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Abstract. We present an experimental and numerical study of the effects of decoherence on
a quantum system whose classical analogue has Kolmogorov–Arnol’d–Moser (KAM) tori in
its phase space. Atoms are prepared in a caesium magneto-optical trap at temperatures and
densities which necessitate a quantum description. This real quantum system is coupled to
the environment via spontaneous emission. The degree of coupling is varied and the effects
of this coupling on the quantum coherence of the system are studied. When the classical
diffusion through a partially broken torus is.h̄, diffusion of quantum particles is inhibited.
We find that increasing decoherence via spontaneous emission increases the transport of
quantum particles through the boundary.
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1. Introduction

The study of decoherence in a quantum system has been a
subject of much interest in recent years. Since the emergence
of quantum mechanics some 70 years ago, a central problem
in its interpretation has been the fact that the linearity of
the Schr̈odinger equation allows macroscopic physical states
to be derived from arbitrary superpositions of other states,
a situation which is quite clearly in contradiction to our
experience. This was originally illustrated in the familiar
paradox of Schr̈odinger’s cat. One simple explanation is to
suppose that an initially classical state for a macroscopic
system will always evolve into another classical state so
that for a universe with a suitable initial condition, non-
classical states occur only when carefully prepared by some
experimentalist. In this interpretation, Schrödinger’s cat
presents no paradox but merely lies outside our normal
realm of experience. This hypothesis can be rejected in the
light of quantum analysis of real macroscopic, classically
chaotic systems. Calculations (see, for example, Zurek’s
discussion in terms of celestial objects [1]) indicate that in
these systems, quantum dynamics differ from classical after
relatively short times, and lead to flagrantly non-classical
states. Any successful theory must explain why these states
are not found in practice.

A recent, successful explanation of the quantum–
classical correspondence problem has been achieved through
studies of the influence of decoherence [2, 3]. In this
approach, any real, open quantum system leaks coherence
to its surroundings via extraneous degrees of freedom which
are coupled to the environment. The rate at which this
decoupling proceeds depends on the particular state of

the system, the dynamics of the system and the form of
the interaction with the environment. In a measurement
of a microscopic system by a macroscopic observer, the
wavefunction collapse of traditional measurement theory
is caused by decoherence of the meter entangled with the
system. Bizarre macroscopic quantum states might in theory
be prepared, but will survive only for a vanishingly short time,
and the classical description of the world as we observe it
will be regained. Quantum mechanics without fundamental
modification retains its position as the true description of
the universe, and the limited set of states which we observe
around us is accounted for.

The study of the signatures of classical phase space
structures in a quantum system is an important topic in
quantum chaos. For a closed integrable system with two
degrees of freedom, all solutions lie on tori embedded in
four-dimensional phase space. Each solution or trajectory is
indefinitely confined to its own torus. If the winding number
for the torus is rational then the trajectories are periodic,
whereas for an irrational winding number the motion in
phase space is quasi-periodic. If the system Hamiltonian
is perturbed such that it becomes non-integrable, nonlinear
resonances appear in the phase space at the location of tori
with rational winding numbers, altering the topology and
destroying these tori. Trajectories which were confined
on the vanished tori, now traverse the same general region
of phase space. However the Kolmogorov–Arnol’d–Moser
(KAM) theorem states that tori with irrational winding
numbers (KAM tori) are not immediately destroyed by small
amounts of non-integrability and continue to act as tori in the
new phase space. For increasing perturbation, the nonlinear
resonances grow and the KAM tori are eventually destroyed
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by nearby resonances. Within a given region of phase space,
those with the most irrational winding numbers are the last to
break up [4]. When a KAM torus is destroyed, acantorusis
left in its place. The properties of a broken torus or cantorus
in a quantum system have been the subject of considerable
interest and several numerical studies [5–9].

In this paper, we study the effects of increasing the
coupling of a quantum system to its environment. Our
experimental system is a low density cloud of cold (∼15µK)
caesium atoms prepared in the ultra-high vacuum glass
cell of a magneto-optical trap (MOT). Because of the low
densities achieved in a MOT, the interactions of the atoms
are negligible and each atom can be modelled as a quantum
particle in a periodic potential. With 105 atoms trapped
per experimental run, we deal with statistically significant
numbers of particles so the experimental distributions will
closely approximate quantum probability distributions. We
temporally modulate a standing wave optical potential
which creates a classically chaotic system with KAM tori
(impenetrable momentum barriers) in its phase space. For
an increased Rabi frequency (i.e. increased perturbation),
holes appear in the barriers, now called cantori, through
which the atoms can diffuse. The diffusion rates of classical
and quantum particles are distinctly different, with quantum
diffusion being largely suppressed by the cantori [5–11]. The
decohering effects of coupling to the environment bring the
behaviour of the quantum ensemble towards the classical
limit. The decohering influence of spontaneous emission in
the atomic optics realization of theδ-kicked rotor has been
observed [12–14], as have the effects of the introduction of
noise to this quantum system [14].

2. Our analytical system

The atom interacts with a standing wave of near-resonant
light (frequencyωL) which is temporally modulated with
periodT . When the detuningδL = ω0 − ωL (whereω0 is
the resonant frequency of the transition) is sufficiently large
compared to the resonant Rabi frequency�/2, the amplitudes
of the excited states can be adiabatically eliminated because
our detunings are large compared to the Rabi frequency
[15, 16]. The dynamics are governed by stimulated two-
photon scattering between ground states, with momentum
changes in units of 2¯hkL. Classically, the atom behaves as
a dipole in a conservative, one-dimensional potential. The
Hamiltonian in this limit is given by

H = p2
x

2M
− h̄�eff

8
cos 2kLx

∞∑
n=−∞

f

(
t

T
− n

)
(1)

wheref (t/T ) specifies the temporal shape of the ‘kicks’,
(with 0 6 f (t/T ) 6 1), kL is the laser wavenumber,
and�eff is the effective Rabi frequency. For a two-level
atom,�eff = �2/δL but for our system we instead have
�eff = �2(s45/δ45 + s44/δ44 + s43/δ43), where the terms
in brackets take into account the different dipole transitions
between the relevant hyperfine levels in caesium (F = 4→
F ′ = 5, 4, 3). Because of the three-dimensional symmetry of
the MOT, we have assumed equal populations of the Zeeman
sub-levels, yielding numerical values for thes4j of s45 = 11

27,

s44 = 7
36, ands43 = 7

108; δ4j are the corresponding detunings.
If in the extreme case atoms piled up in them = ±4 states, the
potential would only increase by 16%. Note that the different
magnetic sub-levels will experience different AC Stark shifts.
For the smallest detuning used in this work this results in a
5% spread in the coupling strength.

We can write the Hamiltonian in dimensionless form as

H = ρ2

2
− k cosφ

∞∑
n=−∞

f (τ − n) (2)

wherek = h̄�effk
2
LT

2/2M is a measure of the perturbation
of the system called the kick strength,τ = t/T , φ = 2kLx,
ρ = (2kLT /M)px , andH = (4k2

LT
2/M)H. If we consider

the dynamics of the laser beam on a single half wavelength,
the Hamiltonian is that of a driven rotor, with dimensionless
parametersI = 1 andω2

0 = k, whereω0 is the small
amplitude oscillation frequency of the rotor. In the quantized
model,φ andρ are conjugate variables with a commutation
relation [ρ, φ] = −ik, wherek = 4h̄k2

LT /M is our scaled
Planck’s constant.

Experimentally, we use a double pulse kick (see figure 1).
For thisf (τ) the Hamiltonian can alternatively be written as

H = ρ2

2
− k

∞∑
m=−∞

am cos(φ − 2πmτ) (3)

where am = 1
10 sincmπ20 cosmπ10 . (With the sinc function

defined as sinc(x) = sin(x)/x.) The rotor is driven by
traveling cosine waves, the speed of themth cosine wave
corresponding to a dimensionless momentum ofρ = 2πm.
There will be a primary resonance in the phase space
wherever the speed of rotation of the rotor matches the speed
of a cosine wave [4]. In the reference frame in which the
cosine wave is at rest, the rotor will be trapped in a pendulum
potential. This causes a change in the topology of the classical
phase space atρ = ρm, for am 6= 0. Form such thatam = 0
there is a missing primary resonance. The widths of the
primary resonance zones are given byδρm = 4

√
amk. The

Chirikov condition for overlap is that the spacing between
the resonances be equal to the sum of the half-widths or
|ρm−ρn| = 2

√
amk+2

√
ank. Overlap of adjacent resonances

is the mechanism for the destruction of KAM tori [4]. We
expect tori in the vicinity of missing resonances to survive
higher kick strengths than all others. A more sophisticated
analysis must take into account the appearance of secondary
resonances arising from interactions between the primary
resonances.

3. Experimental set-up

Our experimental set-up is very similar to that used in the
experiments of Ammannet al [12,13] and Mooreet al [17].
Approximately 105 caesium atoms are trapped and laser
cooled in a standard MOT powered by two diode lasers
operating in the infrared (852 nm). The initial trapped cloud
has a FWHM of 200±20µm and a temperature of 10–15µK.
The temperature tends to be stable within an experimental
run, and the slight day-to-day temperature variations do not
affect our results as they correspond respectively to 99.9%
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Figure 1. Double pulse showing definitions ofα and1.

and 99.5% of atoms initially within the phase space bounded
by the cantori we are studying. The periodically modulated
potential (described in section 2) is provided by a third diode
laser. The beam from this laser passes through an 80 MHz
acousto-optic modulator (AOM) and a single-mode optical
fibre which spatially filters the light and delivers it to the
trap. The beam is then collimated and retroreflected from a
mirror on the opposite side of the trap to form a standing
wave potential across the atomic cloud. The calculated
beam waist at the cloud is 800± 30 µm. This potential
is temporally modulated via the RF supply to the AOM.
Our calculated Rabi frequency at the centre of the trap, for
maximum optical power is�/2π = 310 MHz. A reasonably
narrow distribution in the kicking strengthk is produced by
the finite widths of the cloud and the beam waist of the kicking
potential (RMS spread of 6% andkmean≈ 0.94kmax). In the
remainder of this paper,k always refers tokmean.

In the system Hamiltonian, the pulse train is described
by f (τ). Any pulse of finite length will create KAM tori
in the phase space of the system. They were observed
in recent quasiδ-kicked rotor experiments [12, 13, 17] and
were discussed in a recent paper by Klappaufet al [18].
In these studies, the effects of the KAM tori were avoided
by tailoring the pulse length to push them into regions of
phase space beyond the localization length of dynamical
localization. A pulse train consisting of single pulses is not
however the best system for studying the properties of KAM
tori and cantori because the only energetic chaotic sea lies
between the surviving tori of lowest momentum. Energetic
chaotic seas aid the diffusion of particles away from the
partially permeable barrier and are important experimentally
in isolating the effect of the boundary in phase space. We
use a double pulse per kicking cycle where the pulse period
is T = 25 µs with dimensionless pulse widthα = 1

20 and
dimensionless pulse spacing1 = 1

10 (see figure 1). This
pulse shape gives energetic chaotic seas on both sides of the
long-lived KAM tori with the smallest absolute momentum
(see figure 2). To achieve varying levels of spontaneous
emission, we variedδL = ω0−ωL, the detuning of the kicking
potential from resonance, while simultaneously altering the
beam intensity to maintain a constant kicking strength.

4. Transport through cantori

Classical particles which are no longer confined to their
own tori can diffuse rapidly even through a recently broken

Figure 2. (a) The Poincaŕe section of the system for a very low
kick strength. The unbroken KAM tori are clearly visible at
ρ = ±10π and±30π . (b) The same Poincaré section fork ∼ 300
where the cantori atρ = ±10π are no longer visible in the phase
space at the resolution of the section.

cantorus. The cantorus no longer forms an impenetrable
barrier in the classical phase space and trajectories from
both sides of the original boundary can eventually fill the
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Figure 3. Momentum distributions for a kick strengthk = 280 as
a function of the number of kicking cyclesτ . The experimental
data (a) with its probability of spontaneous emission per cycle
η = 0.019, shows its distinctive shoulders atρ = ±10π . (b) A
quantum simulation for the experimental parameters with no
spontaneous emission, (c) a quantum simulation including
spontaneous emissionη = 0.019 and (d) the corresponding
classical simulation.

entire region between two adjacent, unbroken tori. Quantum
particles however behave very differently. Various numerical
studies of particle transport through cantori [5–9] have shown
that, until the phase space area escaping through the cantori
per kick cycle was∼h̄, the diffusion of quantum particles is
restricted to a quantum tunnelling-like behaviour i.e. there
will be a distinct difference between the diffusion rates of
classical and quantum particles. This has recently been
confirmed experimentally [10, 11]. Figure 2(a) shows a
Poincaŕe section of our system for a very low kicking strength.
The KAM tori atρ = ±10π and±30π are clearly visible as
regions of stability between large chaotic seas. Figure 2(b)
shows the Poincaré section fork ∼ 300, which is comparable
with the kicking strengths used in our experimental work.
The tori atρ = ±10π are no longer visible in the phase
space at this resolution; however they have been shown to
still have a significant effect on the dynamics of both the
quantum [10,11] and classical systems.

We prepare our atoms so that they initially lie within the
ρ = ±10π cantori and monitor their subsequent evolution
through the boundaries. The final momentum distributions of
the atomic cloud display distinctive ‘shoulders’ atρ = ±10π
(as shown in figure 3) due to the inhibition of diffusion
introduced by the cantori. The quantum simulations show
complex structure as a particular initial state was used
in the calculation, whereas the experimental distributions
are smoother due to unavoidable (albeit small) variations
in experimental parameters. The double-peaked structure
and the slight asymmetry in the measured line shape
are due to interference fringes in the optical molasses.
This KAM localization is distinct from the more widely
studied ‘dynamical localization’ (for a discussion see [11]).
The signature of dynamical localization is an exponential
lineshape in momentum space which is markedly different

from the box-like distributions and characteristic shoulders
observed with KAM boundaries. Also, for this experiment,
the localization length of the system,lρ ∼ 170 is considerably
longer than the momentum width of the KAM boundaries at
ρ = ±10π and±30π and hence KAM localization occurs
before dynamical localization can have an effect.

5. Decoherence

The theory of decoherence provides the most recent and so
far perhaps the most satisfying of a series of attempts to
explain the disparities between the predictions of quantum
mechanics and the everyday experiences of the world we
inhabit (see section 1). The field of quantum chaos provides
an ideal backdrop for a study of the predicted effects of
decoherence. It is now widely accepted that sensitive
dependence on initial conditions—the hallmark of classical
chaos—does not occur in closed quantum systems. This
raises problems for the quantum–classical correspondence
(QCC) principle. Quantum mechanics must be able to
describe the classical limit of chaotic behaviour. In this
case, employing the limit as ¯h → 0 is not entirely
satisfactory. Chaotic systems can develop highly complex
phase space structures in logarithmically short times and
hence the small but non-zero value of ¯h is an important
factor.

According to the work of Zureket al [2, 3], these
difficulties in restoring the classical behaviour can be
eliminated by realizing that it is not possible to isolate
macroscopic quantum systems from their environment. The
coupling of the extraneous degrees of freedom of a system
to the environment destroys the quantum coherences on a
timescale inversely proportional to the degree of coupling.
In our experiments and simulations, we introduce coupling
via spontaneous emission induced by the kicking potential.
As the level of spontaneous emission increases, so does the
coupling of the system to the vacuum fluctuations which
constitute the environment. The predicted effect of this
increased coupling is an increase in the transport of quantum
particles across the cantori as the quantum diffusion rate
tends to its classical limit. For the purposes of simulation
we note thatH = ρ2/2 − k cosφ = Hlight while the
driving potential is ‘switched on’, andH = ρ2/2 =
Hdark otherwise. Classical trajectories involve periods of
pendulum motion described by Jacobi elliptic functions,
alternating with periods of free evolution. Usually 104

trajectories are followed during each run. For each pulse,
the amplitude and phase of the elliptic function is matched
to the position and motion of each trajectory by inverting the
elliptic function numerically. To simulate our experiments,
we choose our initial conditions randomly from a thermal
distribution. To produce Poincaré sections, more uniform
conditions are chosen, and optimized to reveal the phase
space structure.

The quantum system is represented by a basis ofN =
128 momentum eigenstates|n〉, whereρ|n〉 = nk|n〉 and
n = −64, . . . ,63. For our parameter values, the duration of
each laser pulse is120 of the total cycle period (see figure 1).
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The evolution operator for a double kick cycle is

U = exp

(
−i

17Hdark

40k

)
exp

(
−i
Hlight

20k

)
exp

(
−i
Hdark

20k

)
× exp

(
−i
Hlight

20k

)
exp

(
−i

17Hdark

40k

)
(4)

where 〈m|Hdark|n〉 = 1
2n

2k2δm,n, 〈m|Hlight|n〉 =
1
2n

2k2δm,n − 1
2k(δm,n+1 + δm,n−1) and we treatn as periodic.

The N × N matrices are exponentiated numerically. In
the case of evolution without spontaneous emission, the
evolution is entirely coherent, and is solved by finding the
eigenvectors of the evolution operator (Floquet method). For
incoherent evolution, the effects of spontaneous emission are
simulated by adding the density matrix to two shifted versions
of itself, once per kick:

〈m|P̂|n〉 = 1
2η(〈m + 1|P̂|n + 1〉 + 〈m− 1|P̂|n− 1〉)

+(1− η)〈m|P̂|n〉 (5)

whereP̂ is the density operator andη is the probability for a
particular atom to spontaneously emit during one kick cycle.
In a previous study by our group, we calculated the effect of
spontaneous emission in theδ-kicked rotor through a Monte
Carlo wavefunction calculation [12]. The approximate way
in which we account for spontaneous emission in this paper
produces results which are negligibly different from the
Monte Carlo wavefunction calculation, but are significantly
more computationally efficient.

A convenient way to visualize the information
represented by the density matrix is in the form of a Wigner
function. For a discrete, truncated basis we use the toroidal
Wigner function as defined in [19],

w(Xk, Pl, t) =
2N−1∑
j=0

exp

(
i
πjk

N

)
1 + (−1)l+j

2

×
〈
l + j

2

∣∣∣∣ P̂ ∣∣∣∣ l − j2

〉
(6)

where Pl = (k/2)l and Xk = πk/N . This gives a
Wigner function defined on a 2N × 2N grid. Averaging
over cells of four adjacent points we reduce the grid to
N×N . This was implemented inMatlab using a fast Fourier
transform algorithm. Examples of results obtained are shown
in figure 4. We see that decoherence smoothes the Wigner
function, removing the rapid oscillations and negative regions
which are characteristic of quantum interference phenomena.

6. Experimental results

In the absence of decoherence, the caesium atoms behave as
quantum particles. Thus even for cantori where significant
diffusion of classical particles can occur, our quantum
particles should still be strongly contained as can be seen from
our classical and quantum simulations in figure 5 where we
calculate the percentage of atoms that cross theρ = ±10π
cantori as a function of the number of kick cycles. Not until
the phase space escaping through the cantorus per cycle is∼h̄,
or in our scaled units∼k, do the quantum particles move to
any great extent across the boundary. For our experimental
parameters, the phase space flux through theρ = ±10π
cantori per kicking cycle is∼4.6k so the quantum diffusion

Figure 4. Wigner functions for the system after 70 kicks, with
k = 280. (a) Corresponds to a probability of spontaneous
emission per kick cycleη = 0, giving pure quantum evolution. We
see rapid fluctuations and negative regions, indicating quantum
interference effects. (b) Results forη = 0.02, comparable with
experimental value. Quantum effects are reduced leading to a
more classical distribution.

will be inhibited. The predicted effect of increasing the
coupling to the environment then is to increase the transfer of
atoms across the cantorus. As the quantum system becomes
more and more strongly coupled to its environment, the
behaviour of the atoms is expected to approach the classical
limit of rapid diffusion.

Our experimental results support this prediction (see
figure 6). For a given kick strength, we compare the system
for δ = 2.8 GHz andδ = 1.0 GHz. The lower limit on
the detuning is imposed by the approximation made in our
numerical calculations that the excited state of the atoms can
be adiabatically eliminated (see section 2). The upper limit
(2.8 GHz) is mainly due to optical power restrictions from
our diode laser—as the detuning increases, the intensity must
also increase to maintain a constant kicking strength.

As the detuning decreased, the percentage of particles
outside theρ = ±10π cantori increased and the experimental
curve rose towards the classical prediction. Our results also
show reasonable agreement with our quantum mechanical
simulations which included the effects of spontaneous
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Figure 5. Quantum (solid) and classical (dashed) simulations for
a kicking strength ofk = 270 showing the percentage of atoms to
cross theρ = ±10π cantori. This graph clearly shows the
inhibition to quantum diffusion presented by the cantorus.

Figure 6. Percentage of particles to cross theρ = ±10π cantori.
Experimental results forη = 0.02 (•) andη = 0.05 (�) all at a
kicking strength ofk = 270. Quantum simulations for the
experimental parameters are shown as dotted lines. The classical
simulation (dashed) and quantum simulation with zero
spontaneous emission (solid) are shown for comparison. The error
bars represent our±4% measurement uncertainty.

emission. The main sources of error are the measurement
of optical beam power and the finite resolution of the CCD
camera. The resolution of our CCD (19 pixels mm−1),
coupled with our 12 ms expansion time, allowed us to
determine the position of the momentum line to an accuracy
of 1ρ = ±0.8. At our kick strength ofk = 270, this
results in an uncertainty in our measured probability of±4%.
The 6% variation in the kicking strengthk is sufficiently
small so as not to contribute an appreciable variation in
the lineshapes. We repeated our experiment a number of
times during each experimental session, and the resulting

spread in our measured values of±4% is reflected in the
error bars in figure 6. In this figure, we see good agreement
between experiment and theory for the 2.8 GHz detuning,
while for 1.0 GHz there is only reasonable agreement which
is probably due to absolute uncertainty in the light power
level and detuning values.

As one can see from figure 6, the increase in the
spontaneous emission rate causes the behaviour of this
ensemble of quantum particles to approach the behaviour
of a classical ensemble. Our experimental set-up does
not permit us to force our atoms to this limit, as we
are limited by laser power and the adiabatic elimination
approximation. However, our quantum simulations reveal
that further increases in the spontaneous emission rate allow
the quantum ensemble to mimic the classical. All our
measurements were at a fixed ‘Planck’s constant’ ofk = 2.6;
the consequences of a variation ofk in this double pulse
system will be the subject of future work. Suffice it to say that
decreasingk brings the ensemble closer to the fully classical
representation.

7. Conclusion

Using laser-cooled caesium atoms, we have observed the
controlled decoherence of a real quantum system via coupling
to the environment. This adds to the previous work on
decoherence through the atom optics realization of theδ-
kicked rotor and also the experiments of Harocheet al [20]
and Winelandet al [21]. We have demonstrated that the
quantum diffusion rate tends towards the classical rate with
an increasing degree of decoherence. The introduction of
decoherence via spontaneous emission increases the rate
of transport of atoms across the cantori and alters the
characteristic shape of the KAM localized distribution such
that it tends towards the classical (uniform) distribution.

The link between the quantum domain and the familiar
classical world remains a hotly debated topic. The quantum–
classical correspondence principle requires that quantum
mechanics contains the classical macroscopic limit. It
appears that environment induced decoherence can help in the
understanding of QCC. This interpretation is authenticated
via the results presented in this paper, as well as previous
studies of decoherence in the atomic optics manifestation of
theδ-kicked rotor [12–14]. We note that while we can make
our ensemble of caesium atoms behave like an ensemble of
classical particles, we do not infer that there is any degree of
chaos in the presented quantum system.

We have experimentally confirmed that a cantori can
inhibit the motion of a quantum particle [10,11]. In this paper
we observe that decoherence introduced via spontaneous
emission markedly changes the diffusive behaviour of the
caesium atoms that we subject to our tailored kick series.
An increase in the spontaneous emission rate diminishes the
effect of cantori localization in the quantum system, and
diffusion similar to that predicted classically is observed.
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