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Abstract
We present experimental observations of diffusion resonances for the
quantum kicked rotor with weak decoherence. Cold caesium atoms are
subject to a pulsed standing wave of near-resonant light, with spontaneous
emission providing environmental coupling. The mean energy as a function
of the pulse period is determined during the late-time diffusion period for a
constant probability of spontaneous emission. Structure in the late-time
energy is seen to increase with physical kicking strength. The observed
structure is related to Shepelyansky’s predictions for the initial quantum
diffusion rates.

Keywords: quantum chaos, kicked atoms, laser-cooled atoms

1. Introduction

The atom optics realization of the kicked rotor has enabled
the experimental study of the transition between quantum and
classical behaviour for this fundamental non-linear system.
For example, the effects of decoherence, the mechanism
whereby quantum interference effects are destroyed via
environmental coupling [1], have been studied in the quantum
system. More classical-like behaviour is observed when
decoherence is added, either by spontaneous emission
events [2–4], amplitude noise [5, 6] or timing noise [7, 8].
However, recent theoretical studies have concentrated on what
is perhaps a more direct approach to studying the quantum-
to-classical transition—varying the action of the system and
thereby the effective Planck constant, i.e. increasing the action
to investigate the limit in which ‘h̄’ → 0 [9, 10]. Of
particular interest is the behaviour found for intermediate
values of ‘h̄’, for which regions of enhanced diffusion
(diffusion ‘resonances’) are predicted to exist by simulations
and analytical results.

These theoretical studies have concentrated on the case
where the classical stochasticity parameter of the system stays
the same and only the effective Planck constant is varied.
However, in cold atom kicked rotor experiments, the most
accessible parameter regime exists for the situation where the
power in the kicking laser is held constant instead, while the

pulsing period (which is proportional to the effective Planck
constant) is changed. Numerically, it is found that this gives
rise to different but analogous diffusion resonances from those
found in the aforementioned simulations. Here, we present
observations of diffusion resonances in this experimentally
accessible regime, the structure of which can be traced to a
scaling formula for the initial quantum diffusion rate derived
by Shepelyansky [11]. The experimental results exhibit
markedly different behaviour from that predicted by classical
calculations. An increase in the complexity of the resonance
structure is seen as the physical kicking strength is increased.
Experimentally, the resonances are slightly diminished due to
the non-uniform intensity profile of the kicking laser, but the
expected structure is still clearly visible.

The resonances we observe are of a different nature from
the quantum resonances previously studied in the atom optics
kicked rotor4, showing non-trivial dependence on the kicking
strength as well as the scaled Planck constant. In particular,
we note that the emphasis of our study is different from that
of the related work by d’Arcy et al [12] which focused on
such quantum resonance behaviour and not on the diffusion
resonance behaviour at intermediate values of h̄. Additionally,
we note the difference between our experiments and those of

4 The simplest quantum resonances (which are also those that have been
previously studied experimentally) occur when the scaled Planck constant is
an integer multiple of 2π .
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Klappauf et al [13] in which anomalous diffusion behaviour
was studied as a function of kicking strength for just a few
values of the pulsing period. Our investigation is essentially
the converse of this experiment: energies are measured as a
function of the pulsing period for just a few values of a kicking
strength parameter, and display a resonance structure which
cannot be inferred from previous results.

The system and model that we study are presented
in section 2, while the analysis of classical and quantum
momentum diffusion in this system is discussed in section 3.
Our experimental set-up is described in section 4, and the
results (experimental, quantum and classical calculations) are
presented in section 5. The conclusion is in section 6.

2. System and model

For our system we use a laser-cooled cloud of caesium atoms
of initial temperature ≈20 µK interacting with a standing
wave of off-resonant laser light. The laser is pulsed with
period T and pulse profile f (t). We note that the energy
gained by the atoms during interaction with the off-resonant
laser field is typically much greater than their thermal energy.
Furthermore, numerical studies indicate that the effects we
wish to observe are insensitive to the exact initial temperature
over the range of approximately 1–100 µK [14] and thus the
finite temperature of the cloud does not limit the investigation
of diffusion resonances. If the detuning of the laser from the
atomic transition is sufficiently large compared with the Rabi
frequency of the transition (see section 4) the internal atomic
dynamics can be eliminated and the motion of the caesium
atoms is described by the single-particle Hamiltonian [15]

Ĥ = p̂2

2m
− h̄�eff

8
cos(2kL x̂)

N∑
n=0

f (t − nT ), (1)

where x̂ and p̂ are operators representing the atomic position
and momentum, respectively, and kL is the wavenumber of
the laser light. The effective potential strength (typically
denoted by �eff although it is not a physical Rabi frequency)
is given by �eff = �2(s45/δ45 + s44/δ44 + s43/δ43). This
expression accounts for dipole transitions between different
combinations of hyperfine levels in the caesium atoms
(6S1/2(F = 4) → 6P3/2(F ′ = 3, 4, 5)), where δi j are the
corresponding detunings between the laser and the atomic
transition frequencies, and �/2 is the resonant single-beam
Rabi frequency. If we assume equal populations of atoms in
all ground state Zeeman sublevels, then s45 = 11

27 , s44 = 7
36 ,

and s43 = 7
108 . It is useful to rewrite this Hamiltonian in

appropriate dimensionless units as

Ĥ = ρ̂2

2
− k cos(φ̂)

N∑
n=0

f (τ − n), (2)

which is the usual expression for the Hamiltonian of the
standard kicked rotor system. In these units—which will be
referred to as ‘scaled units’—the position operator is defined
by φ̂ = 2kL x̂ , the momentum operator is ρ̂ = 2kLT p̂/m, time
is rescaled as τ = t/T , and our new Hamiltonian is related to
equation (1) by Ĥ = (4k2

LT 2/m)Ĥ . The classical stochasticity
parameter is given by κ = �effωrT τp, where τp is the pulse

length in unscaled time and ωr = h̄k2
L/2m. In our experiments,

f (τ) is a good approximation to a square pulse, i.e. f (τ) = 1
for 0 < τ < α, where α = τp/T . Note that k = κ/α.

In scaled units we have [φ̂, ρ̂] = ik−, with k− = 8ωrT , so
that the quantum behaviour of our system is reflected by an
effective Planck constant, k−, which increases as we increase
the pulse period T . This reflects our ability to change the total
action in the system, and hence how classically our system
behaves (for larger k− values the quantum nature of the system
should be more apparent). Note that the effective Planck
constant is proportional to the ratio of the total classical action
of the system to h̄.

The natural experimental unit for momentum is that of
two photon recoils, 2h̄kL, and p/(2h̄kL) will henceforth be
referred to as the momentum in experimental units. We note
the relationship ρ/k− = p/(2h̄kL) and also define the quantity
φd = κ/k− = �effτp/8 as a dimensionless measure of the
physical kicking strength. Experimentally, it is easier to hold
this quantity constant, rather than κ , as T is varied as a constant
value of φd corresponds to constant pulse duration, standing
wave detuning and power (whereas κ is proportional to T ).

Our system is coupled to its environment via atomic
spontaneous emission events, which occur when the caesium
atoms absorb photons from the standing wave [2] and then
spontaneously re-emit the photons in random directions. We
characterize the level of this decoherence by the probability of
spontaneous emission per atom per kick, η. Given the large
detuning, i.e. �eff/δ � 1, this process may be modelled by
the following master equation for the density operator ŵ of the
system [3]

˙̂w = − i

k−
[Ĥ, ŵ] − η

α

N∑
n=0

f (τ − n)[cos2(φ̂/2), ŵ]+

+ 2
η

α

N∑
n=0

f (τ − n)

∫ 1

−1
du N(u)eiuφ̂/2

× cos(φ̂/2)ŵ cos(φ̂/2)e−iuφ̂/2, (3)

where N(u) is the distribution of recoil momenta projected
onto the axis of the standing wave, and [·, ·]+ denotes an
anti-commutator. Simulations of equation (3) are used for
comparisons with the experiment.

3. Momentum diffusion

We measure the total kinetic energy of the cloud after N
kicks, which depends on the initial energy of the cloud plus
the increase in the kinetic energy resulting from the kicks.
The amount of increase for kick number n is the momentum
diffusion rate, given by 2D(n) = 〈ρ̂2

n+1〉 − 〈ρ̂2
n 〉, where we

denote ρ̂0 = ρ̂(t ′ = 0), ρ̂1 = ρ̂(t ′ = 1), etc. For a kicked rotor
system with a sufficiently broad initial momentum distribution,
we expect D(0) = D(1) = κ2/4. The system then passes
through an initial quantum diffusion period lasting typically
for around five kicks [10], with a diffusion rate approximated
by the result of Shepelyansky (under the conditions k− � 1 and
κ � k−) [11],

Dq = κ2

2

(
1

2
− J2(Kq) − J 2

1 (Kq) + J 2
2 (Kq) + J 2

3 (Kq)

)
, (4)
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where Kq = 2κ sin(k−/2)/k−. Note that the classical diffusion
rate is also given by equation (4), but with Kq → κ (i.e.,
k− → 0).

Without decoherence, the system generally settles into a
localized state [16], but the loss of phase coherence produced
by the addition of spontaneous emission causes the system to
settle instead into a final steady-state diffusion regime, with
a late-time diffusion rate which may be approximated by the
formula [2, 10, 16]

D∞ =
∞∑

n=0

η(1 − η)n D0(n), (5)

where D0(n) is the diffusion rate at the nth kick for a kicked
rotor without decoherence. Essentially, this formula assumes
that dynamical correlations over particular time intervals which
give rise to the late-time diffusion rates are suppressed by a
factor equal to the probability that a spontaneous emission
occurs within that time interval. The correlations taken over a
set number of kicks give rise to the diffusion rates seen in
the kicked rotor without decoherence after that number of
kicks, which leads to the late-time diffusion rate being an
appropriate weighted average over the diffusion rates as the
kicked rotor ‘settles down’ [10]. Thus, the diffusion rates in
the first few kicks are essentially ‘locked in’ by the spontaneous
emission events, and we observe similar structure in the late-
time diffusion rates as we vary T to that observed in the
initial quantum diffusion rates. This phenomenon has been
confirmed by simulations of late-time diffusion rates [10], and
although it is not directly tested by the experiment described
here (since final energies are measured rather than diffusion
rates) our measurements do show the behaviour that is expected
if similar behaviour to that seen in the early-time diffusion
regime is being reproduced in the late-time regime.

The structure predicted in the initial quantum diffusion
rates as we vary T for constant φd, with diffusion rates
measured in experimental units, is particularly interesting. We
can express Shepelyansky’s formula in this regime as

D′
q = (φd)

2

2

(
1

2
−J2(K ′

q)−J 2
1 (K ′

q)+ J 2
2 (K ′

q)+ J 2
3 (K ′

q)

)
, (6)

with K ′
q = 2φd sin(4ωr T ). We then see that any structure in

the diffusion rates is periodic in T with period 2π/8ωr . (In fact,
from equation (5) this is also true for the late-time diffusion
rates.) We also see that the form of the structure depends solely
on the value of φd. Figure 1 shows the initial quantum diffusion
rate as a function of pulse period for varying values of φd. We
see the regular feature of a peak near the quantum resonance at
k− = 2π/8ωr (T = 60.4 µs), and we see increasing numbers
of enhanced diffusion peaks or resonances as we increase the
value of φd.

The classical diffusion rate can be similarly found in this
regime to be

D′
cl = (φd)

2

2

(
1

2
− J2(κ) − J 2

1 (κ) + J 2
2 (κ) + J 2

3 (κ)

)
, (7)

with κ = 8ωrT φd. The second set of curves in figure 1 shows
the classical rate for various φd. These rates oscillate around
the quasilinear value which in these units is (φd)

2/4, with the
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Figure 1. Theoretical initial momentum diffusion rates in the
quantum case (solid curve), D′

q as given by equation (6), and the
classical case (dotted curve), D′

cl in equation (7), in experimental
units of as a function of T for (a) φd = 3, (b) φd = 4.5, (c) φd = 6
and (d) φd = 7.5. The quantum resonance is seen in the quantum
diffusion rate at T = 60.4 µs.

oscillations increasing in frequency with φd. For any given φd

however, the structure in the classical diffusion rate is markedly
different from that seen in the initial quantum rate.

In the experiment, late-time energies were measured and
not initial diffusion rates. However, the diffusion resonances
discussed above are still observable. The existence of the same
structures in the late-time diffusion rates (in the presence of
decoherence) as those predicted in the initial quantum rates
has been verified using the simulations described later in this
paper. From the definition of the diffusion rate, the energy
after N kicks can be found by summing the diffusion rate at
each kick, that is

E ′(N) = 〈(p/2h̄kL)2〉
2

=
N−1∑
n=0

D′(n, T ). (8)

Therefore, with the initial and final diffusion rates both
displaying these structures, it follows that the energy at the
N th kick should also display them.

4. Experiment

The experimental set-up used was much the same as that used
previously in our quantum chaos investigations [2, 17], with a
few modifications. A standard six-beam magneto-optical trap
(MOT) was used to trap and cool approximately 105 caesium
atoms. The trapping laser frequency was set about 10 MHz to
the red of the 6S1/2(F = 4) → 6P3/2(F ′ = 5) transition. A
second (repump) laser was locked to the 6S1/2(F = 3) →
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6P3/2(F ′ = 4) transition to return those atoms lost to the
F = 3 ground state to the trapping cycle. After a 20 ms
cooling phase prior to kicking, the cloud had a temperature
of approximately 20 µK and a width of σcloud ∼ 270 µm in
its position distribution. Kicking of the cloud occurred for
up to 2 ms during the 10 ms free expansion phase, at the
completion of which the cloud was ‘frozen’ in space by the
molasses beams and imaged. The repumping beam was left
on during the kicking to prevent loss of atoms to the F = 3
ground state. The resultant heating effect was negligible for
our experiments.

A third laser was used to create a pulsed optical standing
wave across the cloud. A 150 mW laser diode was injection
locked with a frequency-stabilized external cavity laser, giving
a beam of up to 22 mW CW power at the MOT. For fast
switching the beam passed through a 80 MHz acousto-optic
modulator (AOM) in front of a single mode polarization
preserving optical fibre. Temporal modulation was provided
via the RF supply to the AOM, generating pulse shapes very
close to rectangular. The linearly polarized beam was then
collimated giving a beam radius at the cloud of 2σbeam = 1 mm.
Finally, to create a standing wave the beam was retroreflected
by a mirror outside the vacuum cell. The atoms experienced
a range of optical potential depths as the cloud’s width was
comparable in size to that of the laser beam. If φd,max

is the kicking strength along the beam axis then the mean
value was found to be φd,mean ≈ 0.77φd,max with a standard
deviation of 18%. In the following, φd will always refer to
φd,mean. The detuning of the kicking beam to the blue of
the F = 4 → F ′ = 5 transition was monitored as a beat
frequency of the superposition of the trapping and kicking
beams. Both the beam detuning and intensity were chosen
to give a desired φd while maintaining a constant spontaneous
emission rate. The range of φd examined in this way was from
φd = 3.3 to 6.6. Taking reflection losses at the cell windows
into account, over this φd range the Rabi frequency varied
from �/2π = 34–76 MHz with corresponding detunings of
δ45/2π = 315–740 MHz, thus δ � �,� was satisfied for all
φd values considered.

For a chosen φd the pulse length was held constant
(τp = 520 ns), while the pulse period was varied from
2.5 µs to just above the quantum resonance at T ≈ 60 µs.
Thirty kicks were delivered to the cloud for each pulse period.
The images of the expanded cloud were averaged over the
dimension perpendicular to the kicking beam to yield the
momentum distributions for the kicked cloud and the mean
energy E = 〈p2〉/2 was calculated for each distribution. High
momenta have a large effect on these energy values and as
this was where the signal dropped for the higher energy kicked
clouds, much care was taken to reduce the effects of noise. For
an experimental run involving a single φd value, the subtracted
background was an average from just before and after the run.
Any slight fluctuations in background level were accounted
for by defining the zero level for each momentum distribution
via an image taken just before commencement of the kicking
sequence, omitting the small cloud. The signal-to-noise ratio
was on average about 100:1 and for each value of T the
momentum distribution was measured five times. To minimize
the effects of long-term fluctuations in the kicking beam, one
fibre end was angle cleaved and the beam power was checked
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Figure 2. Initial momentum diffusion rates, D′, with constant φd

(dash–dotted curve) and the experimental spread in φd (solid curve)
in experimental units as a function of T for (a) φd = 3.3,
(b) φd = 5.0 and (c) φd = 6.6.

and readjusted several times throughout a run. These measures
reduced the fluctuations in φd from this source to ∼1%.

We now examine the causes of the experimental spread
in kicking strength and the effect of this spread on early-time
diffusion rates. Firstly, there is a spread in physical kicking
strengths due to the finite width of the kicking beam, which
results in atoms at different radial positions across the beam
interacting with laser fields of different intensity. The effect
of the spread in kicking strengths on the initial Shepelyansky
diffusion rates is easily examined and also applies to the late-
time energies. If ρ(r) is the two-dimensional cloud density
as a function of radius r , and φd(r) the distribution of kicking
strengths, then we define the diffusion rate for a given φd,max

as [7]

D̄(φd,max, T ) =
∫ ∞

0
D(φd(r), T )ρ(r)2πr dr, (9)

where D(φd(r), T ) is given by equation (6). Calculating
D̄(φd,max, T ) for a broad kicking beam with σcloud � σbeam,
corresponding to constant φd(r), reproduces the pronounced
structure as seen in figure 1 and in the simulations. But
calculating the diffusion rate with the 2:1 beam-to-cloud ratio
as used experimentally, so that φd,max = φd/0.77, gives a less
accentuated diffusion resonance structure. Figure 2 displays
these results for a few values of φd. Thus, a spread in φd

values creates an averaging effect which somewhat diminishes
the height of the diffusion resonance structure and shifts the
positions of the resonant peaks relative to the case for a single
φd value.

Secondly, a spread in φd values is also caused by atoms
in different magnetic substates of the F = 4 level coupling
to the higher-energy states with different transition strengths,
resulting in atoms in different substates experiencing different
kicking strengths. The combination of this effect with that
caused by the finite beam width can create a spread of φd

values which is as large as 20% of the meanφd value. In order to
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Figure 3. Quantum simulations with fixed φd (top) and the corresponding experimental results (bottom) giving the energy, E ′, after 30 kicks
as a function of pulse period with τp = 520 ns, η = 0.0125 for (a) φd = 3.3, (b) φd = 4.0, (c) φd = 5.0, (d) φd = 5.9 and (e) φd = 6.6.
Additional quantum simulations (middle, solid curve) take into account the spread in physical kicking strength φd, as do the analytical
classical results (middle, dotted curve). The energies are in experimental units and error bars for the experimental and simulation results are
shown but are very small.

account for this, we performed additional simulations in which
the φd value for each trajectory was chosen from a distribution
based on the 2:1 beam-to-cloud width ratio for our system
(assuming that each has a radial Gaussian profile). Similarly,
a random initial magnetic substate was selected for each
trajectory (assuming equal populations in all substates) and
φd was adjusted according to that substate’s relative transition
strength.

5. Experimental results

We have compared our experimental results with numerical
simulations of equation (3). The simulations are performed
using the method of quantum trajectories, as in [10].
The simulations reflect a system with an initial Gaussian
distribution in momenta of width σp/k− = σp/2h̄kl = 4 (this
corresponds to a cloud of temperature ≈20 µK). They also
take into account the effects of finite pulse widths, spontaneous
emission noise, and small amplitude fluctuations in the kicking
strength.

To take into account the unavoidable spread of φd values
in our experiments, simulations were also performed in which
the kicking strength for each trajectory was sampled from the
theoretical distribution of φd experienced by a spherical cloud
of atoms (see section 4), and the energy for each value of T
was taken to be the incoherent average of the energies over
all such realizations. The results of these simulations are
seen in the second row of figure 3. Comparison of the first
two rows shows that while the non-uniformity of the kicking
beam intensity makes the diffusion resonances somewhat less
distinct, the structure of interest is still clearly visible and thus
amenable to experimental investigation.

Comparison of experimental results with those from the
simulations (bottom and middle rows of figure 3 respectively)
shows good agreement between the two. The quantum

resonance at T ≈ 60 µs is seen to be present for all φd values.
Additionally, while a single broad peak similar to that seen by
d’Arcy et al [12] is found for φd = 3.3, for larger φd values a
more complicated structure is observed. This peak splits into
two peaks which then diverge from each other, whereupon a
third peak rises between them. The structure mirrors that in
the initial quantum diffusion rate as given by Shepelyansky’s
result in equation (6) and shown in figure 1.

There is still some discrepancy in energy values between
the experimental results and the additional simulations. For
φd = 5.9 and 6.6 the measured energies are overall much
lower than expected, while for all φd they are much larger
than in the simulations around the quantum resonance region
of T = 58–68 µs. The first problem is accounted for by
realizing that in recording the momentum distributions, at some
point signals at higher momenta fall below the noise level of
the CCD. Hence, the measured total energy of the cloud is
systematically lower than the true energy after kicking. For
larger φd, for which energies are higher in general, this problem
is particularly pronounced as more atoms lie in the wings of the
distribution. The discrepancy around the quantum resonance
(seen at 60.4 µs), where the energies do not fall as low as
expected to either side, currently remains unexplained, but
could be a systematic effect related to the larger pulse period
values in this region. Continuing investigations will hopefully
resolve this issue.

Overall, agreement between the experimental results and
the additional simulations is very good. Clear diffusion
resonance structure is evident and the amount of detail
increases with φd as expected. For comparison, the energies
for the classical system after 30 kicks were also computed by
assuming that the diffusion rate for the first two kicks is φd/4,
and for subsequent kicks is given by equation (7). They were
averaged over the same spread in φd values that was used in the
additional quantum simulations and are shown in the middle
row of figure 3. Note that the energies are larger than the
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quantum simulations, as is expected, and for φd = 5.9 and
6.6 go off the scale, oscillating around E ′ = 300 and 560
respectively.

The classical energies clearly exhibit very different
behaviour from those measured in the quantum system. The
difference becomes more marked at higher values of T
(i.e. when the system behaves more quantum mechanically),
where the oscillations in the classical energy decrease
in amplitude, whilst pronounced diffusion resonances and
quantum resonances are seen in the quantum system. This
can be contrasted with the results of Klappauf et al [13]
where, in both the classical and quantum systems, the energy
oscillates about the quasilinear value and only a relative shift
in the peak positions distinguishes the two regimes. The
striking difference between the quantum behaviour and the
expected classical behaviour in these experiments makes them
a thorough testing ground for the effects of decoherence on
the quantum kicked rotor. Indeed, preliminary investigations
into the effects of amplitude and period noise on these diffusion
resonances [18] suggest that quantum and diffusion resonances
are affected in different ways by the same type of noise.

6. Conclusion

We have presented experimental and simulation results
showing non-trivial behaviour in the late-time energy (and thus
diffusion rate) as the pulse period is varied for the quantum
kicked rotor. Very good qualitative agreement between the
results and simulations can be seen, and the relationship of the
observed structure to Shepelyansky’s formula for the initial
quantum diffusion rates is evident. Furthermore, we note that
the structure observable in the late-time energies agrees with
numerical findings that in a system subject to environmental
coupling a dependence of the late-time diffusion rate on the
initial quantum diffusion rate exists.

Investigations are currently under way to discover the
source of the remaining discrepancies between the simulations

and experimental results. We have also begun studies of similar
diffusion resonances found in the quantum kicked rotor with
the addition of amplitude noise on the kick strength and noise
on the period between kicks.
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