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3 INFN, Sezione di Pisa and/or Università di Pisa, Pisa, Italy
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Abstract
As they take data and improve their sensitivities, interferometric gravitational
wave detectors will eventually detect signals emitted by inspiralling compact
binary systems. Determining the sky position of the source will require that the
signal be recorded in several detectors. The precision of the source direction
determination will be driven by that of the time-of-flight measurements between
detectors, and ultimately by the timing precision at the level of each detector.
The latter is limited by the noise of the detector and the use of template banks,
which introduce some mismatches between the parameters of the signal and
the parameters of the template used to detect it. The standard way for signal
timing is based on referring to the end time of the signal. In this paper we show
that this is not an optimal choice and the timing precision can be improved
referring to a time when the signal crosses some reference frequency, whose
optimal value depends on the detector sensitivity.

PACS numbers: 04.80.Nn, 95.55.Ym, 07.05.Kf

(Some figures in this article are in colour only in the electronic version)

Introduction

Around the world, several interferometric gravitational wave detectors are now being operated
and are taking data at or close to their design sensitivities. Further upgrades to improve the
sensitivity of those detectors are planned. Eventually a time will come when this network of
detectors will be able to record gravitational wave signals coincidently in several detectors.

Among the classes of potential signals, we consider in this paper the signals emitted
through the last stages of the inspiralling phase of compact binary systems. Those signals are
expected to appear as chirps sweeping through the frequency bandwidth of the detectors. The
possibility of modeling accurately the waveform emitted by a source of known parameters
allows us to use matched filtering to search for such signals. As the source parameters are not
known a priori, waveform families—called template banks—are used to sample the parameter
space.

Estimating the sky position of a source usually requires detecting the signal in at least
three differently located detectors, and involves measuring the signal time of flight between
the detectors. Such a measurement is limited by the precision with which the time of arrival
of the signal at each detector can be determined. The uncertainties in this measurement arise
from the mismatch between the parameters of the signal and the triggering template, which
causes the template and true signal not to overlap perfectly and results in some timing errors.
This will happen even if the template bank provides a very fine sampling of the parameter
space, as detector noise will cause random excursions across the template bank.

The time which is most straightforwardly extracted from a matched filtering procedure
is the arrival time of the signal, namely the time when the signal crosses some minimum
frequency fmin corresponding to the detector bandwidth lower frequency. It is well known
however [1] that the arrival time is very sensitive to parameter mismatch between signal and
template, and the precision can be improved considering the signal end time, i.e. the time
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Figure 1. Timing resolution obtained on simulated Virgo data, using the signal end time, as the
difference between the estimated and true values. Left: with an exact template. Right: with a
template bank. Both distributions exhibit a small but statistically significant bias. No attempt has
been made to correct this bias as it is approximately the same in all detectors and vanishes when
the time differences—which are the relevant quantities—are taken.

when the signal reaches its maximum frequency fmax. In practice, the end time is obtained by
extracting the arrival time from the matched filtering procedure, and adding the duration of the
triggering template. In this paper we show that the timing precision can be further improved
by considering the time when the signal crosses some reference frequency lying somewhere
between fmin and fmax. To do so, we use simulated data featuring the LIGO–Virgo network
and including astrophysical inspiral signals. Those data were generated in the framework of
the joint LIGO–Virgo working group in preparing for joint searches [2].

This paper is organized as follows. In section 1 we focus on the timing precision at the
level of individual detectors, introduce the reference time and compare the accuracies which
can be obtained with various methods. In section 2 we extend the results of section 1 to the time
of flight of a signal between detectors. Finally in section 3 we apply the results of section 2
to better estimate the sky position of the source of a signal.

1. Single detector timing precision and reference time

In this section we consider the timing precision at the level of the individual detectors in the
LIGO–Virgo network. We use simulated data produced to prepare joint LIGO–Virgo searches.
They consist of 24 h of data with noise at the design sensitivities of the instruments, and
145 2.0 post-Newtonian inspiral signals (called injections) generated with individual star
masses uniformly distributed between the values 1, 1.4, 2 and 3 solar masses, thus roughly
sampling the neutron star mass parameter space, and originating from two galaxies at 16 and
10 Mpc.

Matched filter searches were performed on those data, and in the following we consider
injections detected with a signal-to-noise ratio (SNR) of at least 6, which is the case of about
one half of the injections.

1.1. Timing precision with end time

We review here the results obtained using the signal end time to measure the time of the
detected injections. In figure 1 we compare the timing resolution for injections detected in the
Virgo data in two different cases: the left plot was obtained by performing a matched filter
analysis with exact templates (i.e., with masses equal to the injection parameters) while the
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Figure 2. Density of squared SNR as a function of frequency for a [1.4–1.4] M� inspiral signal in
the Virgo detector at design sensitivity.

right plot was obtained by performing a matched filter analysis with a template bank generated
over the [1–3] M� mass range with a minimal match of 95%.

In the exact template case, the resolution is limited by the statistical fluctuations due to
the noise, and by the fact that the data are processed as discrete time series sampled with a
finite frequency, here 4 kHz. (No attempt was made here to interpolate the SNR time series to
improve the determination of the maximum position in time.) In the template bank case the
resolution is worse by about a factor of 3 and is limited by the parameter mismatch between
the signal and the template which detected the injection.

Neither of these resolutions are absolute results. They both depend on the SNR of the
events and in the second case depend on the density of the template bank, driven by the minimal
match used. They nevertheless serve our purpose which is to recall how timing resolution is
affected by parameter uncertainties inherent to a search based on a template bank. In the next
section we discuss how this effect can be mitigated.

1.2. Timing precision with reference time

The reason why detecting a signal with a mismatched template results in some timing error
is that the phase evolution and the time it takes to sweep through the detector bandwidth are
different for the template and the true signal. The maximization involved in the matched
filtering procedure finds how the template should be shifted with respect to the true signal to
get the best overlap between the two signals, quantified in terms of SNR. However the SNR
does not accumulate uniformly across the detector bandwidth (see figure 2) and therefore the
matched filtering selects a particular template and a particular arrival time to best overlap
the signal in some frequency range which matters for the SNR. On the other end, the phase
difference resulting in a timing error accumulates across the full frequency band. Hence the
idea that referring the timing to some reference frequency in the high SNR density region
could improve the resolution. This is illustrated in figure 3.

We therefore introduce a reference time tref,fS
at some reference frequency fS defined as

tref,fS
= t0 + Tf0→fS

, (1)

where t0 is the time when the signal crosses the analysis minimum frequency f0, measured as
the time when the correlation between the data stream and the best-matching template reaches
a maximum, and Tf0→fS

is the time it takes for an inspiral signal with the template parameters
to sweep from the frequency f0 to the reference frequency fS . With this notation, the standard
end time can be rewritten as tref,fmax with fmax being the signal maximum frequency.
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Figure 3. This figure illustrates what happens in the matched filtering maximization process that
makes the reference time a better estimator for signal timing. It is derived from a concrete example
taken from the simulation that was performed for this study, where a [1.4, 1.4]M� injection was
detected by a [1.153, 1.712]M� template in the Virgo data. The two signals—true waveform as
dashed line and mismatched template as solid line—are drawn showing from left to right snapshots
at 30 Hz, 100 Hz, 170 Hz and at the end of the signal. On the top figures, the signals are drawn
both starting at the same time and phase at the initial frequency of 30 Hz. This illustrates simply
how the phase evolution differs for the two signals, and especially the fact that the duration of
the mismatched template is significantly different from the duration of the true waveform. The
optimization involved in the matched filtering procedure however allows for some time and phase
offsets between the template and the true signal when maximizing the SNR. In other words, the
template is translated and rotated in a way that leads to the best match with the true signal in
terms of SNR, i.e. in the frequency band where the detector sensitivity is the best. The result of
this optimization is shown in the bottom figures where a time delay and a phase offset have been
applied to the mismatched template—using the actual values coming out of the analysis. The
snapshot at 30 Hz shows that the arrival time for the template differs significantly from the true
signal arrival time—this illustrates the well-known result that the arrival time is a poor estimator
for signal timing. The snapshot at the end of the signal illustrates that the end time is a better
estimator than the arrival time, but still differs from the true end time by about 0.4 ms in this case.
The snapshots around 100 Hz and 170 Hz show that at these frequencies the phase evolution of
the template matches that of the signal quite well, explaining why timing the signal at a reference
frequency in this region would give a better result. Again the fact that the template follows closely
the true signal in the intermediate frequency region does not happen by chance but because this is
where the detector is the most sensitive, therefore ‘aligning’ the two signals here would lead to the
best SNR.

We then investigate the quality of tref,fS
as a timing estimator as a function of the reference

frequency fS . For each value of fS , we build the distribution of the error in tref,fS
(as the

difference between the value reported by the template and the true signal value) and extract the
standard deviation of this distribution, which we plot against fS in figure 4, for the injections
detected in each of the H1, L1 and Virgo detectors. The error on each point is computed as
the distribution standard deviation divided by

√
2(N − 1) where N is the number of injections

entering the distribution.
The dependence of the reference time precision with fS is such that for large values of

fS it tends as expected toward the precision obtained with the end time, and exhibits a broad
minimum around a frequency of 160 Hz, where it comes close to the value obtained with the
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Figure 4. Evolution of the precision obtained with the reference time as a function of the reference
frequency fS , for the injections detected in each of the L1, H1 and Virgo detectors. The dashed
line indicates the precision obtained with a template bank and the end time. The solid line indicates
the precision obtained with exact templates. The error bars on those lines are not shown as they
are correlated to the error bars on the points.

Table 1. This table lists the optimal precision σopt obtained using the reference time at the optimal
fS frequency. The optimal precision is compared to the precision σstd obtained with the end time
and a template bank built with a minimal match of 95% and to the precision σexact obtained using
exact templates. Since the resolution depends on the SNR of the events, the average and maximum
values of the SNR for the detected injections are listed for each detector.

Detector L1 H1 Virgo

Mean (max) SNR 10.9 (26.7) 10.7 (28.5) 7.3 (20.8)
of detected injections

Optimal fS (Hz) 155 ± 20 160 ± 20 170 ± 40
σexact (ms) 0.39 ± 0.03 0.38 ± 0.03 0.30 ± 0.02
σopt (ms) 0.47 ± 0.04 0.43 ± 0.03 0.48 ± 0.04
σstd (ms) 1.61 ± 0.12 1.18 ± 0.09 0.79 ± 0.06

exact template analysis. This demonstrates that the timing uncertainties arising from the use
of a finite density template bank to sample the signal parameter space can be mitigated using
a reference time at a frequency where the SNR density is high.

These results are summarized in table 1. The improvement brought by the optimal
reference time precision over the precision obtained with the end time is about a factor of 3 on
LIGO data, and a factor of 1.6 on Virgo data. The optimal reference time precision approaches
the precision obtained with exact templates within a factor of 1.2 on LIGO data and a factor
of 1.6 on Virgo data.

In general we expect the optimal reference frequency to be mass dependent as the total
mass of the binary system affects the frequency evolution of the signal. The frequency
dependence of the reference time precision shows however a broad minimum; therefore using
a fixed value for the reference frequency should result in a small loss of optimality for a fairly
large range of masses. It would however be straightforward to use a mass-dependent reference
frequency and this would probably be needed if searching for binaries with a total mass large
enough to significantly shift the SNR density down to lower frequencies.

It should be noted that using the reference time reduces the correlation between the chirp
mass error and the time error and therefore mitigates the effect of detecting a signal with a
slightly mismatched template, but does not improve the precision on the chirp mass itself,
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Figure 5. Evolution of the time-of-flight precision obtained with the reference time as a function
of the reference frequency fS , for the injections detected in all of the H1, L1 and Virgo detectors.
The dashed line indicates the precision obtained with a template bank and the end time. The solid
line indicates the precision obtained with exact templates. The error bars on those lines are not
shown as they are correlated to the error bars on the points.

Table 2. This table lists the optimal time-of-flight precision σopt obtained using the reference time
at the optimal fS frequency. The optimal precision is compared to the precision σstd obtained with
the end time and a template bank built with a minimal match of 95% and to the precision σexact
obtained using exact templates. Since the resolution depends on the SNR of the events, the average
SNR value of the injections detected in coincidence is listed for each detector.

Detector L1 H1 Virgo

Mean SNR 12.1 12.6 11.6
of detected coincidences

Detector pair H1-L1 H1-V L1-V
Optimal fS (Hz) 155 ± 20 180 ± 40 155 ± 40
σexact (ms) 0.26 ± 0.03 0.38± 0.04 0.44 ± 0.05
σopt (ms) 0.52 ± 0.04 0.50 ± 0.05 0.57 ± 0.06
σstd (ms) 1.34 ± 0.14 1.12 ± 0.12 1.10 ± 0.11

which remains unchanged. A related comment is that in the case when the exact templates are
used, using the reference time or the end time is equivalent.

2. Network time-of-flight precision

In this section we focus on the precision of the time of flights measured between detectors of
the network. This follows quite straightforwardly from the results presented above. We now
consider the simulated signals detected with coincident times in the three detectors (there are
47 such triple coincidences out of the 145 injections). For those, and for each detector pair,
we compare the precision which can be obtained taking the difference between the reference
times measured at the two detectors, as a function of fS , to the accuracies which would be
obtained using the end time or exact templates.

The fS dependence of the time-of-flight precision is shown in figure 5, and the results are
summarized in table 2. The reference time at the optimal fS brings an improvement of about
a factor of 2 in the time-of-flight accuracies with respect to the end time.
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Figure 6. Estimated source direction for the injections simulated as originating from galaxy NGC
6744 (the triangle at the crossing of the dashed lines indicates the true source position). Left:
direction estimated using the end time. Right: direction estimated using the reference time at
fS = 160 Hz.

3. Consequences on source direction estimation

In this section we show the improvement in the source direction reconstruction which can
be derived from the improvement in the time-of-flight precision brought by the reference
time. Obviously one needs to use the same reference frequency to measure the times of flight
between all detector pairs. Since the optimal reference frequency depends on the sensitivity
and is therefore different for Virgo and the LIGO detectors, a common value will inevitably
be sub-optimal for some of the detectors. However the resolution shows a broad minimum
around the best reference frequency and therefore one should be close to optimal using a
common reference frequency of 160 Hz.

Here we consider, among the signals detected coincidently in the three detectors, the 30
injections which were simulated as originating from the galaxy NGC 6744 distant by 10 Mpc
and located at a right ascension of 286◦ and a declination of 64◦. For those injections,
the source direction can be estimated—using a χ2 minimization fit—from the time delays
measured between the detectors. The minimized quantity is

χ2 = [�tHL − �t ′HL(m1,m2, α, δ, t0)]2

σ 2
+

[�tLV − �t ′LV(m1,m2, α, δ, t0)]2

σ 2
, (2)

where �tHL and �tLV are the measured time delays between the Hanford and Livingston
detectors and between the Livingston and Virgo detectors (using either the end time or the
reference time). The �t ′ are the expected time delays assuming the source has some mass
parameters m1 and m2, a direction (α, δ) and the signal reaches the Earth at time t0 (which
does not need to be determined with great precision). The �t ′ are computed from the apparent
longitude of a source located at (α, δ) at time t0. The error parameter σ was set to a value of
1 ms. In this equation, �tHL,�tLV and t0 come out of the analysis, as do m1 and m2 (taken as
the parameters of the template giving the highest SNR). The only free parameters are α and δ

which can be estimated by minimizing χ2.
In figure 6 we compare the direction precision obtained from time delays based on the

end time and the precision obtained from time delays based on the reference time at 160 Hz.
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As expected, the improved timing resolution with the reference time directly translates into an
improved precision for the source direction estimation.

4. Conclusion

In this paper we have shown how the timing of inspiral signals can be improved using, instead
of the signal end time, a reference time at a frequency located in the region where the signal
SNR density is high. The quantitative results depend on the particular parameters of the
present study—especially through the SNR of the simulated events and the minimal match
used to generate the template bank. We however believe that they are representative of the
situation that a network of first generation interferometric gravitational wave detectors could
face. We have also shown how one can take advantage of the improved timing precision
to better reconstruct the source position for a signal found coincidentally in the detectors
of the LIGO–Virgo network. We hope this is a simple way to approach the best direction
reconstruction which can in principle be achieved with more sophisticated methods based on
various flavors of coherent analysis [3, 4].

We expect it will be straightforward to implement the use of the reference time in actual
analysis pipelines as the only change to the analysis is to introduce a delay in the definition
of the signal time. As this delay depends only on the chosen reference frequency and the
template mass parameters, this is a simple change to do.

In future work it would be interesting to check how the reference time behaves when
one varies the model used to compute the waveforms and the injections are searched for with
mismatched template families, which leads to further timing errors. Since signal models
usually differ most at the end of the signal, one could hope that using the reference time would
bring a significant improvement, but further study will be needed to investigate this.
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