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Abstract
In this paper we present a Bayesian parameter estimation method for the
analysis of interferometric gravitational wave observations of an inspiral of
binary compact objects using data recorded simultaneously by a network of
several interferometers at different sites. We consider neutron star or black
hole inspirals that are modeled to 3.5 post-Newtonian (PN) order in phase and
2.5 PN in amplitude. Inference is facilitated using Markov chain Monte Carlo
(MCMC) methods that are adapted in order to efficiently explore the particular
parameter space. Examples are shown to illustrate how and what information
about the different parameters can be derived from the data. This study uses
simulated signals and data with noise characteristics that are assumed to be
defined by the LIGO and Virgo detectors operating at their design sensitivities.
Nine parameters are estimated, including those associated with the binary
system plus its location on the sky. We explain how this technique will be
part of a detection pipeline for binary systems of compact objects with masses
up to 20 M�, including cases where the ratio of the individual masses can be
extreme.

PACS numbers: 04.80.Nn, 02.70.Uu

1. Introduction

A worldwide network of interferometric gravitational wave detectors is now on-line. LIGO
has reached its target sensitivity [1, 2] and Virgo is fast approaching theirs [3, 4]. GEO [5]
and TAMA [6] are also participating in the search for gravitational waves. Compact binary
systems will certainly produce gravitational waves [7] and they are likely to be one of the most
promising sources.

The LIGO Scientific Collaboration (LSC) [8] and Virgo [9, 10] each have search pipelines
for binary inspiral events, and studies have shown that these pipelines have equivalent detection
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capabilities [11]. The LSC has conducted searches for binary neutron star inspirals [8, 12],
primordial black hole binary coalescences in the galactic halo [13] and black hole binaries
[14]. The LSC and TAMA have conducted a joint search for binary neutron star systems [15],
and soon the LSC and Virgo will be conducting collaborative searches [11].

The purpose of a binary inspiral detection pipeline is to find a signal within the data.
Once researchers suspect that a signal is present then parameter estimation techniques
can be applied in order to produce estimates and summary statistics for the astrophysical
parameters. Bayesian Markov chain Monte Carlo (MCMC) methods [16] are well suited for
this problem, especially since it is possible to produce accurate predictions for the form of
the signal. MCMC parameter estimation techniques have been developed for binary neutron
star inspirals, as seen by a single interferometer [17]. In addition, MCMC methods have
been developed for the coherent analysis of data from a worldwide network of interferometers
[18].

A difficult detection scenario involves finding a signal produced by a binary system
where the mass ratio between the two objects is large. In such a case, the signal will
likely have its amplitude significantly modulated (as opposed to just a ‘simple’ chirp with
monotonously increasing frequency and amplitude), and it will be necessary to use higher
order post-Newtonian (PN) approximations. In this paper we present a description of our
method for producing parameter estimates associated with a binary inspiral modeled to
3.5 post-Newtonain (PN) order in phase and 2.5 PN in amplitude [19, 21]. There are
numerous goals that we wish to address with this version of our code. We employ new
and more advanced MCMC methods, such as evolutionary MCMC [23]. The higher order
PN templates will also allow for examination of signals where the amplitude is modulated,
as may be the case with rather large ratios between the masses of the compact objects.
Finally, we see this MCMC program as part of a larger detection pipeline for signals from
binary inspirals with large mass ratios and individual masses going up to 20 M�. We
imagine, for example, using an existing detection pipeline [10] to generate a reasonable
number of triggers; the MCMC would then analyze each of the triggers in detail. Once
the MCMC has reached convergence, an estimate for the signal parameters would be
produced. In this paper, we provide a description of the MCMC component of this detection
pipeline.

2. Inference framework

2.1. The Bayesian approach

We follow a Bayesian approach in order to do inference on the inspiral signal’s parameters,
since this allows one to better address the questions of immediate interest in such a context.
Other methods (e.g. matched-filtering methods) on the other hand usually follow a maximum-
likelihood approach, which does not yield as satisfactorily interpretable results, and does
not exploit the information available in the data to the same extent [24]. In a Bayesian
setup, information about parameters is fomulated in terms of probability distributions on
the parameter space. First, the pre-observational knowledge is expressed in the prior
distribution, and inference is eventually done through the parameters’ posterior distribution
that is conditional on the observed data, and follows through the application of Bayes’ theorem
on the prior and the data model (likelihood). The parameters’ posterior distribution then
expresses the information about the parameters given the prior knowledge, the model and the
data at hand [25–27].
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2.2. MCMC methods

Once the Bayesian framework is set up, inference depends on evaluating the parameters’
posterior distribution, which is given in terms of the (non-normalized) posterior density, in
our case a function of nine parameters. Typically, one will be interested in figures such as
posterior means, confidence bounds or marginal densities for individual parameters, which
require integration of the posterior over the parameter space. This problem is commonly
approached using Monte Carlo integration, i.e. by simulating random draws from the posterior
distribution and then approximating the desired integrals by sample statistics (means by
averages, etc). The most popular algorithms for this purpose are Markov chain Monte Carlo
(MCMC) samplers that simulate a random walk through parameter space whose stationary
distribution is the posterior distribution [16, 27].

Metropolis- (and related) MCMC algorithms also have nice optimization properties. In
fact they happen to behave very similar to, e.g., a Nelder–Mead algorithm which is extended
to a simulated annealing algorithm; on its random walk through parameter space it will always
accept an ‘uphill’ step, and sometimes (randomly) a ‘downhill’ step aswell [28]. This property
often comes in handy since the problem—as in our case—usually is not only to sample from the
posterior, but also to first find the global posterior mode(s) within a complex posterior surface
and among numerous minor modes. These convergence properties can also be enhanced
through the implementation of the sampler, while care must be taken to maintain its ergodicity
properties.

For our purposes we used a basic Metropolis sampler that we recently upgraded to an
evolutionary MCMC algorithm [23], a generalization that is motivated by genetic algorithms
[29]. This extension offers substantial improvement over the previously employed parallel
tempering [18] and yielded a sampler that reliably converged toward the true posterior
distribution in the examples discussed below. More details on the implementation of the
evolutionary MCMC algorithm can be found in section 2.6.

2.3. Data and signal waveform

Our simulated data consist of simultaneous measurements from several interferometric
detectors, superimposed with interferometer-specific Gaussian noise. The signal waveform
that was injected into and recovered from the data was implemented using a 3.5 post-
Newtonian (PN) approximation for the phase evolution [19, 30] and a 2.5 PN model for the
amplitude [21]. The nine parameters determining the responses at different interferometers
are: individual masses (m1,m2 ∈ R

+;m1 � m2), luminosity distance (dL ∈ R
+), inclination

angle (ι ∈ [0, π ]), coalescence phase (φ0 ∈ [0, 2π ]), coalescence time at geocenter (tc ∈ R),
declination

(
δ ∈ [−π

2 , π
2

])
, right ascension (α ∈ [0, 2π ]) and polarization angle (ψ ∈ [0, π ]).

In order to derive the waveform at an individual interferometer I, the ‘local parameters’ altitude
(ϑ(I)), azimuth (ϕ(I)) local coalescence time

(
t (I )
c

)
and local polarization (ψ(I)) need to be

determined for each interferometer. More specific definitions are given in [18, 31]. An
appropriate way of dealing with the failure of the waveform approximation shortly before
coalescence still needs to be found. For now we simply terminate the waveform as soon as
the innermost stable orbit [19] is reached or as the (3.5 PN) approximated orbital frequency
starts decreasing. The latter usually happens first; it is a non-physical effect that has also
been noted in other contexts and gives an indication of the obvious failure of the waveform
approximation [32, 33]. In future, numerical integration might be used to extrapolate still
further. The same approach could be used with a wide range of waveforms; in previous
studies we have used implementations of the 2.0 PN stationary-phase approximation [17], and
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a 2.5 PN phase and 2.0 PN amplitude approximation [18]. We are also currently working on an
extension to the case of spinning binaries, which entails the consideration of several additional
parameters.

2.4. Priors

We applied non-informative priors on the ‘geometrical’ parameters that describe the inspiral
event’s location and orientation. Assuming that any direction and orientation is equally likely
(or none of these is a priori ‘preferred’), this leads to uniform priors for right ascension α,
polarization angle ψ and coalescence phase φ0, and to prior densities

f (δ) = 1
2 cos(δ) and f (ι) = 1

2 sin(ι) (1)

for declination δ and inclination angle ι. These also define the maximum entropy settings for
these parameters [25]. The coalescence time tc is assumed to be known in advance up to a
certain accuracy from the detection pipeline that would in reality precede such an analysis
[10]. For our demonstration purposes we set its prior to be uniform across ±5 ms around
the true value (which of course is known for simulated data); using wider ranges only makes
the search phase longer, due to the larger parameter space [18]. The prior for the masses
(m1,m2) reflects the distribution of the masses among binary inspirals, which could be based
on observational evidence [34, 35] as well as theoretical considerations [36, 37]. For now, we
simply defined it as uniform across a range of 1–10 M�. In principle, this type of search will
be applicable for component masses up to 20 M� (which corresponds to the low frequency
sensitivity limit for LIGO and Virgo).

Assuming that inspirals happen uniformly across space leads to a prior P(dL � x) ∝ x3

for the luminosity distance dL. This is an improper prior, seemingly implying there was an
‘infinite’ probability for ‘infinitely remote’ inspiral events. It is also unrealistic, since an
inspiral event needs to happen within a certain range in order to be detectable, otherwise its
signal would be too faint to be noted at all. We incorporated this restriction into the prior
specification by considering the detection probability of an inspiral event, depending on the
signal-to-noise ratio (SNR). A signal’s SNR increases linearly with its amplitude, so for the
prior definition we use the amplitude as an approximation to the SNR. Further simplifying its
expression (and considering only the intrinsic parameters’ effects on the amplitude) we define

A(m1,m2, dL, ι) := ln




√
ηm

5
6
t

dL


 + ln




√
(1 + cos(ι)2)2 + (2 cos(ι))2︸ ︷︷ ︸

�1 and �
√

8 ≈ 2.8




= ln




√
ηm

5
6
t

dL


 +

1

2
ln

(
1 + 6 cos2 ι + cos4 ι

)
, (2)

where mt = m1 + m2 is the total mass and η = m1m2

m2
t

is the (symmetric) mass ratio of the
inspiralling system (A is actually proportional to the logarithmic amplitude) [17]. Now one
could set a threshold amplitude below which the corresponding event would be considered
undetectable, but we preferred a smoother transition that does not strictly rule out parts of the
parameter space. We do so by modeling the detection probability,

Da,b(x) = 1

1 + exp
(

x−a
b

) , (3)
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Figure 1. Marginal joint prior densities for total mass mt and distance dL, and inclination ι and
distance dL. The contour line encloses a 99% credibility region.

as a (sigmoidal) function of the amplitude value x. The values of a and b are set by defining
at which amplitudes xL and xU the detection probability reaches some value p and exceeds
1 − p (where 0 < p < 0.5, e.g., p := 0.1). Given xL and xU , these are set to

a := xL + xU

2
and b := xU − xL

2 log
(

p

1−p

) . (4)

In the following, we defined p := 0.1, xU := A(2 M�, 2 M�, 50 Mpc, 0) and xL := A(2 M�,

2 M�, 60 Mpc, 0), assuming that a 2–2 M� inspiral with zero inclination is detectable out
to distances of 50 and 60 Mpc with 90% and 10% probability, respectively, and providing a
reasonable coverage of the parameter space for the example below. More realistic bounds may
be specified with respect to a certain detection pipeline that is supposed to be installed upstream.
Considerations within a similar context (long-term observations of pulsars’ gravitational
wave signals) indeed show that while detection of signals is certain for high amplitudes and
impossible for low amplitudes, there is also a transition region in-between where detectability
is a matter of chance [38, 39]. The detection probability then enters the prior definition as an
additional factor. Considering ‘occurrence’ and ‘detection’ probabilities this way then leads
to a proper prior distribution for all parameters, reflecting the knowledge about the inspiral
signal given that it released a trigger in the pipeline. Figure 1 illustrates some marginal prior
densities resulting from the above settings.

One could actually explicitly use the SNR for the prior instead of approximating it by A.
An SNR computation in general is computationally about as expensive as a likelihood
evaluation; but once one has done the likelihood evaluation for given parameter values, the
SNR computation would simplify, since it could partly build on computations done in the first
step. When approximating the SNR by A, any effects of the mass parameters besides their
effect on the overall amplitude are neglected, as well as the impact of the antennae patterns,
i.e. the sensitivities of the individual interferometers with respect to the signal’s sky location.

The above definitions imply that, e.g., greater masses have a greater prior probability
(since, resulting in greater amplitudes, they are still detectable at farther distances, see figure 1),
although initially any masses were assumed to occur equally likely. An analogous effect is
known in astronomy as the Malmquist effect; incorporating it into the prior definition will
compensate for selection bias that would otherwise affect the parameter estimates [40, 41].
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2.5. Likelihood

We assume that the noise is independent between different interferometers. Consequently,
the likelihood for each site can be computed individually, and the network likelihood then
arises as the product of the individual likelihoods. Individual likelihoods are computed based
on Fourier transforms of data and signal, and the noise spectrum, which is specific for each
interferometer [42]. More details about the likelihood computation are given in [18].

2.6. MCMC implementation

We implemented the MCMC sampler as a basic Metropolis algorithm [16, 27] that first was
extended to a parallel tempering algorithm. The ‘tempering’ here works as in a simulated
annealing algorithm [28] and prevents MCMC chains from getting stuck in local modes of
the posterior distribution. Parallel tempering then is the special case of a Metropolis-coupled
MCMC (MCMCMC) algorithm [16], where several tempered MCMC chains, each at different
temperatures, are run in parallel, and additional proposals are introduced to ‘swap’ parameter
sets between chains [18, 43]. This algorithm can be further refined by implementing elements
of genetic algorithms [29]. The set of parallel chains may be thought of as constituting
a ‘population’ whose individuals may be crossed to form ‘hybrids’ that inherit properties
from both ‘parental’ chains, the result being an evolutionary MCMC algorithm [23]. The
‘crossovers’ between sets of parameters were implemented as real crossovers, in which
offsprings are formed by randomly reassembling the parental parameter sets, as well as
snooker crossovers, in which a new offspring is proposed somewhere on the straight line
connecting the two parental points in parameter space [44]. Internally, instead of the original
mass parameters, the chirp mass mc = (m1m2)

3/5

(m1+m2)1/5 and the (symmetric) mass ratio η = m1m2
(m1+m2)2

were used, since these are easier to sample from.

3. Example application

We applied our MCMC routine to a simulated data set, corresponding to an inspiral signal
that is received at three interferometers, specifically the two LIGO sites Hanford (LHO) and
Livingston (LLO), and the Virgo interferometer near Pisa (V). The simulated inspiral involved
masses of m1 = 2 M� and m2 = 5 M� (chirp mass mc = 2.70 M�, mass ratio η = 0.204),
observed from a distance of dL = 30 Mpc at tc = 700 009 012.345 GPS seconds. For the
synthesized data that we use, the noise characteristics were assumed to match the target
sensitivities for LIGO and Virgo [45]. The resulting SNRs [18] at the three sites were 8.4
(LHO), 10.9 (LLO), 6.4 (V), and the network SNR was 15.2.

Figure 2 shows the marginal posterior distributions for several individual parameters in
comparison to the true values for the injected signal. While some of the (marginal) distributions
appear roughly Gaussian, others are clearly not, and some even possess multiple modes. This
illustrates some of the strengths of a fully Bayesian approach: no approximations to the
posterior’s (or likelihood’s) shape are made, an irregular posterior surface does not pose a
problem, and the assessment of relative importance of multiple modes arises as a matter of
course [18]. Figure 3 illustrates the joint distributions of two pairs of parameters. The high
correlation between the chirp mass and the mass ratio indicates some degeneracy between
these two parameters. Table 1 lists some numerical estimates for individual parameters for
our specific example.
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Figure 2. Marginal joint posterior densities for some of the parameters. Dashed lines indicate the
true parameter values.
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Figure 3. Left: marginal joint posterior density for the two mass parameters, and a 99% credibility
region. Right: 95% and 99% credibility regions for the sky location against the backdrop of the
night sky. Dashed lines indicate the true values.

(This figure is in colour only in the electronic version)

4. Discussion

We have presented a description of our coherent MCMC code for estimating nine parameters
associated with a binary inspiral signal detected by a network of interferometric detectors.
This program uses time-domain inspiral templates that are 3.5 PN in phase and 2.5 PN in
amplitude. New MCMC techniques, such as evolutionary MCMC and genetic algorithms,
have been implemented in our code. The code can be applied to inspiral signals where the
masses of the components can be as large as 20 M�; inspirals with large mass ratios can also
be successfully analyzed. This code is part of a large mass ratio inspiral detection pipeline
that we are currently developing; a loose-net inspiral detection pipeline (using, for example,
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Table 1. Some key figures of the individual parameters’ marginal posterior distributions, where
meaningful. Mean and standard deviation illustrate location and spread, and the 95% central
credible interval gives a range that contains the true parameter with 95% probability, given the data
at hand.

Mean Standard deviation 95% c.c.i. True Unit

Chirp mass (mc) 2.6988 0.0043 (2.6913, 2.7071) 2.6976 M�
Mass ratio (η) 0.2069 0.0092 (0.1917, 0.2258) 0.2041
Coalescence time (tc) 12.3454 0.0019 (12.3420, 12.3491) 12.3450 s
Luminosity distance (dL) 31.3 7.2 (17.4, 43.6) 30.0 Mpc
Inclination angle (ι) 0.737 0.343 (0.160, 1.462) 0.700 rad
Declination (δ) −0.499a (−0.540,−0.457) −0.506 rad

}
0.025a

Right ascension (α) 4.657a (4.632, 4.689) 4.647 rad
Coalescence phase (φ0) 2.84a 1.38a 2.0 rad

a Mean direction and spherical standard deviation (suitable for angular variables) [46].

lower order PN templates) will generate a reasonable number of triggers, and this MCMC will
then be applied to those times where triggers were recorded. The next logical extension of our
binary inspiral MCMC work will be to systems with spin. The addition of spin will increase
the number of parameters needed for the model, and consequently will increase the complexity
and the time required to run the MCMC. This is currently an area of active research for us.
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[10] Amico P et al 2003 A parallel Beowulf-based system for the detection of gravitational waves in interferometric

detectors Comput. Phys. Commun. 153 179–89
[11] Beauville F et al 2007 Detailed comparison of LIGO and Virgo inspiral pipelines in preparation for a joint

search Preprint gr-qc/0701027
[12] Abbott B et al 2005 Search for gravitational waves from galactic and extra-galactic binary neutron stars Phys.

Rev. D 72 082001
[13] Abbott B et al 2005 Search for gravitational waves from primordial black hole binary coalescences in the

galactic halo Phys. Rev. D 72 082002
[14] Abbott B et al 2006 Search for gravitational waves from binary black hole inspirals in LIGO data Phys. Rev.

D 73 062001
[15] Abbott B et al 2006 Joint LIGO and TAMA300 search for gravitational waves from inspiralling neutron star

binaries Phys. Rev. D 73 102002

http://dx.doi.org/10.1016/j.nima.2003.11.124
http://dx.doi.org/10.1088/0264-9381/21/5/005
http://dx.doi.org/10.1088/0264-9381/23/8/S09
http://dx.doi.org/10.1088/0264-9381/22/18/S01
http://dx.doi.org/10.1088/0264-9381/23/8/S10
http://dx.doi.org/10.1088/0264-9381/20/17/302
http://dx.doi.org/10.1086/167917
http://dx.doi.org/10.1103/PhysRevD.69.122001
http://dx.doi.org/10.1016/S0010-4655(03)00223-6
http://www.arxiv.org/abs/gr-qc/0701027
http://dx.doi.org/10.1103/PhysRevD.72.082001
http://dx.doi.org/10.1103/PhysRevD.72.082002
http://dx.doi.org/10.1103/PhysRevD.73.062001
http://dx.doi.org/10.1103/PhysRevD.73.102002


Coherent Bayesian analysis of inspiral signals S615

[16] Gilks W R, Richardson S and Spiegelhalter D J 1996 Markov chain Monte Carlo in Practice (Boca Raton, FL:
Chapman & Hall/CRC)
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