms of the five populations of DWDs from Lamberts et al.
(2019). The waveform from CO–CO has the largest amplitude. The
sum of the five populations becomes the waveform to be seen by
LISA (see Fig. 10). The modulation of the DWD waveform is an
orbital effect. In fact, when the LISA constellation points towards the
centre of our Galaxy, the waveform amplitude will attain a maximum.
Because of the symmetry of the plane passing through u and v

(Fig. 8), this will happen twice per year.

4 SPECTRAL SEPARATI ON AND STUDY O F
T H E WAV E F O R M

In this section, we describe the calculation of the spectral energy
density of the modulated DWDs, �GW,DWD, that were introduced in
Section 3. Fig. 10 is the modulated foreground for LISA, with the
DWDs from Lamberts et al. (2019). The simulated DWD population
resembles the DWD population of the Milky Way.

4.1 Energy and power spectral density

Given the PSD, we can compute the energy spectral density of the
Galactic foreground that LISA will observe:

�GW,DWD(f ) = 4π2

3H 2
0

f 3 PSD(f )

R(f )
, (24)

with H0 the Hubble–Lemaı̂tre constant (H0 � 2.175 10−18 Hz),
PSD(f) the power spectral density of the waveform of the Galactic
foreground, and R(f ) the LISA response function. We use the peri-
odogram to estimate the PSD. For a waveform s(t) the periodogram
is In(fk) = |s̃(fk)|2, where s̃(fk) = 1√

T

∑T

i=1 s(t)e−itfk at Fourier

frequencies fk = 2πk/T , k = 0, . . . , N = T
2 − 1 and T the time

duration of the signal for the different waveforms (total binaries,
resolved or unresolved binaries). R(f ) is the detector polarization
and sky averaged response function, which can be approximated by
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810 G. Boileau et al.

Figure 9. GW signals from the DWD modulation to be seen by LISA. The modulation is from the evolution of the orientation of the LISA constellation. The
waveform s(t) is the sum of the two polarizations A = [ ×, +] weighted by the respective detector response function FA(�, f, t), such as s(t) = ∑

NF×(�, f,
t)h×(f, t) + F+(�, f, t)h+(f, t).

Figure 10. The total waveform, namely the sum of the five waveforms seen in Fig. 9, for the population from Lamberts et al. (2019) to be seen by LISA.

(Robson et al. 2019)

R(f ) � 3

10

( 2πf L

c

)2

1 + 0.6
( 2πf L

c

)2 . (25)

The goal is to address the orbital motion of the LISA constellation
(Cornish & Rubbo 2003). We can calculate this quantity with the
mean square antenna pattern (Cornish & Larson 2001), R(f ) =

1
4π

∫ ∑
A D(�, f ) : eA(f )d� (Cornish & Rubbo 2003). Fig. 11 gives

the PSD for different types of WD cores, while Fig. 6 presents the
total PSD, plus the PSDs from resolvable and unresolvable DWDs.
Fig. 6 shows that the PSD of the total waveform is not purely a power

law. According to Adams & Cornish (2014, fig. 4) and Breivik et al.
(2020, fig. 1), we have fewer binaries at higher frequencies.

4.2 Comparison of the energy spectral density from different
catalogues

In this section, we derive the normalized energy spectral density of
the Galactic foreground �GW,DWD for different population models.
We start with the population from the catalogue LDC 1-4. This
population was simulated with the parameters from Nelemans et al.
(2001). In Fig. 12, we show that at low frequencies the energy spectral
density of the population from the LISA Data challenge can be fit

by a power law �GW,LDC1−4(f ) � �LDC1−4

(
f

fref

)α

, with slope α =
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SGWB spectral separation: Galactic foreground 811

Figure 11. PSD of the GW signal for the WD binary modulation seen by LISA, (see Fig. 9). The set of binaries in blue, green, red, yellow, and grey are,
respectively, the different cores CO-CO, He–CO, CO–NeO, He–He, and He–NeO. This is the direct periodogram of Fig. 9.

Figure 12. Normalized energy spectral density of the Galactic foreground �GW,DWD for different population models of DWD in the Milky Way. The black
line is the Lamberts et al. population, the grey line corresponds to the population of LDC (LDC1-4); this population can be fit by a power law, see the purple
line (�GW(f ) = 2 × 10−10( f

1×10−3 Hz
)2/3). In blue, labelled by Lamberts + Nelemans, is a population generated with binaries where the Galactic spatial

positions are given by Nelemans et al., and the other parameters from Lamberts et al.. This ‘Lamberts + Nelemans’ population can be fit by a power law

�GW(f ) = 4 × 10−10
(

f

1×10−3 Hz

)2/3
in the frequency band [1 × 10−4 , 1 × 10−3 Hz].

2/3. This is the slope expected for an SGWB from binary systems
(see grey line in Fig. 12). The black line is the energy spectral
density of the Galactic foreground for the population of Lamberts
et al. (2019). We have evidence that the power law can be fit at low
frequencies (between 1 × 10−5 and 1 × 10−4 Hz) with the same slope
α = 2/3, but at higher frequencies this power law breaks down. In
order to understand whether the DWD spatial distribution model is
responsible for this difference, we can use the population of Lamberts
et al. (2019) but we use the DWD spatial distribution from Nelemans

et al. (2001). This combination results in the blue line plot in Fig. 12,
labelled Lamberts + Nelemans. As an example we also display a
purple line representing �GW(f ) = 2 × 10−10( f

1×10−3 Hz
)2/3 which

lies over the LDC1-4 Galactic foreground; this displays that the
LDC1-4 Galactic foreground can be approximate by a power
law.

The break down of the power law at high frequencies is due to
the spatial distribution of the DWDs. Indeed, the blue line (Lamberts
et al. 2019 + Nelemans et al. 2001) can be represented by a power
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812 G. Boileau et al.

law with a slope in 2/3, represented in Fig. 12 as the green line of
�GW(f ) = 4 × 10−10( f

1×10−3 Hz
)2/3 in the frequency band [1 × 10−4,

1 × 10−3 Hz].
The catalogue of Lamberts et al. (2019) for the Milky Way DWD

distribution cannot be represented as a power law over the entire
LISA spectral band. However, we modify the function to better fit
the scarcity of power at high frequencies, equation (26), as a broken
power law, namely

�DWD(A1, α1, A2, α2; f ) =
A1

(
f

fref

)α1

1 + A2

(
f

fref

)α2
. (26)

In the remainder of this document we use fref = 2πL
c

� 0.019 Hz.

For 1 � A2

(
f

fref

)α2
(low frequencies) this yields

�DWD(f ) � A1

A2

(
f

fref

)α1−α2

(27)

i.e. the energy spectral density at low frequencies can be approxi-
mated by a power-law function; for a DWD foreground the slope

α = α1 − α2 has to be 2
3 . For 1 � A2

(
f

fref

)α2
(high frequencies):

�DWD(f ) � A1

(
f

fref

)α1

(28)

i.e. for high frequencies the energy spectral density can also be
approximated by a power-law function but with different parameters.
The differential d�(f) is therefore:

d�(f ) = �

[
dA1

A1
+ ln

(
f

fref

)
dα1 +

dA2

(
f

fref

)α2

1 + A2

(
f

fref

)α2

+
dα2A2 ln

(
f

fref

)(
f

fref

)α2

1 + A2

(
f

fref

)α2

]
. (29)

To estimate the four parameters �(A1, α1, A2, α2; f) of the model,
we use an adaptive MCMC algorithm.

4.3 Stochastic gravitational wave background

In the frequency band [f, f + df], the normalized energy spectral
density of an isotropic SGWB, �GW(f), can be modelled as a
frequency variation of the energy density of the GW ρGW. The
energy spectral density is a function of the differential variation
over the frequency of the energy density ρGW (Christensen 1992;
Camp & Cornish 2004; Christensen 2019). The distribution of the
energy density over the frequency domain can be expressed as

�GW(f ) = f

ρc

dρGW

d ln(f )

=
∑

k

�GW,k(f ). (30)

where k refers to a specific SGWB and the critical density of the

Universe is ρc = 3H 2
0 c2

8πG
. In this paper, we approximate the SGWB

energy spectral density as a sum of power laws. We also assume that
the astrophysical (binary black hole produced) and cosmological

backgrounds are isotropic. We have �GW � ∑
k Ak

(
f

fref

)αk

, where

the energy spectral density amplitude of the component k (represent-
ing the different SGWBs) is Ak, the respective slopes are αk, and fref

is some reference frequency.

The energy spectral density of the cosmological background
should have a slope α ≈ 0. This is a good approximation for scale
invariant processes and also for standard inflation, but certainly false
for cosmic strings and turbulence. However, for our study here, we
will model the cosmologically produced SGWB energy density with
α = 0. In addition, for a second isotropic SGWB, the compact
binary product astrophysical background, we use α = 2

3 . According
to Farmer & Phinney (2003), the slope is α = 2

3 for quasi-circular
binaries evolving purely under emission of GW. Eccentricity and
environmental effects can alter the slope and gravitation frequencies
of the binary. We also note the limitations of our cosmological power-
law model as phase transitions in the early Universe need to be
approximated with two-part power laws, with a traction between the
rising and falling power-law component at some particular frequency
peak. However, as a starting point we use two isotopic backgrounds,
each described by a simple power law. Since the two backgrounds are
superimposed, the task is to simultaneously extract the astrophysical
and cosmological components, that is, to simultaneously estimate the
astrophysical and cosmological contributions to the energy spectral
density of the SGWB. In addition to the two isotropic sources we
will also consider the Galactic foreground, but as a broken power
law.

For the purpose of this spectral separation study we will define the
astrophysical background of GWs coming from the unresolved com-
pact objects with the estimates of Chen et al. (2019), �GW,astro(f ) =
4.4 × 10−12

(
f

3×10−3 Hz

)2/3
.

The amplitude of the cosmological background is a free parameter,
and our goal is to determine how well LISA will do in providing an
estimate for this parameter given the astrophysical background and
Galactic foreground, plus LISA detector noise.

The spectral separability study of Boileau et al. (2021) was recently
carried out in the context of LISA. There it was shown that it is
possible for LISA to measure a cosmological background with an
amplitude between 1 × 10−13 and 1 × 10−12 in the presence of the
astrophysical background and LISA detector noise. In this paper we
include a Galactic foreground, and we model the energy spectral
density of the SGWB by

�GW(f ) = �GW,DWD(f ) + �GW,astro(f ) + �GW,cosmo(f )

=
A1

(
f

fref

)α1

1 + A2

(
f

fref

)α2
+ �astro

(
f

fref

)αastro

+�cosmo

(
f

fref

)αcosmo

. (31)

4.4 Adaptive Markov Chain Monte Carlo

4.4.1 Markov Chain Monte Carlo

Bayesian inference is a method by which the probability distribution
of various parameters are determined given the observation of
events. It is based on Bayes’ theorem (see equation 32). The goal
of a Bayesian study is to derive the posterior distribution of the
parameters after observing the data. According to Bayes’ theorem,
this is proportional to the likelihood, i.e. the distribution of the
observations d given the unknown parameters x of our model, and
the prior distribution of the parameters. Bayes’ theorem is given by

p(x|d) = p(d|x)p(x)

p(d)
, (32)
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SGWB spectral separation: Galactic foreground 813

where p(x) is the prior distribution, p(x|d) is the posterior distribution,
p(d|x) is the likelihood, and p(d) is the evidence. There are various
sampling-based strategies for calculating the posterior distribution,
so called MCMC methods (Metropolis et al. 1953; Gilks, Richard-
son & Spiegelhalter 1995).

4.4.2 Metropolis–Hasting sampler

MCMC methods are based on the simulation of a Markov chain.
To simulate from a Markov chain, we use the Metropolis–Hastings
algorithm (Hastings 1970; Gilks et al. 1995). This is based on
the rejection or acceptance of candidate parameters according to
the likelihood ratio between two neighboring candidates. Thus,
candidate parameters with higher values of the posterior distribution
are favoured but candidates with lower values are accepted with a
certain probability given by the Metropolis–Hastings ratio below:

Metropolis–Hastings algorithm

(i) initial point x0

(ii) at the ith iteration:

(a) Generate candidate x
′

from symmetric proposal density
g(x

′ |xi) (e.g. Gaussian with mean xi)
(b) Evaluation

(1) likelihood of xi and x
′
, p(d|xi) and p(d|x′

)
(2) prior of xi and x

′
, p(x

′
) and p(xi)

(3) ratio α = p(d|m(x′))
p(d|m(xi ))

p(x′)
p(xi )

(c) Accept/Reject

(1) Generation of a uniform random number u on [0,1]
(2) if u ≤ α, accept the candidate : xi + 1 = x

′

(3) if u > α, recycle the previous value : xi + 1 = xi

At the end of the algorithm, we have a certain acceptance rate.
If this rate is too close to 0, it means that the Markov chain made
frequent large moves into the tails of the posterior distribution which
got rejected and therefore it mixed only very slowly; if the acceptance
rate is too close to 1, the Markov chain made only small steps which
had a high probability of getting accepted but it took a long time
to traverse the entire parameter space. In either of these cases, the
convergence towards the stationary distribution of the Markov chain
will be slow. To control the acceptance rate we can introduce a
step-size parameter; this is often the standard deviation of the jump
proposal g(x

′ |xi). This step-size parameter can be modified ‘on the
fly’ while the algorithm is running to improve the exploration of
the parameter space. Similarly, the proposal density should take
correlations between the parameters into account to improve mixing.
These can also be estimated ‘on the fly’ based on the previous values
of the Markov chain and convergence of such an adaptive MCMC
is guaranteed as long as a diminishing adaptation condition is met
(Roberts & Rosenthal 2009). Post convergence of the MCMC, a
histogram or kernel density estimate based on the samples of each
parameter provides an estimate of its posterior density. To summarize
the posterior distribution, the sample mean of the Markov chain gives
a consistent estimate of its expectation. Similarly the sample standard
deviation provides an estimate for its standard error. It is important
to check whether the posterior distribution is different from the prior
because otherwise the data will not have provided any additional
information about the unknown parameters beyond that of the prior
distribution.

4.4.3 Adaptive Markov Chain Monte Carlo

We use the A-MCMC version from the Examples of Adaptive MCMC
(Roberts & Rosenthal 2009). For a d-dimensional MCMC we can
perform the Metropolis–Hasting sampling with a proposal density
gn(x) defined by

gn(x) = (1 − β)N (x, (2.28)2�n/d) + βN (x, (0.1)2Id/d) (33)

with �n the current empirical estimate of the covariance matrix
obtained from the samples of the Markov chain, β = 0.25 a constant,
d the number of parameters, N the multinormal distribution, and Id

the identity matrix. We estimate the covariance matrix based on the
last one hundred samples of the chains.

5 LISA STOCHASTI C GRAV I TATI ONA L WAV E
BAC K G RO U N D F I T T I N G W I T H A DA P T I V E
M A R KOV C H A I N MO N T E C A R L O

In this section, we consider the LISA null channel T, and the science
channels A and E. We assume that the observation of the noise in
channel T informs us of the noise in channels A and E. We follow
the formalism of Smith & Caldwell (2019). Channels A, E, and T are
derived from channels X, Y, and Z (Vallisneri & Galley 2012), the
unequal-arm Michelsons centred on the three spacecraft.

We assume that the noise is uncorrelated between the channels
X, Y, Z. Nominally, the channel T does not contain a GW signal,
but contains the uncorrelated LISA noise. This assumption is not
perfectly accurate, but for this analysis we will hold it to be true. The
relations are:⎧⎪⎨
⎪⎩

A = 1√
2
(Z − X)

E = 1√
6
(X − 2Y + Z)

T = 1√
3
(X + Y + Z).

(34)

We assume that channels A and E contain the same GW information
and the same noise PSD. Channel T has a different noise PSD but
shares parameters with the noise PSDs of channels A and E. Thus,
in the context of a study of spectral separation of the SGWB, the
use of the T channel allows us to simultaneously estimate the noise
parameters for the LISA channels A and E more accurately. Without
the simultaneous estimation of the LISA noise parameters from the
T channel, it is possible to estimate the LISA noise parameters,
but this estimate becomes less accurate. As a result, the SGWB
parameter estimate accuracy is degraded. It is in this sense that it is
also important to use the T channel.

This was also the motivation for the study of Boileau et al. (2021).
We simulate the noise and SGWB in the frequency domain

assuming⎧⎨
⎩

PSDA = SA + NA,

PSDE = SE + NE,

PSDT = NT

(35)

with

SA(f ) = SE(f ) = 3H 2
0

4π2

∑
i �GW,i

f 3
, fref = 25 Hz, and

�GW = �GW,0

(
f

fref

)α0

+ �GW,2/3

(
f

fref

)α2/3

+
A1

(
f

fref

)α1

1 + A2

(
f

fref

)α2
.

The noise components NA(f) = NE(f) and NT(f) can be written as{
NA = N1 − N2,

NT = N1 + 2N2
(36)
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with⎧⎨
⎩

N1(f ) =
(

4Ss(f ) + 8
(

1 + cos2
(

f

fref

))
Sa(f )

)
|W (f )|2

N2(f ) = − (2Ss(f ) + 8Sa(f )) cos
(

f

fref

)
|W (f )|2

(37)

W (f ) = 1 − e
− 2if

fref and⎧⎨
⎩

Ss(f ) = NPos

Sa(f ) = Nacc
(2πf )4

(
1 +

(
4×10−4 Hz

f

)2
)

.
(38)

The magnitude of the level of the LISA noise budget is specified by
the LISA Science Requirement Document and Baker et al. (2019).
To create the data for our example we use an acceleration noise of
Nacc = 1.44 × 10−48 s−4 Hz−1 and the optical path-length fluctuation
NPos = 3.6 × 10−41 Hz−1.

We use this simplified model to generate the LISA noise. We note
that the LISA noise model for the channels A, E, and T from TDI, as
in the LDC (Adams & Cornish 2010; LISA Data Challenge Working
Group 2019) matches the LISA noise model of Smith & Caldwell
(2019). Once again, the goal of our study that we present in this
paper here is to display the methods of spectral separability and
determine the level of detectabilty of a cosmologically produced
SGWB in the presence of an astrophysically produced SGWB, a
Galactic foreground, and LISA noise. We leave for future work an
increase in complexity of the LISA noise.

Our model contains ten unknown parameters: θ = (Nacc,
NPos, A1, α1, A2, α2, �astro, αastro, �cosmo, αcosmo). We calculate
the propagation of uncertainties for the power spectral densities
with the partial derivative method. As such, we can estimate
the induced uncertainty about the PSD resulting from estima-

tion uncertainty of θ , dPSD =
√∑

θ

(
∂PSD

∂θ

)2
dθ2. We then ob-

tain for three SGWB components �GW,astro(f ) = �astro

(
f

fref

)αastro

,

�GW,cosmo(f ) = �cosmo

(
f

fref

)αcosmo

and �DWD(f ) = A1

(
f

fref

)α1

1+A2

(
f

fref

)α2 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dPSDI =
[
NI (0, dNacc, f )2 + NI (dNpos, 0, f )2

+ SI (�astro, αastro, �cosmo, αcosmo, f )2
(

d�2
cosmo

+ d�2
astro + ln

(
f

fref

)2 (
�2

astrodα2
astro

+ �2
cosmodα2

cosmo

))
+ S2

DWD(f )

((
dA1

A1

)2

+ ln

(
f

fref

)2

× dα2
1 + (

A2
2dα2

2 + dA2
2

)⎛⎝
(

f

fref

)α2

1 + A2

(
f

fref

)α2

⎞
⎠

2 )]1/2

dPSDT =
[
NT (0, dNacc, f )2 + NT (dNpos, 0, f )2

]1/2

(39)

with I = A, E and [dNacc, dNPos, d�astro, dαastro, d�cosmo, dαcosmo,
dA1, dα1, dA2, dα2] are the standard deviations of the posterior
distribution, assumed to be Gaussian.

To sample from their joint posterior distribution, we use the
adaptive MCMC method described in 4.4. The sampled chains
provide estimates for the standard error bands for the power spectral
density. With the MCMC chains we can calculate a histogram of
PSDI(f) for each frequency. On each histogram we can then compute
the 68 per cent credible band. This method is extracted from the
BayesWave (Cornish & Littenberg 2015), see Fig. 7 of the LIGO–
Virgo data analysis guide paper LIGO Scientific Collaboration &
the Virgo Collaboration (2020). The two methods give the same
estimation for the errors.

For each pair I, J = [A, E, T] we can calculate the covariance of
(d̃I (f ), d̃J (f ):

< PSDI (f ), PSDJ (f ) >= CI ,J (θ, f ) (40)

yielding the covariance matrix of (d̃A(f ), d̃E(f ), d̃T (f )) (omitting
the dependence of f in the notation)

C(θ, f ) =
⎛
⎝SA + NA 0 0

0 SE + NE 0
0 0 NT

⎞
⎠ (41)

C−1(θ, f ) = K

⎛
⎝(SA + NA)−1 0 0

0 (SE + NE)−1 0
0 0 N−1

T

⎞
⎠ (42)

and K = det(C) = 1
(SA+NA)(SE+NE )NT

. Using the definition of the
Whittle likelihood as in Romano & Cornish (2017), the log-
likelihood is given by

L(d|θ ) = −1

2

N∑
k=0

[ ∑
I ,J=[A,E,T ]

(√
dI (f )

(
C−1

)
IJ

√
dJ (f )

)

+ ln (2πK(fk))

]

= −1

2

N∑
k=0

[
d2

A

SA + NA

+ d2
E

SE + NE

+ d2
T

NT

+ ln
(
8π3(SA + NA)(SE + NE)NT

) ]
(43)

As described in Boileau et al. (2021), the inverse of the Fisher
information matrix

Fab = 1

2
Tr

(
C−1 ∂C

∂θa

C−1 ∂C
∂θb

)

=
N∑

k=0

[ ∂(SA+NA)
∂θa

∂(SA+NA)
∂θb

2(SA + NA)2

+
∂(SE+NE )

∂θa

∂(SE+NE )
∂θb

2(SE + NE)2
+

∂NT

∂θa

∂NT

∂θb

2N2
T

]
(44)

is the asymptotic covariance matrix of the parameters, F −1
ab =

Cov(a, b). The diagonal of this matrix gives the square of the stan-
dard error of the parameters. Thus, we can calculate the estimation
uncertainty of a parameter in addition to using MCMC, and then
show the consistency of the two sets or results.

6 ME A S U R E O F T H E A M P L I T U D E O F T H E
DW D IN TH E C O N T E X T O F TH E O R B I TA L
M O D U L AT I O N

In this section, we focus on the measurement of the GW signal
amplitude coming from our Galaxy (Edlund et al. 2005). In light
of the waveform (see Fig. 9), we note that if we want to estimate
it correctly, we must account for the orbital motion of the LISA
constellation. The waveform is modulated in amplitude, and this
modulation comes from the anisotropy of the Galactic foreground.
The response of LISA depends on its antenna pattern; the response
is not homogeneous over the sky. At a particular time the LISA
response is maximal for sources localized on the orthogonal line
passing through the center of the triangle which forms the LISA
constellation. This is like a ‘line of sight’. The LISA constellation
is also in orbit around the sun and turns on itself. The line of
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SGWB spectral separation: Galactic foreground 815

Figure 13. Measurement of the orbital modulation of the DWD amplitude. In grey: 1500 estimations of the amplitude �Mod,i = 4π2

3H 2
0

(
c

2πL

)2
A2

i , where Ai is

the amplitude of the characteristic strain of the section hi of the waveform. The blue line is the mean of the 1500 estimations of the amplitude. In purple, the
amplitude �Mod for the total waveform (1 year duration). This corresponds to the estimation of the amplitude of the energy spectral density of the DWD, but
expressed as a time-series. In red scatter: 50 A-MCMC generated DWD amplitudes calculated from the estimates of the 8 parameters (BBH + WD + LISA
noise). In brown scatter, the estimation of the amplitude energy spectral density of the Galactic foreground at law frequency with the adaptive MCMC. We also
fit the 50 A-MCMC with a least squares method to estimate the modulation from the LISA antenna pattern and the ‘real’ amplitude of the Galactic foreground

at low frequencies log10

(
�u

DWD,LF

)
= −8.41 ± 0.53 (see equation 48) for a reference frequency (see equation 31) of 3 × 10−3 Hz∗(green dashed line).

sight does not always point in the same direction. If the GW
background is isotropic, the detected amplitude is constant over
time.

We cut the waveform into small-time sections, 50 per year, and
assume that the waveform is approximately constant within these
sections. For each section, we calculate the signal standard deviation.
This approximation works well and is consistent with the results of
Adams & Cornish (2014), and allows for a good fit of the orbital
modulation.

It is then possible to calculate the amplitude of the spectral energy
density, as by the methods of Thrane & Romano (2013)

�Mod,i = 4π2

3H0

( c

2πL

)2
A2

i (45)

where �Mod,i is the amplitude of the spectral energy density of
the Galactic foreground at low frequencies for the section i of the
waveform; this is plotted over a year in Fig. 13, and the modulation
from the LISA orbit is apparent. Here, Ai is the amplitude of the
characteristic strain for section i if we consider the characteristic
strain of the section i as hc,i = Ai

(
f 2πL

c

)α
, and the relation between

the power spectral density Sh,i(f) of the time series hi(t) and the

spectral energy density of the section i, �GW,i is Sh,i(f ) = 3H 2
0

4π2
�GW,i

f 3 ,

where �GW,i = �Mod,i

(
f 2πL

c

)2α+2
. The goal is to estimate the level

of the amplitude and compute the Galactic contribution to the sum
of all the stochastic background and noise signals for LISA.

The grey curve in Fig. 13 is the amplitude of the spectral energy
density calculated with this method. We cut the year long time series
into 1500 sections. We observe the amplitude modulation, indeed it is

always maximum when LISA points to the centre of our Galaxy. The
blue line corresponds to the mean of the 1500 estimates of the DWD
amplitude. The purple line is the estimate of the DWD amplitude
DWD for the total waveform, (1 yr).

As in Adams & Cornish (2014, fig. 2), we measure the amplitude of
the Galactic foreground for 50 sections of the year-long observation.
In order to study the spectral separation of the stochastic background,
we add the LISA noise (Smith & Caldwell 2019) and an astrophysical
background (Chen et al. 2019) to the Galactic foreground and
estimate the 8 parameters with an A-MCMC. The red scatterplot
in Fig. 13 is the estimate of the amplitude of the Galactic foreground
in the low frequency approximation based on 50 A-MCMC runs.
We partition the waveform (see Fig. 10) into 50 sections, and
for each section we calculate the periodogram and the energy
spectral density of the SGWB in the context of LISA noise and
astrophysical background. We estimate the parameters of the model
of equation (35) using equation (49) for the amplitude of the DWD
SGWB at low frequencies.

With this method, we measure the spectral energy density’s
amplitude of the Galactic foreground at different periods of the year.

The observed modulation is an effect of the LISA measurement
with the LISA antenna pattern. For each section i, we assume that the
LISA pattern antenna is constant. The waveform of the section i is

si(t) = h+,i(t)F+,i + h×,i(t)F×,i . (46)

The spectral energy density of the waveform si becomes

Ssi (f ) = s̃i s̃
∗
i (f ) = h̃+,i h̃

∗
+,i(f )F 2

+,i + h̃×,i h̃
∗
×,i(f )F 2

×,i

= Sh(f )
(
F 2

+,i + F 2
×,i

)
(47)
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816 G. Boileau et al.

with Sh(f ) = 2h̃+,i h̃
∗
+,i(f ) = 2h̃×,i h̃

∗
×,i(f ). For each section we

have the estimate of the modulated DWD amplitude at low fre-
quencies; each section corresponds to a different part of the year. We
can thus measure the orbital effect of the change over the year:

�Mod,i = �u
DWD,LF

(
F 2

+,i + F 2
×,i

)
, (48)

where �u
DWD,LF is the unmodulated amplitude of the energy spectral

density of the Galactic foreground at low frequencies. The error
is given by the standard deviation estimated from the posterior
distributions of the chains.

As an example, in Fig. 14 we display the results from on the
50 A-MCMC runs, namely section 30 of the orbit. The blue lines
are the three periodograms for the data channels A, E, and T with
Nacc, NPos = (1.44 10−48 s−4 Hz−1, 3.6 10−41 Hz−1). We estimate
the two LISA noise magnitudes and the 6 stochastic background
parameters (A1, α1, A2, α2) for the DWD and (�GW, astro, αastro)
for the astrophysical background. We use log uniform priors with
five magnitudes for the five amplitude parameters (Nacc, NPos, A1,
A2, �GW, astro), and uniform priors for the slopes. The A-MCMC
parameters are set to β = 0.01, N = 200 000, and we use 100 samples
to estimate the covariance matrix. The orange lines represent the
LISA noise and the energy spectral density of the SGWBs; see equa-
tion (35). The green lines are the results of the A-MCMC, and in grey
the 1σ errors. Fig. 15 shows the corner plot of the A-MCMC orange
line in the Fig 14; the marginal posterior distributions are symmetric.

It is also possible to have very efficient estimates of the different
noise components thanks to the signal T being nominally devoid of
GW signals. We have verified that over the 1 yr of data, and the 50 A-
MCMC results, the parameters are constant, except for the parameter
A1, which varies due to the orbital modulation.

At low frequencies, the model of the broken power law of DWD
energy spectral density (see equation 26) can be approximated by
a power-law function, for a WD binary foreground the slope α =
α1 − α2 = 2

3 . For 1 � A2

(
f

fref

)α2
(low frequency: LF):

�DWD,LF(f ) ≈ A1

A2

(
f

fref

)α1−α2

. (49)

Presented in Fig. 13 with the dashed green line is an estimate
of the modulated DWD amplitude of equation (48) from the 50
A-MCMC runs. We measure the amplitude of the energy spectral
density of the Galactic foreground at low frequency �u

DWD,LF =
(3.9 ± 1.14) × 10−9 for a reference frequency 3 × 10−3 Hz. We use
the scipy.optimize.curve fitmethod of least squares to fit
equation (48) to estimate the amplitude of the Galactic foreground at
low frequencies (Virtanen et al. 2020). The input of the least-squares
approximation is the modulated DWD amplitude at low frequencies
(see equation 49). We also use the estimated standard deviation from
the 50 A-MCMC runs as an input to the least-squares procedure, with
the argument sigma set to the error from 50 A-MCMC. This result
corresponds to the ‘real’ measurement of the Galactic foreground
amplitude without the modulation. The brown line represents the
spectral separability for the Bayesian study of the energy spectral
density of the Galactic foreground with the low frequency limit for
the total waveform length of one year.

The mean value of the 1500 estimates of �Mod can be seen in
blue, which is the mean of the grey curve. For the Bayesian analysis,
the brown cross is no better, as no conclusive information appears.
As can be seen with the error-bar, one cannot properly estimate the
Galactic foreground amplitude without accounting for the changing
LISA antenna response.

We have a good understanding of the signal modulation from the
resolved binaries (Adams & Cornish 2014), and from theory. By

identifying the resolvable foreground, one can predict the level of
the unresolvable background. We note that the method presented in
Adams & Cornish (2014) is more powerful, but for our present study
the method we use is sufficient as an input to study the limitation
of the measurement of the cosmological SGWB. We have consistent
results with our algorithm. Indeed, we correctly estimate the limit at
low frequencies, and moreover, the astrophysical background is also
estimated accurately, with less than 3 per cent error. We have more
difficulty fitting the Galactic foreground (68 per cent error); this is
due to the low frequency adjustment. We note too that in Fig. 13 the
second peak at 0.75 yr is higher than the first at 0.25 yr. This detail
has been also noted by Edlund et al. (2005) and Adams & Cornish
(2014).

From the year of data, and the 50 A-MCMC results, the parameter
estimates and errors for the Galactic foreground and astrophysical
background are presented in Tables 1 and 2. Fig 16 shows the
energy spectral density estimates and Fig 17 displays the corner
plots of all model parameters; these results were generated using
a full year of data. This demonstrates that LISA can successfully
observe and describe an astrophysically produced background from
compact binaries, a Galactic DWD foreground, and LISA detector
noise and separate these SGWB components.

7 ME A S U R E M E N T O F T H E C O S M O L O G I C A L
S G W B

In this section, we present the goal of our study, namely the ability
for LISA to measure a cosmological background in the presence of
other stochastic signals and noise.

Boileau et al. (2021) presented the evidence for the separability
of the cosmological and astrophysical backgrounds with a precision
around �GW,cosmo ≈ 1 × 10−12 to 1 × 10−13.

As indicated in Section 5, it is possible to estimate the measure-
ment error for each parameter using the Fisher matrix. Equation (44)
gives the Fisher matrix, which depends on the parameters to be
estimated, and also on the data collection time. Indeed, we assume
that LISA noise is a zero mean random noise, and that it is independent
of the GW signal that we are trying to measure.

The SGWB signal from year to year is essentially the same.
By integrating the data over time one can reduce the influence
of the LISA noise on the SGWB search. We use the following
for the magnitudes of the LISA noise: acceleration noise of the
test-mass Nacc = 1.44 × 10−48 s−4 Hz−1; and optical metrology
system noise NPos = 3.6 × 10−41 Hz−1). For the Fischer matrix
study we consider observation times of 1, 4, 6, and 10 yr. Thus,
we will be able to see the effect of the integration of time in
attempting to measure the cosmological background. We calculate
the measurement uncertainty of the magnitude of the cosmological
background for several mission durations and for cosmological
normalized energy densities between 1 × 10−14 and 1 × 10−8. We set
a limit on the ability to detect a cosmological SGWB. We calculate the
uncertainty of the measurement of the amplitude of the cosmological
background. If this uncertainty is less than 50 per cent, we claim that
the background is detectable and separable from the LISA noise, the
Galactic foreground and the astrophysical SGWB. Above this limit,
it is impossible to conclude on the presence or not of a cosmological
SGWB.

We also conduct a Bayesian study using an A-MCMC algorithm
to estimate the parameters of our model: two magnitudes for the
LISA noise; two parameters for the cosmological background (am-
plitude and slope); two parameters for the astrophysical background
(amplitude and slope); and four parameters for the broken power law
(two amplitudes and two slopes). In all, we estimate 10 parameters
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SGWB spectral separation: Galactic foreground 817

Figure 14. Energy spectral density for the channels A, E, and T from section 30 of the 50. Estimates are made for the two magnitudes of the LISA noise model
from the proposal (Baker et al. 2019), the modulation of the WD foreground and the astrophysical background, with an A-MCMC of 8 parameters (BBH +
DWD + LISA noise).

based on the three periodograms from channels A, E, and T. We use
the astrophysical background from Chen et al. (2019). We vary the
amplitude of the cosmological background to determine the precision
with which it can be detected. Thus, we can produce parametric
estimates using the A-MCMC for cosmological normalized energy
densities injected with levels between 1 × 10−14 and 1 × 10−8, all
with a slope of αcosmo = 0. In Fig. 18, the blue lines are the three
periodograms for the data channels A, E, and T for 1 yr of data
simulated with Nacc, NPos = (1.44 10−48 s−4Hz−1, 3.6 10−41 Hz−1).
We estimate the two LISA noise parameters and the 8 GW parameters
(A1, α1, A2, α2) for the DWD, (�astro, αastro) for the astrophysical
background and (�cosmo, αcosmo) for the cosmological background.

This is an example of the separability with input comprising the
Galactic binaries from Lamberts et al. and the astrophysical SGWB
�astro = 4.4 × 10−12 at 3 × 10−3 Hz with a slope of 2/3 and a flat
(αcosmo = 0) cosmological SGWB �cosmo = 8 × 10−13. The orange
lines represent the model used, see equation (35). The A-MCMC is
characterized by β = 0.01, N = 200 000, and we use 100 MCMC
samples to estimate the co-variance matrix. We use log uniform
priors with six magnitudes for two LISA noise magnitudes and the
four SGWB amplitude parameters (Nacc, NPos, A1, A2, �astro, �cosmo)
and a uniform prior for the slopes (α1, α2, αastro, αcosmo) (2 degrees of
freedom). The green lines are the results of the A-MCMC, and in grey
the errors for 1σ . Fig. 19 displays the corner plot for all parameters
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818 G. Boileau et al.

Figure 15. Corner plot for the A-MCMC of 8 parameters (BBH/BNS + WD Section N◦30 + LISA noise) using the channels A, E, and T. The results are for the
two magnitudes for the LISA noise model from the proposal (Baker et al. 2019), the power-law SGWB (amplitude and spectral slope), and the DWD foreground
(two magnitudes and two slopes). The vertical dashed lines on the posterior distribution represent from left to right the quantiles [16, 50, 84 per cent]. The red
lines are the ‘true’ parameter values.

Table 1. Run N◦30 of the 50 A-MCMC run parameter estimation re-
sults for the year of data with a GW background input of �GW,astro =
4.4 × 10−12

(
f

3×10−3 Hz

)2/3
, and the Galactic DWD binary foreground from

Lamberts et al. (2019). In Fig. 15, the red lines correspond to the true values.

�GW, astro αastro �DWD, LF αDWD, LF

μ 4.38 × 10−12 0.66 2.01 × 10−9 0.66
σ 2.35 × 10−13 0.08 1.34 × 10−9 0.1

based on 1 yr of data; the posterior distributions are symmetric. We
have the evidence for a good fit for the astrophysical background and
the cosmological background.

Table 2. 50 A-MCMC run parameter estimation results for the year of data

with a GW background input of �GW,astro = 4.4 × 10−12
(

f

3×10−3 Hz

)2/3
,

and the Galactic DWD binary foreground from Lamberts et al. (2019). In
Fig. 17, the red lines correspond to the true values.

�GW, astro αastro �DWD, LF αDWD, LF

μ 4.46 × 10−12 0.65 5.67 × 10−9 0.68
σ 1.2 × 10−13 0.04 3.89 × 10−9 0.06

Table 3 is the summary of the results with the cosmological input
�cosmo = 8 × 10−13. This is just at the level of detectability for
the cosmological background. A year of data was used, and the
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SGWB spectral separation: Galactic foreground 819

Figure 16. Energy spectral density for the channels A, E, and T from the total waveform. Estimates are made for the two magnitudes of the LISA noise model
from the proposal (Baker et al. 2019), the modulation of the WD foreground, and the astrophysical background with an A-MCMC of 8 parameters (BBH +
WD + LISA noise). 1 yr of data was used.

results come from the 50 A-MCMC results. This shows that it will
be possible for LISA to distinguish the cosmological background
at this level from the astrophysical background, the Galactic DWD
foreground, and LISA detector noise.

Fig. 20 displays the uncertainties for the measurement of the
cosmological background as we vary its amplitude. We assume a
flat background, with αcosmo = 0 and �cosmo = �0. The results
from two studies are presented. The first is the Fisher matrix study,
presented as lines of blue, orange, green and red, corresponding to
LISA observation durations of 1, 4, 6, and 10 yr. We see that the effect
of the duration does not have a large influence. Indeed, we explain this

by noting the frequency dependence of the noise in the periodogram,
which is predominantly at high frequencies, but we measure the GW
backgrounds essentially at low frequencies. Despite this, we can see
that the temporal dependence is not zero. A longer integration time
allows a better fit. Our Bayesian study (see the black scatter), of which
we present the results from A-MCMC runs for 1 yr of data. Each
point has an error bar obtained by estimating the standard deviation
of the posterior distribution. Clearly, the measurement uncertainty is
greater for low amplitudes of the cosmological SGWB. There is a
very good agreement between the A-MCMC results and the Fisher
matrix analysis. With our detection criterion, ��0

�0
< 0.5, we can
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820 G. Boileau et al.

Figure 17. Corner plot for the A-MCMC of 8 parameters (BBH/BNS + WD + LISA noise) using the channels A, E, and T with 1 yr of data. The results are
for the two magnitudes for the LISA noise model from the proposal (Baker et al. 2019), one single power law SGWB (amplitudes and spectral slopes) and the
DWD (two magnitudes and two slopes). The vertical dashed lines on the posterior distribution represent from left to right the quantiles [16, 50, 84 per cent].
The red lines are the ‘true’ parameter values.

predict that with our method is it is possible to fit an SGWB of
cosmological origin of �0,lim = 8 × 10−13, given the values we have
used for the LISA noise, the galactic foreground and the astrophysical
background.

7.1 Fisher Information Studies for modified Galactic
Foreground Models

The Galactic foreground as well as the astrophysical background are
very uncertain. In our first study, we considered different levels for
the compact binary produced astrophysical background (α = 2/3),
in the range of �GW,astro(25 Hz) = 0.355 → 35.5 × 10−9; with
this we showed that it would be possible with LISA to measure a

cosmologically produced SGWB (α = 0) in the range of �GW,cosmo

≈ 1 × 10−12 to 1 × 10−13 with 4 yr of observation (Boileau et al.
2021).

Now, we address the uncertainty in the DWD Galactic model.
In this subsection, we investigate the effect of modifying the
density model for the Galactic foreground. We test the influence
of modifications with a Fisher information study. Indeed, in this
paper, we have shown that the two studies (Fisher and A-MCMC)
give very similar results. First, we introduce a modification of the
amplitude of the Galactic foreground by testing the separability
for new forced values of the parameter A1, such as A1, new = d ×
A1 for d = 1, 2, 5, 10; see equation (26). Fig. 21 presents the
uncertainty for the cosmologically produced SGWB normalized
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SGWB spectral separation: Galactic foreground 821

Figure 18. Energy spectral density for the channels A, E, and T from the total waveform of 1 yr data seen by LISA. Estimates are made for the two magnitudes of
the LISA noise model from the proposal (Baker et al. 2019), the modulation of the WD foreground, the astrophysical background and a cosmological background
with an A-MCMC of 10 parameters (cosmological + BBH + DWD + LISA noise).

energy density with the variation of the amplitude A1. Increasing the
parameter A1 only slightly decreases the possibility of measuring
an SGWB of cosmological origin. This is a modification at very low
frequencies fGW < 7.2 × 10−5, and does not significantly influence
the estimation of the cosmological background by LISA.

We also introduce a modification of the frequency position of
the zone of influence of the two spectral dependencies for the
two slopes of our broken power law. It is possible to show that

the cutoff frequency fbreak is given by fbreak = frefe
− ln(A2)

α2 . The
change in frequency is given by a modification of the amplitude
A2 (again, see equation 26), such that the new amplitude is given

by A2,new = A2d
−α2 , where d is the multiplying coefficient giving

the new frequency of separation of the two spectral dependencies
of the Galactic foreground (fnew, break = d × fbreak). We conduct the
Fisher information study for d = 1, 2, 5, 10. In Fig. 22, we show the
uncertainty of the cosmological SGWB estimation for different fbreak

values. We note that a spectral shift towards the higher frequencies,
decreases our possibility of measuring the cosmological background.
For a value of d = 10 the limit of detection is increased to �0 ≈
6 × 10−12. This is logical because the shift of the Galactic foreground
to higher frequencies would more strongly affect the measurement
of the cosmological background.
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822 G. Boileau et al.

Figure 19. Corner plot for the A-MCMC of 10 parameters (BBH/BNS + WD (total waveform of 1 yr data seen by LISA) + cosmo + LISA noise) using
the channels A, E, and T. The results are for the two magnitudes for the LISA noise model from the proposal (Baker et al. 2019), and two power-law SGWB
(amplitudes and spectral slopes) and the DWD (two magnitudes and two slopes). The vertical dashed lines on the posterior distribution represent from left to
right the quantiles [16, 50, 84 per cent]. The red lines are the ‘true’ parameter values.

Table 3. Results of the year long 50 A-MCMC runs with an input SGWB of �astro = 4.4 ×
10−12

(
f

3×10−3 Hz

)2/3
, and a cosmological input �cosmo = 8 × 10−13 with a slope αcosmo = 0.

We use as reference frequency 3 × 10−3 Hz. Also presented are the low frequency (LF) results
for the Galactic DWD. In Fig. 19, the red lines correspond the true values.

�astro αastro �cosmo αcosmo �DWD, LF αDWD, LF

μ 4.41 × 10−12 0.67 8.01 × 10−13 0.04 5.88 × 10−9 0.68
σ 1.74 × 10−13 0.06 3.97 × 10−13 0.09 6.5 × 10−9 0.13
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SGWB spectral separation: Galactic foreground 823

Figure 20. Uncertainty estimation of the cosmologically produced SGWB from the Fisher information study (represented as the coloured lines four different
observational time durations) and the parameter estimation from the A-MCMC (in scatters) for the channels A and E with the noise channel T. The upper
horizontal dashed line represents the error level 50 per cent. Above the line the error is greater than 50 per cent.

Figure 21. Uncertainty estimation of the cosmologically produced SGWB from the Fisher information study (represented as the coloured lines for four different
amplitudes A1) and the parameter estimation from the A-MCMC (in scatters) for the channels A and E with the noise channel T. The upper horizontal dashed line
represents the error level 50 per cent. Above the line the error is greater than 50 per cent. The parameter representing the magnitude of the Galactic foreground
has been modified, namely A1,new = d × A1 for d = 1, 2, 5, 10; see equation (26).

It is important to note that the Galactic foreground will not be just
DWDs, it may also contain WD-M-dwarf (White dwarf + M dwarf
binaries; a M dwarf can also be called a red dwarf), stripped stars or
CVs. WD-M-dwarfs are few in comparison to DWDs, furthermore,

we estimate that they are very low frequency objects so if we consider
them we would expect a very slight increase in the A1 parameter,
which does not change our results (Skinner et al. 2017). From fig. 2
of G’otberg et al. (2020), we see that binary stripped stars are less
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Figure 22. Uncertainty estimation of the cosmologically produced SGWB from the Fisher information study (represented as the coloured lines for four different
peak frequencies in changing the spectral dependence fbreak) and the parameter estimation from the A-MCMC (in scatters) for the channels A and E with the
noise channel T. A factor d defines a new frequency of separation of the two spectral dependencies of the Galactic foreground, fnew, break = d × fbreak. We test
d = 1, 2, 5, 10. The upper horizontal dashed line represents the error level 50 per cent. Above the line the error is greater than 50 per cent.

numerous than DWDs, they are also present at very low frequency.
Moreover from fig. 3 of G’otberg et al. (2020) the chirp mass is most
important. So, adding this population also modifies the A1 parameter,
which should not change our conclusion. There are likely too few
CVs to generate a significant high frequency foreground (Meliani,
de Araujo & Aguiar 2000; Marsh 2011; van der Sluys 2011; Pala
et al. 2020) most of the high amplitude and high frequency CV
sources will produce resolved events. Another important LISA signal
source are AM Canum Venaticorum (AM CVn) stars. AM CVn
binaries have been observed with periods between 5 and 65 min,
hence gravitational-wave sources from 5 × 10−4 to 7 × 10−3

Hz (van der Sluys 2011). Much is still unknown about their space
density from observations (Carter et al. 2012, 2013) and theoretical
studies (Nelemans 2005; Kremer et al. 2017; Breivik et al. 2018),
and estimates of the space density can vary by several orders of
magnitude. Clearly the importance of understanding the binaries in
the Milky Way will be meaningful for LISA searches, including the
SGWB.

8 C O N C L U S I O N S

This study has displayed what may be possible for LISA in its
ability to observe a cosmologically produced SGWB in the presence
of an astrophysical BBH produced background, a Galactic DWD
foreground, and inherent LISA detector noise. This paper also
presents a comparison between two DWD catalogues (Nelemans
et al. 2001; Lamberts et al. 2019).

We find that the positional distribution of DWD does change
the shape of the energy spectrum of the Galactic foreground.
Our study can be easily applied to other catalogs of DWDs. For
preparations of the LISA SGWB observations, it will be important
to consider models that are as close as possible to the real Galactic

distribution. LISA will have the ability to observe Galactic DWDs,
both with resolvable binaries and the stochastic foreground, and
make important statements about the distribution in the Galaxy. In
this study we do not observe significant changes to the GW power
spectrum between resolved and unresolved DWDs. This is also the
case for the different compositions of the cores of the WDs. We
have studied the distribution of resolved and unresolved binaries
according to their core compositions. It does not seem possible to us
to extrapolate the chemical composition of all the binaries with the
resolved binaries.

Our analysis considered the distribution of DWD produced GW
signals in the Galaxy, and the detection response by LISA as it orbits
the sun, rotates its configuration, and changes it orientation with
respect to the Galaxy. A modulation of the observed Galactic DWD
foreground appears. Accurate parameter estimation for the different
SGWB backgrounds (astrophysical, cosmological) must accurately
estimate the signal modulation and amplitude from the Galactic
foreground. Building on previous analyses addressing the modulated
signal from the Galaxy (Edlund et al. 2005; Adams & Cornish 2014),
we have presented a strategy to demodulate and measure the spectral
energy density of the Galactic foreground at low frequencies. The
orbital modulation of the Galactic foreground aids in the parameter
estimation for the isotropic (and hence unmodulated) astrophysical
and cosmological SGWBs.

We show that it will be possible to measure the SGWB amplitude of
cosmological origin �GW,cosmo ≈ 8 × 10−13 with an error of less than
50 per cent. In our study, we consider this SGWB to have flat spectral
energy density ∝ f0 Cornish & Larson (2001); we note that this is an
approximation for more complex cosmological backgrounds. Phase
transition in the early Universe can produce two-part power laws,
with a traction between the rising and falling power-law components
at some peak frequency; a more complex version of our algorithm
should be able to perform parameter estimation for these types
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SGWB spectral separation: Galactic foreground 825

of backgrounds as well. In our present study, the cosmological
background prediction is obtained with an astrophysical background
estimated to be at a level consistent with the observations made
by Advanced LIGO and Advanced Virgo (Chen et al. 2019). It
is important to note that this astrophysically produced SGWB is
the main source of limitation for LISA in its effort to observe a
cosmologically produced SGWB. An extragalactic background from
DWDs could increase complexity as well.

Future third-generation projects, the Einstein telescope (Punturo
et al. 2010) or Cosmic Explorer (Reitze et al. 2019), will also be
trying to observe a cosmologically produced SGWB in the presence
of an astrophysically produced background. However, these third
generation detectors operating at higher frequencies, above 5 Hz,
could have such detection sensitivity that almost all binary black
hole mergers in the observable Universe would be directly observ-
able (Regimbau et al. 2017), and then could be removed from the
SGWB search. The first consequence is therefore the disappearance
of the astrophysical SGWB from the study of separability. So
according to Sachdev, Regimbau & Sathyaprakash (2020) the ability
to detect the cosmological background will be further improved.
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