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Abstract. We discuss the theoretical description and numerical simulation of the effect of
noise and environmental coupling on the momentum distribution of the quantum δ-kicked
rotor in recent atom optics experiments. We investigate the transition between exponentially
localized and more nearly Gaussian momentum distributions and compare our simulations
with existing experimental results.
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1. Introduction

There has been a renewed interest in recent years in the
correspondence between quantum and classical mechanics
for systems which are classically chaotic. It is frequently
the case that the quantum dynamics of such systems are
dramatically different from their classical counterparts.
In the case of the δ-kicked rotor (DKR) or standard
map, a canonical example of a classically chaotic system,
the classical diffusion is completely suppressed by the
quantum dynamics, and momentum distributions become
exponentially localized [1]. The quantum DKR (Q-DKR)
has in recent years become accessible in atom optics
experiments [2], which makes this system a useful testing
ground for our understanding of the transition between
quantum and classical dynamics.

It is thought that decoherence [3] plays a significant role
in the quantum-to-classical transition in classically chaotic
systems [4, 5]. Any real quantum system is in fact an
open system coupled to some extent to the surrounding
environment and such couplings typically destroy the
quantum coherences on which phenomena such as dynamical
localization rely. Decoherence in the Q-DKR has been
addressed in various theoretical studies [6,7]. Coupling to the
environment, which can for example take the form of noise
in the potential, does typically lead to a continual increase
in the energy of the quantum system and much previous
work has focused on calculating the associated diffusion
rate. However, it is also of interest to investigate the effect

of decoherence on the exponentially localized momentum
distributions and the transition—if any—to the Gaussian
momentum distribution predicted by the classical standard
map. Recent experiments utilizing ultracold caesium atoms
have investigated the dynamics of the Q-DKR with various
forms of decoherence [8–12]. However, there is still much
room for theoretical analysis of the specific physical systems
realized by these experiments—in this work we mainly
consider the question of momentum distributions but our
methods would be suitable for more general theoretical
treatments of the experiments.

In our previous publication [8] we noted that for
the spontaneous emission rates used in our experiment,
the momentum distribution shapes remained exponential;
examples of these momentum distributions were published
in [9, 11]. The Austin group have observed momentum
distributions that are clearly not exponentially localized [10].
It is important to note, however, that the two results
are not necessarily inconsistent. The Austin group’s
spontaneous emission rate per kick (13%) was greatly in
excess of our highest rate of 4.6%. At the relatively
low spontaneous emission rates used in our experiment the
momentum distribution remains essentially exponential, at
least for the number of kicks investigated in our experiment.
Delocalization is reflected by a growing momentum variance
rather than by a transition from exponential to Gaussian
(or some other) lineshapes, at least for early times.
A similar behaviour has been found in the theoretical
investigation of a phase-modulated potential [13]. However,
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for sufficiently strong decoherence, there is also a transition
in the momentum lineshape from exponentially localized to
essentially Gaussian within the period of the experiment.
This transition, observed in the Austin group’s experiments,
is also clearly visible in our numerical simulations. Note that
since the effect of the spontaneous emission is essentially
perturbative it might be expected that the transition in the
shape of the distribution will eventually occur even for very
small spontaneous emission probability given a sufficiently
large number of kicks. In this work we focus on a fixed
number of kicks and investigate the transition as a function
of the spontaneous emission rate since very large numbers of
kicks are not achievable in the experiments.

2. The atom optics realization of the DKR

We consider an atom (transition frequency ω0) suspended
in a standing wave of near-resonant light (frequency ωl or
wavenumber kl). Both the Auckland [8] and Austin [10]
groups studied decoherence in the DKR by using laser-cooled
caesium atoms and so we will base our model of the atom
optics realization of the DKR on the caesium atom. In
this section we will neglect spontaneous emission and just
consider the coherent dynamics of the atom; the effects of
decoherence will be discussed in detail in the next section.
Under the assumption of large detuning compared with the
Rabi frequency, the resulting Hamiltonian governing the
coherent time evolution is

H = p2

2m
− h̄�eff

8
cos(2klx)

N∑
n=1

f (t − nT ) (1)

where �eff = �2(s45/δ45 + s44/δ44 + s43/δ43) and �/2 is
the resonant Rabi frequency corresponding to a single beam.
The terms in brackets take account of the differing dipole
transitions between the relevant hyperfine levels in caesium
(F = 4, F ′ → 5, 4, 3). The δ4j are the corresponding
detunings and, assuming equal populations of the Zeeman
sublevels, the numerical values for the s4j are s45 = 11

27 ,
s44 = 7

36 , s43 = 7
108 . The function f (t) represents the

shape of the kicks, which in this work is close to rectangular:
f (t) = 1 for 0 < t < τp and zero otherwise. In the limit
where τp → 0 we recover the DKR. The pulses repeat with
period T . It is convenient to convert to dimensionless units
and the resulting dimensionless Hamiltonian for the kicked
rotor is

H ′ = ρ2

2
− k cos(φ)

N∑
n=1

f (t − n) (2)

where φ = 2klx, ρ = 2klTp/m, t ′ = t/T and H ′ =
(4k2

l T
2/m)H ; the primes are subsequently dropped. The

Hamiltonian only couples momenta separated by 2h̄kl so
it is sometimes useful to consider the integer momentum
n = p/2h̄kl. The classical stochasticity parameter is κ =
�effωRT τp, with ωR = h̄k2

l /2m the recoil frequency and
k = κT /τp. The quantum features of the DKR enter through
the commutation relation [φ, ρ] = i k̄, where k̄ = 8ωRT .

In both experiments caesium atoms are initially cooled
in a magneto-optic trap (MOT) to a temperature of ∼10 µK.
Then the time-dependent periodic potential is generated by

pulsing a laser beam on and off. Finally the momentum
distribution after the last laser pulse is measured using a time-
of-flight technique with a ‘freezing molasses’ [2]. In our
experiments [8,9] the probability of a spontaneous emission
taking place during one of the laser pulses is increased by
tuning the laser more closely to the atomic resonance; the
depth of the potential is kept constant by shortening the length
of the laser pulses. In the Texas experiments spontaneous
emission is introduced by leaving on the molasses laser beams
which are responsible for the cooling of the atoms in the
MOT [10]. In this latter experiment the effect of noise is also
investigated by randomly changing the power of the laser
used in each successive laser pulse, which has the effect of
randomly modifying the depth of the potentials seen by the
atoms.

3. Theoretical considerations

We performed numerical simulations of the Q-DKR modified
in order to include the effects of noise and spontaneous
emission. Two important considerations in designing our
simulations were correctly modelling the experimental initial
state and taking advantage of the spatial periodicity of all
three models (unitary Q-DKR, Q-DKR with spontaneous
emission and Q-DKR with noise). The periodicity in each
case is that of the intensity of the standing wave or half
the wavelength of the light. In the experiments, the atomic
cloud after the laser cooling has a broad distribution in
position compared with the wavelength of the light and a
nearly Gaussian distribution in momentum. Thus the state
of atoms in the cloud may be approximated, at least near
the centre of the cloud, by a mixed state with a uniform,
and thus periodic, position distribution and the appropriate
Gaussian momentum distribution. We can normalize the
state over one period or half the wavelength of the light.
The resulting density matrix can be written as an incoherent
sum of momentum eigenstates and in our simulations we
randomly select an initial (pure) state for each trajectory from
this mixture of momentum eigenstates and average over these
initial states. These are essentially the same conclusions
about the appropriate initial state as reached in [14]. The
translational symmetry of the models means that the state
will always have the Bloch form exp(iqφ)uq(φ), where uq
has a period of λ/2 and q is the of the quasi-momentum. This
Bloch form will be preserved by the dynamics and indeed
all the dynamics except for spontaneous emission events
will preserve the quasi-momentum on each trajectory. The
periodic wavefunction uq may be propagated on a discrete
basis set appropriate for a periodic phase space where the
appropriate kinetic energy operator is a function of the quasi-
momentum. A fast Fourier transform (FFT) algorithm for
the propagation of the state vector then naturally enforces
the periodicity of uq .

In the case of spontaneous emission, the motional state
of the atom is coupled to an environment that is made
up of the internal electronic states of the atom and the
electromagnetic vacuum into which the atom spontaneously
emits. Typically though, the rates which characterize those
internal dynamics are larger than those that determine the
dynamics of the motional state. This difference of timescales
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gives rise to the familiar picture of atomic motion in an
optical potential, characterized in the semiclassical limit by a
conservative force, a friction force and momentum diffusion
due to spontaneous emission and fluctuations in the dipole
force [17, 18]. In this work we are interested in the full
quantum mechanical evolution of the motional state, which
will typically require consideration of some master equation
for the atomic motion in this same limit where the motional
dynamics are slower than the internal dynamics. In order to
model the system evolution with spontaneous emission in our
experiment we have performed Monte Carlo wavefunction
simulations of the master equation for the motion of a two-
level atom in a far-detuned optical standing wave [19]:

ρ̇ = − i[H, ρ] − η

α

N∑
n=1

f (t − n){cos2(φ/2), ρ}

+ 2
η

α

N∑
n=1

f (t − n)

∫ 1

−1
duN(u)eiuφ/2

× cos(φ/2)ρ cos(φ/2)e−iuφ/2, (3)

for which N(u) is the (suitably normalized) distribution of
spontaneous emission recoil momenta projected onto the
standing wave axis and α = τp/T . The probability of a
single spontaneous emission during one kick is labelled η.
This master equation is valid for large detunings for which
the saturation parameter �eff/δ 
 1; outside this regime
the force and momentum diffusion will be modified from the
values predicted by this master equation and there may be a
significant velocity-dependent cooling or heating force. In
our experiment, �eff/δ takes on a range of values 0.006–
0.25. The last term describes, fully quantum mechanically,
the momentum diffusion due to spontaneous emission during
the kicks. Spontaneous emission is most likely where
the standing wave is most intense, hence the cosinusoidal
variation of Lindblad operators. The first term describes the
motion of the atom in the potential provided by the light field.
Note that, because we are interested only in motion along the
standing wave, the recoil kick experienced by the atom due
to a spontaneous emission may take any value less than h̄kl.
The value of η can be modified relative to k by changing
the detuning of the laser frequency thus making spontaneous
emission a more or less significant factor in the dynamics.

It is worthwhile comparing the sources of momentum
diffusion in this master equation with the semiclassical
theory. Using standard techniques [15] it is straightforward
to derive a differential equation for the momentum variance
from the master equation (3)

d

dt
〈(!p)2〉 = η

2α
k̄2

N∑
n=1

f (t − n)(β〈cos2(φ/2)〉

+ 〈sin2(φ/2)〉) + · · · , (4)

where β = ∫
u2N(u) du is a constant of order unity

and where terms resulting from the Hamiltonian have
been suppressed. These two terms correspond to the
two contributions to the semiclassical momentum diffusion
coefficient in this low-saturation limit [17] and describe
the increase in atomic energy due to the coupling to the
environment. The suppressed terms result from the unitary
dynamics. The first contribution is associated with the recoil

kicks due to spontaneous emission and varies as the standing
wave intensity. The second contribution, which varies as
sin2(φ/2), is sometimes termed the reactive diffusion and
results from the interaction of the field gradient with the
atomic dipole fluctuations [17].

Our simulations of this master equation are based on the
work of Marte et al [16] and take advantage of the fact that
the master equation for spontaneous emission is still form
invariant under translations of half the optical wavelength.
The master equation is simulated through the well-known
technique of quantum trajectories. Between spontaneous
emission events the state-vector evolves according to a non-
Hermitian Hamiltonian. When the norm falls below a
randomly chosen value, a spontaneous emission is deemed
to have occurred and a collapse operator is applied to the
state, which is then normalized, and the process starts again.
It turns out that on each trajectory the quasi-momentum is
preserved between spontaneous emission events. After each
spontaneous emission a new quasi-momentum results and
this leads to an effective shift in the kinetic energy operator
for the subsequent evolution. In contrast to our earlier
simulations, the intensity dependence of the spontaneous
emission probability and the possibility of there being more
than one spontaneous emission per kick is taken into account.

The experiments are performed with caesium atoms and,
particularly for moderate detunings, the multi-level nature
of the transition will lead to departures from the simplified
master equation we have considered here. In particular,
transitions between the different Zeeman ground states may
occur on optical pumping timescales and lead to Sysiphus
cooling for example. These optical pumping timescales may
in fact be sufficiently slow that the ground states will have to
be included in the master equation explicitly, leading to an
effectively non-Markovian noise source where the direction
of spontaneous emission events is correlated with the history
of the occupation of the internal atomic ground states. In
the Austin experiment, the spontaneous emission probability
is obtained by turning on the molasses beam, which is
significantly closer to the atomic resonance than the kicking
beam and for which such transitions are certainly important.
This is evidenced by the cooling effect of the beams observed
when the system is not periodically kicked [10].

Another possible difference between the Austin [10] and
Auckland [8, 9] experiments is that spontaneous emission
occurs in the Austin experiment mainly during the free
evolution and in our experiment essentially only during the
kicks. To model this situation we used a master equation
for which the terms referring to the spontaneous emission
act continuously and are not pulsed with the kicking laser.
The contributions are rescaled in order to give the same
probability of spontaneous emission per kick, resulting in
the following master equation:

ρ̇ = − i[H, ρ] − η{cos(φ/2)2, ρ}
+ 2η

∫ 1

−1
duN(u)eiuφ/2 cos(φ/2)ρ

× cos(φ/2)e−iuφ/2. (5)

It should be noted that this disregards the effect of both
the friction force and the light pressure force due to the
molasses beams; however, such a treatment appears to
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be sufficient to reproduce the essential features of the
momentum distribution observed in the experiment. The
cooling dynamics and the light pressure force could be
included in a multilevel atom treatment employing the same
theoretical and numerical method, as in [16]. For the
parameters of the Austin experiment it turns out to make little
difference whether the spontaneous emission is during the
kicks or the free evolution. The essential difference between
the momentum distributions observed by the two groups is
the extent of the spontaneous emission—a maximum of 13%
per kick for the Austin experiment and 4.6% for the Auckland
experiment.

In our experiment the spontaneous emission probabili-
ties are altered by changing the detuning of the kicking beam
and the length of the kicks. The experiments with the small-
est spontaneous emission probability have the longest pulse
lengths and as a result for the 0.76% case, as noted in [8],
there is a KAM (Kolmogorov–Arnol’d–Moser) boundary at
n � 87. By comparing our simulations for this value of α
and for the smaller value appropriate for the 4.6% case we
find that this boundary has the effect of weakly suppressing
the energy growth for this lowest value of spontaneous emis-
sion. On the other hand the Austin experiment is carried out
at a constant value of α since the kicking beam itself has no
role in producing the spontaneous emission.

Unlike the phase space of a rotor which is truly
periodic, the atom optics experiments in fact realize a kicked
particle for which the discrete bands are supplemented by
a continuous range of quasi-momenta. This can lead to
qualitatively different behaviours of the two systems; see for
example [14]. Cohen has found that certain forms of noise
when applied to the kicked particle lead to non-perturbative
energy growth [7, 20], which does not occur when the same
noise is introduced to the Q-DKR proper. In Cohen’s
work a random linear potential (which certainly breaks the
translational symmetry of the model) is applied along with
each kick and the resulting energy growth scales as the cube
root of the noise power (in the case of spontaneous emission
η may be identified as characterizing the noise power). As
noted in [8] there is no evidence of such a non-perturbative
dependence on the spontaneous emission probability in the
experiments or in the simulations employed there. This is true
also of our new more rigorous numerical calculations. In [20]
it is suggested that this non-perturbative energy increase
occurs as a result of arbitrarily small changes of momentum
occurring as a result of the noise source. However, such
small momentum changes are certainly present in our model
as a result of spontaneous emission since the projection
of the wave vector of the spontaneously emitted photons
onto the standing wave axis means that any change of
momentum smaller than h̄kl is possible as a result of a
spontaneous emission event. Note that in our simulations
the quasi-momentum is treated rigorously as a continuous
degree of freedom and thus any non-perturbative behaviour
should not be hidden by discretization of the phase space.
This would appear to require a modification of the reasons
suggested in [20] for the origin of this non-perturbative
behaviour. Perhaps the fact that the momentum kicks due
to spontaneous emission have a typical size of the order of
h̄kl is sufficient to prevent the non-perturbative behaviour

even though spontaneous emission results in some arbitrarily
small momentum kicks. On the other hand the absence of this
effect could well be related to the fact that the translational
symmetry of the model is preserved even in the presence of
spontaneous emission, an explanation more in line with that
given in [7]. If this is the case, the observation of this non-
perturbative dependence of the energy on the noise power
would require a noise source, which introduces at least one
new spatial periodicity to the problem. Such an experiment
would also require strategies for numerical simulation rather
different from the ones employed here.

In the noise experiments performed by the Austin group,
the kick strengths kn for each kick are randomly chosen
from a uniform distribution about the mean value k. The
range of possible values of kn is expressed as a percentage
of k and this determines the strength of the resulting noise.
In simulating these experiments, different random kick
sequences were determined and the resulting sequence of
Hamiltonians applied to initial pure states drawn from the
thermal ensemble.

4. Results

We previously reported on our experimental measurements of
the growth of the atoms’ kinetic energy with time [8,9]. This
was done for κ = 12.5, k̄ = 2.1 and spontaneous emission
rates of η = 0.76, 2.3 and 4.6% per kick. A picture of the
characteristic exponentially shaped momentum distribution
was also presented for the η = 0.76% example [9] and
for all three levels of spontaneous emission in [11]. The
spontaneous emission introduces decoherence to the Q-
DKR which results in quantum diffusion [8], or momentum
diffusion after the quantum break time. For the levels
of spontaneous emission and the number of kicks in our
experiments the lineshapes remain essentially exponential in
shape. So delocalization emerges through an increase in the
momentum variance and not a change in the character of the
lineshape, at least over 100 kicks. Experimental limitations
prevent the measurement of lineshapes for kick numbers
in excess of ∼100. However, for stronger spontaneous
emission, such as in the Austin experiment, the shape of the
momentum distribution itself is modified.

Dynamical localization is characterized by a constant
limiting energy (absence of classical diffusion) and
exponential momentum distributions. These results indicate
that localization is destroyed in two steps in the presence
of spontaneous emission. At low noise levels the energy
continues to grow with each kick while the momentum
distribution remains exponential. This destroys localization
in the sense that the energy now increases without bound.
The second step of this process is the change in momentum
distribution from exponential to Gaussian which takes place
at higher noise levels or later times. To highlight this
transition in the momentum distribution we present, in
figure 1, theoretical momentum distributions for spontaneous
emission rates of 0.76, 2.3 and 13% after 100 kicks. The
values of κ and k̄ are those of our experiment and the
spontaneous emission takes place during the kicks. For
clarity, this graph is plotted at constant kick length α for
the different values of η. For our experimental values of α,
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Figure 1. Momentum distributions from a Monte Carlo
wavefunction calculation after 100 kicks for κ = 12.5,
α = 0.0045, k̄ = 2.1 and spontaneous emission rate per kick of
η = 0.76% (solid), 2.3% (dot–dashed) and 13% (dashed). The
lineshapes undergo a transition from exponentially localized to
nearly Gaussian. To highlight this the crosses indicate a
least-squares quadratic fit of the log of the distribution for
η = 13%.

phase space boundaries at n � 87 modify the wings of the
momentum distribution for the lowest rate of spontaneous
emission η = 0.076%. At the lower spontaneous emission
rates the distributions quickly become nearly straight lines
on this log–linear plot, although both are to some extent
rounded near zero momentum, partly as a result of the
width of the initial thermal momentum distribution. This
is consistent with the essentially exponentially localized
momentum distributions observed by the Auckland group [9,
11] at low rates of spontaneous emission. We see that for the
13% spontaneous emission rate, the momentum distribution
is significantly different, appearing to be parabolic on the log–
linear plot, indicating a nearly Gaussian distribution. Indeed
a least-squares fit to a quadratic gives a very much lower error
than a fit to a line and this fit is also plotted in figure 1. The
shape of this distribution appears to be very similar to the
distribution reported for this level of spontaneous emission
by the Austin group [10].

The evolution of momentum distributions with the
number of kicks is also of interest and was reported by
the Austin group. A direct comparison with their results
may be made by comparing the evolution of the momentum
distributions shown in figure 2, which are calculated for the
published parameters of the Austin experiment, with those in
figure 1(c) of the erratum of [10].

Figure 3 plots the increase in energy for the various
values of spontaneous emission. For the lower rates
of spontaneous emission these values are in quantitative
agreement with our earlier theoretical and experimental
results [8]. The growth of energy occurs even when the
shape of the momentum distribution is relatively unaffected
by the decoherence. The diffusion rate that is expected due
solely to the coupling to the environment (as described by
equation (3)) is of the order of ηh̄2k2

l /m per kick, or in
the units of the figure η/4 per kick. The observed and the
calculated diffusion rates are much greater than this, which
implies that it is not simply the energy absorbed from the
environment through light scattering that is responsible for
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Figure 2. Momentum distributions from a Monte Carlo
wavefunction calculation for κ = 11.9, α = 0.0141, k̄ = 2.1 and
spontaneous emission rate per kick of η = 13% after 17
(dot–dashed), 34 (dashed), 51 (dotted) and 68 (solid) kicks.
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Figure 3. Kinetic energy as a function of the number of kicks
from a Monte Carlo wavefunction calculation for κ = 12.5,
α = 0.0045, k̄ = 2.1 and spontaneous emission rate per kick of
η = 0% (dotted), 0.76% (solid), 2.3% (dot–dashed) and 13%
(dashed). Energy diffusion takes place even when the momentum
distributions are little changed.

the diffusion. The decohering effect of the coupling to the
environment is the most significant cause of the increase in the
atomic kinetic energy compared with the unitary evolution.

It can be seen from figure 3 that the growth of energy at
long times is linear with the number of kicks. As discussed
in [7, 8] there is a simple analytic estimate of this long-time
diffusion rate D∞:

D∞ = ηN∗D0

1 + ηN∗ (6)

where D0 is the short-time diffusion coefficient, which is
closely related to the classical diffusion, and N∗ is the
crossover (or break) time. This formula indicates that for
low levels of spontaneous emission the long-time diffusion
increases linearly with η and that it saturates for stronger
noise. In figure 4 D∞, calculated from our simulations, is
plotted for various values of η and compared with the value
obtained from equation (6). As in our earlier work [8] our
new simulations give long-time diffusion rates which agree
very well with this formula for appropriate values ofD0, N

∗.
The behaviour of the Q-DKR in the presence of noise in

the kicking strength is qualitatively very similar. Figure 5
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Figure 4. The long-time diffusion D∞ calculated from Monte
Carlo wavefunction simulations for κ = 11.9, α = 0.0045,
k̄ = 2.08 and various rates of spontaneous emission (crosses). The
long-time diffusion predicted by equation (6) is plotted for
comparison with D0 = 10, N∗ = 13.7 (solid curve).
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Figure 5. Kinetic energy as a function of the number of kicks
from numerical simulation with noise in the kicking strength for
κ = 12.8, α = 0.0141, k̄ = 2.1 and noise of 0% (dotted), 5%
(solid), 10% (dot–dashed) and 25% (dashed). These plots
represent averages over 20 realizations of the noise process.

plots the kinetic energy as a function of the number of
kicks for a range of noise strengths using the parameters
of the Austin experiment. Even weak levels of noise
lead to diffusion. With increasing levels of noise there
is also a transition from exponentially localized to nearly
Gaussian momentum lineshapes: figure 6 plots momentum
distributions after 68 kicks for the same parameters. This
is very similar to the behaviour of the lineshapes under
spontaneous emission as in figure 1. The evolution of
the momentum distribution for a noise level of 25% is
shown in figure 7. These momentum lineshapes appear
to be very similar to the ones found experimentally by
the Austin group. Again our theoretical calculations are
sufficient to reproduce the qualitative behaviour of the Austin
experiments; the energy against time graphs do not, however,
appear to be in quantitative agreement. This could be due
to a number of reasons, the simplifications inherent in our
current simulations or an imperfect match to the experimental
conditions.
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Figure 6. Momentum distributions after 68 kicks from numerical
simulation with noise in the kicking strength for κ = 12.8,
α = 0.0141, k̄ = 2.1 and noise of 2.5% (solid), 10% (dot–dashed)
and 25% (dashed). Again, the lineshapes undergo a transition
from exponentially localized to nearly Gaussian. The crosses
indicate a least-squares quadratic fit of the log of the distribution
for the 25% noise level.
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Figure 7. Momentum distributions from numerical simulation
with noise in the kicking strength for κ = 12.8, α = 0.0141,
k̄ = 2.1 and 25% noise after 17 (dot–dashed), 34 (dashed), 51
(dotted), and 68 (solid) kicks.

5. Conclusion

In summary, the atom optics manifestation of the Q-
DKR offers a unique and pristine environment for studying
quantum chaos and decoherence. Much information about
the system can be gained through measurements of the kinetic
energy growth of the ensemble. However, the shape and
character of the momentum distributions is also informative
and their observation will continue to be utilized in future
quantum chaos experiments. Moreover, there is a need for
a more detailed understanding of the specific dynamics of
these atom optics experiments and particularly of the nature
of the transition from essentially quantum mechanical to
essentially classical behaviour. Here we have discussed
one approach to the simulation of the experiment based
on Monte Carlo wavefunction simulations and a simple
initial application of it to a question of relevance to recent
experiments. Although we have considered the atomic
motional dynamics in a simplified situation these simulations
may be straightforwardly generalized to include the full
dynamics of the internal state of the atom also.
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These calculations have been applied to the specific
question of the observed behaviour of the atomic kinetic
energy and momentum distributions in the presence of
spontaneous emission and of noise in the parameter regimes
of the experiments performed by our group [8, 11] and
also by the Austin group [10]. We have found that
for low levels of spontaneous emission and early times
there is a linear rate of increase of kinetic energy without
any essential modification of the momentum distributions
from those observed for the unitary dynamics. Similar
theoretical results were found in the case of a modulated
phase potential [13]. For higher levels of noise or longer
times the momentum distribution undergoes a transition from
exponentially localized to essentially Gaussian. Taking into
account the different parameter regimes of each experiment
this appears to be in agreement with the experimental results
of both groups. The Austin experiment observes qualitatively
similar behaviour for both spontaneous emission and a
noisy potential and this is again confirmed by our current
simulations. Future applications of these techniques could
include an investigation of the effect of the parameters κ, k̄
and of the noise statistics on the behaviour observed here and
in the experiments, particularly for values of these where the
classical model predicts anomalous diffusion [21].

The experiments of both groups have demonstrated
that decoherence, whether from spontaneous emission or
noise, can restore qualitatively classical behaviour to the
Q-DKR. The main features of the classical model, energy
diffusion and Gaussian momentum distributions are both
observed quantum mechanically as long as the noise strength
is sufficiently strong. However, until the noise level is very
high [12] there is no detailed correspondence in that, for
example, the diffusion rate obtained is not that predicted
classically. Moreover the levels of decoherence required
in the current experiments to lead to apparently classical
behaviour are rather large. A fair comparison between the
quantum mechanical and classical theories must compare
the master equation to a classical DKR with noise [5] for
which there is, in any case, extra energy diffusion. At
the current levels of noise the classical dynamics of such
a noisy DKR are significantly different from the noiseless
case. This is perhaps unsurprising in that the experiments
operate in a regime in which k̄ is rather large, the regime
termed ‘moderate h̄’ in [6]. In this regime, the effect of
noise is perturbative, the coherence time of the system in
the presence of noise being much longer than the quantum
break time [7]. For a sufficiently large rotor, and thus
small k̄, there should however be a sharper transition to
classical behaviour in which the classical diffusion rate is
recovered even for noise strengths which have a negligible
effect on the classical DKR [6]. This regime deserves further
investigation both experimentally and theoretically if it is
to be established that decoherence is sufficient to lead to

complete correspondence between the quantum mechanical
and the classical descriptions of the DKR. Another open
question is suggested by the qualitative similarity of
thebehaviour of the Q-DKR in the presence of spontaneous
emission and of noise. It should be the case that the roughly
classical behaviour results simply from the loss of quantum
mechanical coherence due to a weak coupling of the rotor,
or other chaotic system, to the external world. The details
of this coupling should not greatly affect the behaviour
of the system. At least for the noise models so far used
experimentally, this would appear to be the case. However, a
more general understanding of the properties of the coupling
that are required to restore classical behaviour is important
for future investigations in this field.
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