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Abstract. We present an experimental and numerical study of the effects of decoherence on
a quantum system whose classical analogue has Kolmogorov—Arnol'd-Moser (KAM) tori in
its phase space. Atoms are prepared in a caesium magneto-optical trap at temperatures and
densities which necessitate a quantum description. This real quantum system is coupled to
the environment via spontaneous emission. The degree of coupling is varied and the effects
of this coupling on the quantum coherence of the system are studied. When the classical
diffusion through a partially broken torus i, diffusion of quantum patrticles is inhibited.

We find that increasing decoherence via spontaneous emission increases the transport of
guantum particles through the boundary.

Keywords: Quantum chaos, decoherence, laser cooled atoms

1. Introduction the system, the dynamics of the system and the form of
the interaction with the environment. In a measurement
The study of decoherence in a quantum system has been af a microscopic system by a macroscopic observer, the
subject of much interestin recent years. Since the emergencevavefunction collapse of traditional measurement theory
of quantum mechanics some 70 years ago, a central problemis caused by decoherence of the meter entangled with the
in its interpretation has been the fact that the linearity of system. Bizarre macroscopic quantum states might in theory
the Schodinger equation allows macroscopic physical states be prepared, but will survive only for a vanishingly shorttime,
to be derived from arbitrary superpositions of other states, and the classical description of the world as we observe it
a situation which is quite clearly in contradiction to our will be regained. Quantum mechanics without fundamental
experience. This was originally illustrated in the familiar maodification retains its position as the true description of
paradox of Schirdinger’s cat. One simple explanation is to the universe, and the limited set of states which we observe
suppose that an initially classical state for a macroscopic around us is accounted for.
system will always evolve into another classical state so The study of the signatures of classical phase space
that for a universe with a suitable initial condition, non- structures in a quantum system is an important topic in
classical states occur only when carefully prepared by somequantum chaos. For a closed integrable system with two
experimentalist. In this interpretation, Sobinger’s cat degrees of freedom, all solutions lie on tori embedded in
presents no paradox but merely lies outside our normal four-dimensional phase space. Each solution or trajectory is
realm of experience. This hypothesis can be rejected in theindefinitely confined to its own torus. If the winding number
light of quantum analysis of real macroscopic, classically for the torus is rational then the trajectories are periodic,
chaotic systems. Calculations (see, for example, Zurek’s whereas for an irrational winding number the motion in
discussion in terms of celestial objects [1]) indicate that in phase space is quasi-periodic. If the system Hamiltonian
these systems, quantum dynamics differ from classical afteris perturbed such that it becomes non-integrable, nonlinear
relatively short times, and lead to flagrantly non-classical resonances appear in the phase space at the location of tori
states. Any successful theory must explain why these stateswith rational winding numbers, altering the topology and
are not found in practice. destroying these tori. Trajectories which were confined
A recent, successful explanation of the quantum-— on the vanished tori, now traverse the same general region
classical correspondence problem has been achieved througbf phase space. However the Kolmogorov—Arnol'd—Moser
studies of the influence of decoherence [2, 3]. In this (KAM) theorem states that tori with irrational winding
approach, any real, open quantum system leaks coherencaumbers (KAM tori) are notimmediately destroyed by small
to its surroundings via extraneous degrees of freedom whichamounts of non-integrability and continue to act as tori in the
are coupled to the environment. The rate at which this new phase space. For increasing perturbation, the nonlinear
decoupling proceeds depends on the particular state ofresonances grow and the KAM tori are eventually destroyed
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by nearby resonances. Within a given region of phase spaceg,, — 316 andss; = 1%8; 84; are the corresponding detunings.
those with the most irrational winding numbers are the last to |fin the extreme case atoms piled upinthe= +4 states, the
break up [4]. When a KAM torus is destroyedcantorusis potential would only increase by 16%. Note that the different
leftin its place. The properties of a broken torus or cantorus magnetic sub-levels will experience different AC Stark shifts.

in a quantum system have been the subject of considerableror the smallest detuning used in this work this results in a

interest and several numerical studies [5-9]. 5% spread in the coupling strength.

In this paper, we study the effects of increasing the We can write the Hamiltonian in dimensionless form as
coupling of a quantum system to its environment. Our
experimental system is a low density cloud of cold6 1K) H— Pj — kcosp i f—n) @
caesium atoms prepared in the ultra-high vacuum glass 2 e

cell of a magneto-optical trap (MOT). Because of the low

densities achieved in a MOT, the interactions of the atoms wherek = 7 Qek?T?2/2M is a measure of the perturbation
are negligible and each atom can be modelled as a quantunof the system called the kick strength= /T, ¢ = 2k, x,
particle in a periodic potential. With 20atoms trapped  p = (2k,T/M)p., andH = (4k2T?/M)H. If we consider
per experimental run, we deal with statistically significant the dynamics of the laser beam on a single half wavelength,
numbers of particles so the experimental distributions will the Hamiltonian is that of a driven rotor, with dimensionless
closely approximate quantum probability distributions. We parameterd = 1 andw? = k, wherewy is the small
temporally modulate a standing wave optical potential amplitude oscillation frequency of the rotor. In the quantized
which creates a classically chaotic system with KAM tori model,¢ andp are conjugate variables with a commutation
(impenetrable momentum barriers) in its phase space. Forrelation [o, ¢] = —ik, wherek = 4hk?T /M is our scaled

an increased Rabi frequency (i.e. increased perturbation),Planck’s constant.

holes appear in the barriers, now called cantori, through Experimentally, we use adouble pulse kick (see figure 1).
which the atoms can diffuse. The diffusion rates of classical For this f (z) the Hamiltonian can alternatively be written as
and quantum particles are distinctly different, with quantum , .

diffusion being largely suppressed by the cantori[5—11]. The _p

decohering effects of coupling to the environment bring the H= 2 km;w G COSp — 2mm) ®
behaviour of the quantum ensemble towards the classical

limit. The decohering influence of spontaneous emission in whereq,, = %sinc% cos%Z. (With the sinc function
the atomic optics realization of thiekicked rotor has been  defined as sin@) = sin(x)/x.) The rotor is driven by
observed [12-14], as have the effects of the introduction of traveling cosine waves, the speed of thth cosine wave

noise to this quantum system [14]. corresponding to a dimensionless momentunp 6f 27m.
There will be a primary resonance in the phase space
2. Our analytical system wherever the speed of rotation of the rotor matches the speed

of a cosine wave [4]. In the reference frame in which the
The atom interacts with a standing wave of near-resonantcosine wave is at rest, the rotor will be trapped in a pendulum
light (frequencyw;) which is temporally modulated with ~ potential. This causes a change in the topology of the classical
period7. When the detuning; = wo — w; (Wherewy is phase space at= p,,, for a,, # 0. Form such thai, = 0
the resonant frequency of the transition) is sufficiently large there is a missing primary resonance. The widths of the
compared to the resonant Rabi frequefigy, the amplitudes ~ primary resonance zones are givendpy, = 4v/a,.k. The
of the excited states can be adiabatically eliminated becauseChirikov condition for overlap is that the spacing between
our detunings are large compared to the Rabi frequencythe resonances be equal to the sum of the half-widths or
[15,16]. The dynamics are governed by stimulated two- |om—pa| = 2¢/ank+2./a,k. Overlap of adjacentresonances
photon scattering between ground states, with momentumis the mechanism for the destruction of KAM tori [4]. We
changes in units of/i%; . Classically, the atom behaves as expect tori in the vicinity of missing resonances to survive
a dipole in a conservative, one-dimensional potential. The higher kick strengths than all others. A more sophisticated
Hamiltonian in this limit is given by analysis must take into account the appearance of secondary

resonances arising from interactions between the primary

2 T o)

)4 hQeff t resonances.
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N B ] 3. Experimental set-up
where f(¢t/T) specifies the temporal shape of the ‘kicks’,

(with 0 < f(¢/T) < 1), k. is the laser wavenumber, Qur experimental set-up is very similar to that used in the
and Qe is the effective Rabi frequency. For a two-level experiments of Ammanat al [12,13] and Moorest al [17].
atom, Qer = Q7/8,, but for our system we instead have Approximately 16 caesium atoms are trapped and laser
Qeft = 2%(s45/845 + 544/8a4 + 543/343), Where the terms  cooled in a standard MOT powered by two diode lasers
in brackets take into account the different dipole transitions operating in the infrared (852 nm). The initial trapped cloud
between the relevant hyperfine levels in caesidim 4 — has a FWHM of 208-20 .m and a temperature of 10—LK.

F' =5, 4, 3). Because of the three-dimensional symmetry of The temperature tends to be stable within an experimental
the MOT, we have assumed equal populations of the Zeemaryun, and the slight day-to-day temperature variations do not
sub-levels, yielding numerical values for thg of ss5 = 22, affect our results as they correspond respectively t9%9
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Figure 1. Double pulse showing definitions afandA.

and 995% of atoms initially within the phase space bounded
by the cantori we are studying. The periodically modulated
potential (described in section 2) is provided by a third diode
laser. The beam from this laser passes through an 80 MHz
acousto-optic modulator (AOM) and a single-mode optical
fibre which spatially filters the light and delivers it to the
trap. The beam is then collimated and retroreflected from a
mirror on the opposite side of the trap to form a standing
wave potential across the atomic cloud. The calculated o
beam waist at the cloud is 8G0 30 um. This potential p/’n‘
is temporally modulated via the RF supply to the AOM.
Our calculated Rabi frequency at the centre of the trap, for
maximum optical power i& /27 = 310 MHz. Areasonably
narrow distribution in the kicking strengthis produced by
the finite widths of the cloud and the beam waist of the kicking
potential (RMS spread of 6% arghean ~ 0.94kmay). In the
remainder of this papet, always refers t&mean

In the system Hamiltonian, the pulse train is described
by f(r). Any pulse of finite length will create KAM tori
in the phase space of the system. They were observed
in recent quasé-kicked rotor experiments [12,13, 17] and
were discussed in a recent paper by Klappeufl [18].
In these studies, the effects of the KAM tori were avoided
by tailoring the pulse length to push them into regions of
phase space beyond the localization length of dynamical
localization. A pulse train consisting of single pulses is not
however the best system for studying the properties of KAM
tori and cantori because the only energetic chaotic sea lies
between the surviving tori of lowest momentum. Energetic
chaotic seas aid the diffusion of particles away from the
partially permeable barrier and are important experimentally
in isolating the effect of the boundary in phase space. We
use a double pulse per kicking cycle where the pulse period
is T = 25 us with dimensionless pulse width = 2—10 and
dimensionless pulse spaciig = % (see figure 1). This
pulse shape gives energetic chaotic seas on both sides of the
long-lived KAM tori with the smallest absolute momentum
(see figure 2). To achieve varying levels of spontaneous Figure 2. (a) The Poinca& section of the system for a very low
emission, we variel, = wo—w; , the detuning ofthe kicking ~ Kick strength. The unbroken KAM tori are clearly visible at
potential from resonance, while simultaneously altering the = 107 and30r. (b) The same Poincarsection fok ~ 300

. . L L where the cantori gt = +10z are no longer visible in the phase
beam intensity to maintain a constant kicking strength. space at the resolution of the section.
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4. Transport through cantori )
cantorus. The cantorus no longer forms an impenetrable

Classical particles which are no longer confined to their barrier in the classical phase space and trajectories from
own tori can diffuse rapidly even through a recently broken both sides of the original boundary can eventually fill the
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Figure 3. Momentum distributions for a kick strength= 280 as
a function of the number of kicking cycles The experimental
data @) with its probability of spontaneous emission per cycle
n = 0.019, shows its distinctive shoulders@t= +107. (b) A
guantum simulation for the experimental parameters with no
spontaneous emissiort) @ quantum simulation including
spontaneous emission= 0.019 and {) the corresponding
classical simulation.

entire region between two adjacent, unbroken tori. Quantum
particles however behave very differently. Various numerical
studies of particle transport through cantori [5-9] have shown

from the box-like distributions and characteristic shoulders
observed with KAM boundaries. Also, for this experiment,
the localization length of the systefp,~ 170is considerably
longer than the momentum width of the KAM boundaries at
p = £107r and+30r and hence KAM localization occurs
before dynamical localization can have an effect.

5. Decoherence

The theory of decoherence provides the most recent and so
far perhaps the most satisfying of a series of attempts to
explain the disparities between the predictions of quantum
mechanics and the everyday experiences of the world we
inhabit (see section 1). The field of quantum chaos provides
an ideal backdrop for a study of the predicted effects of
decoherence. It is now widely accepted that sensitive
dependence on initial conditions—the hallmark of classical
chaos—does not occur in closed quantum systems. This
raises problems for the quantum—classical correspondence
(QCC) principle. Quantum mechanics must be able to
describe the classical limit of chaotic behaviour. In this
case, employing the limit a& — 0 is not entirely
satisfactory. Chaotic systems can develop highly complex
phase space structures in logarithmically short times and
hence the small but non-zero value /ofis an important
factor.

According to the work of Zureket al [2, 3], these
difficulties in restoring the classical behaviour can be

that, until the phase space area escaping through the cantorijiminated by realizing that it is not possible to isolate

per kick cycle was-h, the diffusion of quantum particles is
restricted to a quantum tunnelling-like behaviour i.e. there
will be a distinct difference between the diffusion rates of
classical and quantum particles. This has recently been
confirmed experimentally [10, 11]. Figure&(shows a
Poincae section of our system for a very low kicking strength.
The KAM tori atp = +107 and+30r are clearly visible as
regions of stability between large chaotic seas. Figubg 2(
shows the Poincarsection fok ~ 300, which is comparable
with the kicking strengths used in our experimental work.
The tori atp = £10r are no longer visible in the phase
space at this resolution; however they have been shown to
still have a significant effect on the dynamics of both the
quantum [10, 11] and classical systems.

We prepare our atoms so that they initially lie within the
p = 107 cantori and monitor their subsequent evolution
through the boundaries. The final momentum distributions of
the atomic cloud display distinctive ‘shouldersiat +10r
(as shown in figure 3) due to the inhibition of diffusion
introduced by the cantori. The quantum simulations show
complex structure as a particular initial state was used
in the calculation, whereas the experimental distributions
are smoother due to unavoidable (albeit small) variations
in experimental parameters. The double-peaked structure
and the slight asymmetry in the measured line shape
are due to interference fringes in the optical molasses.
This KAM localization is distinct from the more widely
studied ‘dynamical localization’ (for a discussion see [11]).
The signature of dynamical localization is an exponential
lineshape in momentum space which is markedly different
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macroscopic quantum systems from their environment. The
coupling of the extraneous degrees of freedom of a system
to the environment destroys the quantum coherences on a
timescale inversely proportional to the degree of coupling.
In our experiments and simulations, we introduce coupling
via spontaneous emission induced by the kicking potential.
As the level of spontaneous emission increases, so does the
coupling of the system to the vacuum fluctuations which
constitute the environment. The predicted effect of this
increased coupling is an increase in the transport of quantum
particles across the cantori as the quantum diffusion rate
tends to its classical limit. For the purposes of simulation
we note thatH p%/2 — kcosp = Higne While the
driving potential is ‘switched on’, andd = p?/2 =
Hgyark Otherwise. Classical trajectories involve periods of
pendulum motion described by Jacobi elliptic functions,
alternating with periods of free evolution. Usually 10
trajectories are followed during each run. For each pulse,
the amplitude and phase of the elliptic function is matched
to the position and motion of each trajectory by inverting the
elliptic function numerically. To simulate our experiments,
we choose our initial conditions randomly from a thermal
distribution. To produce Poindarsections, more uniform

conditions are chosen, and optimized to reveal the phase
space structure.

The quantum system is represented by a basi¥ ef
128 momentum eigenstatés), wherep|n) = nkin) and
n = —64,...,63. For our parameter values, the duration of
each laser pulse % of the total cycle period (see figure 1).



Quantum decoherence via spontaneous emission in a system with KAM tori

The evolution operator for a double kick cycle is (a)

_ . 17Hdark . Hlight . Hyark
0 = o120 ) e o

H.
x exp(—i 2'8;) exp <—i 11%‘;”") (4)

where (m|Hgaln) = 3n%k%8,.,, (m|Hignln) =
$n2k28,.0 — 3k(8mn+1 + 8m.n—1) and we treat as periodic.

The N x N matrices are exponentiated numerically. In
the case of evolution without spontaneous emission, the
evolution is entirely coherent, and is solved by finding the
eigenvectors of the evolution operator (Floguet method). For
incoherent evolution, the effects of spontaneous emission are
simulated by adding the density matrix to two shifted versions
of itself, once per kick:

(m|Pln) = In((m + LPln + 1) + (m — 1|Pln — 1))

+(1— n)(m|Pn) (5)

where? is the density operator angis the probability for a
particular atom to spontaneously emit during one kick cycle.
In a previous study by our group, we calculated the effect of
spontaneous emission in tBekicked rotor through a Monte
Carlo wavefunction calculation [12]. The approximate way
in which we account for spontaneous emission in this paper
produces results which are negligibly different from the
Monte Carlo wavefunction calculation, but are significantly
more computationally efficient.

A convenient way to visualize the information
represented by the density matrix is in the form of a Wigner
function. For a discrete, truncated basis we use the toroidal

W (e, p)

Wigner function as defined in [19 e
g [19], p/T 0 Y gyn
2yl ik 1+ (=1
w(Xk, B, 1) = Z exp<|—> 2 Figure 4. Wigner functions for the system after 70 kicks, with
j=0 k = 280. @) Corresponds to a probability of spontaneous
[+j|All—] emission per kick cyclg = 0, giving pure quantum evolution. We
X <? P 7> (6) see rapid fluctuations and negative regions, indicating quantum
interference effectsbj Results for = 0.02, comparable with
where P, = (k/2)] and X; = nmk/N. This gives a experimental value. Quantum effects are reduced leading to a

Wigner function defined on a2 x 2N grid. Averaging  more classical distribution.
over cells of four adjacent points we reduce the grid to
N x N. Thiswas implemented Mat1ab using afast Fourier ~ Wwill be inhibited. The predicted effect of increasing the
transform algorithm. Examples of results obtained are shown coupling to the environment then is to increase the transfer of
in figure 4. We see that decoherence smoothes the Wigneratoms across the cantorus. As the quantum system becomes
function, removing the rapid oscillations and negative regions more and more strongly coupled to its environment, the
which are characteristic of quantum interference phenomena.behaviour of the atoms is expected to approach the classical
limit of rapid diffusion.
6. Experimental results Our experimental results support this prediction (see
figure 6). For a given kick strength, we compare the system
In the absence of decoherence, the caesium atoms behave der § = 2.8 GHz andé = 1.0 GHz. The lower limit on
quantum particles. Thus even for cantori where significant the detuning is imposed by the approximation made in our
diffusion of classical particles can occur, our quantum numerical calculations that the excited state of the atoms can
particles should still be strongly contained as can be seen frombe adiabatically eliminated (see section 2). The upper limit
our classical and quantum simulations in figure 5 where we (2.8 GHz) is mainly due to optical power restrictions from

calculate the percentage of atoms that crossothe +107 our diode laser—as the detuning increases, the intensity must
cantori as a function of the number of kick cycles. Not until also increase to maintain a constant kicking strength.
the phase space escaping through the cantorus per cydle is As the detuning decreased, the percentage of particles

or in our scaled units-k, do the quantum particles move to outside thep = +10x cantoriincreased and the experimental
any great extent across the boundary. For our experimentalcurve rose towards the classical prediction. Our results also
parameters, the phase space flux throughghe +10r show reasonable agreement with our quantum mechanical
cantori per kicking cycle is-4.6k so the quantum diffusion  simulations which included the effects of spontaneous
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Figure 5. Quantum (solid) and classical (dashed) simulations for
a kicking strength ok = 270 showing the percentage of atoms to
cross thep = £10x cantori. This graph clearly shows the
inhibition to quantum diffusion presented by the cantorus.
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Figure 6. Percentage of particles to cross fhe- £10z cantori.
Experimental results faj = 0.02 (®) andn = 0.05 (¢) all at a
kicking strength ok = 270. Quantum simulations for the
experimental parameters are shown as dotted lines. The classical
simulation (dashed) and quantum simulation with zero

spread in our measured valuesb#% is reflected in the
error bars in figure 6. In this figure, we see good agreement
between experiment and theory for thé Z3Hz detuning,
while for 1.0 GHz there is only reasonable agreement which
is probably due to absolute uncertainty in the light power
level and detuning values.

As one can see from figure 6, the increase in the
spontaneous emission rate causes the behaviour of this
ensemble of quantum particles to approach the behaviour
of a classical ensemble. Our experimental set-up does
not permit us to force our atoms to this limit, as we
are limited by laser power and the adiabatic elimination
approximation. However, our quantum simulations reveal
that further increases in the spontaneous emission rate allow
the quantum ensemble to mimic the classical. All our
measurements were at a fixed ‘Planck’s constarit’ f2.6;
the consequences of a variation fofin this double pulse
system will be the subject of future work. Suffice it to say that
decreasing brings the ensemble closer to the fully classical
representation.

7. Conclusion

Using laser-cooled caesium atoms, we have observed the
controlled decoherence of areal quantum system via coupling
to the environment. This adds to the previous work on
decoherence through the atom optics realization ofsthe
kicked rotor and also the experiments of Haroehal [20]

and Winelandet al [21]. We have demonstrated that the
quantum diffusion rate tends towards the classical rate with
an increasing degree of decoherence. The introduction of
decoherence via spontaneous emission increases the rate
of transport of atoms across the cantori and alters the
characteristic shape of the KAM localized distribution such
that it tends towards the classical (uniform) distribution.

The link between the quantum domain and the familiar
classical world remains a hotly debated topic. The quantum—
classical correspondence principle requires that quantum
mechanics contains the classical macroscopic limit. It
appears thatenvironmentinduced decoherence can helpinthe
understanding of QCC. This interpretation is authenticated
via the results presented in this paper, as well as previous
studies of decoherence in the atomic optics manifestation of
thes-kicked rotor [12—-14]. We note that while we can make
our ensemble of caesium atoms behave like an ensemble of
classical particles, we do not infer that there is any degree of

spontaneous emission (solid) are shown for comparison. The errorcha@os in the presented quantum system.

bars represent out4% measurement uncertainty.

We have experimentally confirmed that a cantori can
inhibit the motion of a quantum particle [10,11]. Inthis paper

emission. The main sources of error are the measurementve observe that decoherence introduced via spontaneous

of optical beam power and the finite resolution of the CCD
camera. The resolution of our CCD (19 pixels mi)
coupled with our 12 ms expansion time, allowed us to

emission markedly changes the diffusive behaviour of the
caesium atoms that we subject to our tailored kick series.
An increase in the spontaneous emission rate diminishes the

determine the position of the momentum line to an accuracy effect of cantori localization in the quantum system, and

of Ap £0.8. At our kick strength ok = 270, this
results in an uncertainty in our measured probabilitydfo.
The 6% variation in the kicking strength is sufficiently
small so as not to contribute an appreciable variation in

diffusion similar to that predicted classically is observed.
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