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Inference on inspiral signals using LISA MLDC data
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Abstract
In this paper, we describe a Bayesian inference framework for the analysis of
data obtained by LISA. We set up a model for binary inspiral signals as defined
for the Mock LISA Data Challenge 1.2 (MLDC), and implemented a Markov
chain Monte Carlo (MCMC) algorithm to facilitate exploration and integration
of the posterior distribution over the nine-dimensional parameter space. Here,
we present intermediate results showing how, using this method, information
about the nine parameters can be extracted from the data.

PACS numbers: 04.80.Nn, 02.70.Uu

1. Introduction

Once the LISA gravitational wave observatory is launched and operational, it is certain to
measure a vast number of signals from a wide range of sources. Because the data will contain
a superposition of individually modulated signals blended with noise, sophisticated methods
will be required to disentangle individual signals and consistently infer their parameters.
Bayesian inference provides a means for approaching such complex problems, allowing one
to quantify the information that is buried in the data in a coherent manner [1–3]. We are
convinced that these techniques will be useful, if not essential, for analysing the data that will
be obtained through LISA. Bayesian procedures, in conjunction with Markov chain Monte
Carlo (MCMC) methods, have successfully been applied for the analysis of ground-based
gravitational wave (GW) measurements [4–6], as well as in the context of LISA [7, 8], and
in particular in the presence of source confusion [9]. Related work on MCMC methods for
LISA inspiral analysis can also be found in [21, 22].

The authors have gathered as the ‘Global LISA Inference Group’ (GLIG) and have set out
to implement such an analysis framework for LISA data. We have developed some generic code
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modules providing vital components that can be adapted to allow analysis given different model
specifications. In response to the first round of the Mock LISA Data Challenges (MLDC) [10],
we present the results of an analysis targeted at binary inspiral signals as addressed in MLDC
Challenge 1.2. Within the same context, we approached MLDC Challenge 1.1, containing
white dwarf binary systems. These results are presented in [11].

We implemented an MCMC sampler to perform the integration of the posterior probability
distribution of the nine parameters that determine the waveform of a binary inspiral GW signal
and present results illustrating the parameter information that can be extracted from the data.
Due to the tight schedule we did not manage to enhance the MCMC sampler’s convergence
capabilities sufficiently to get results for the ‘blind search’ data as well. For now we present
results for the ‘training’ data only.

2. Inference framework

2.1. The Bayesian approach

We use a Bayesian framework to perform inference on gravitational wave signals observed
by LISA, aiming for the information about parameters that can be derived from the data.
Information about parameters here is formulated in terms of probability distributions over the
parameter space. First, the prior knowledge about parameters ϑ needs to be properly specified
in the prior distribution p(ϑ). Then parameters and data y are linked by defining the likelihood
p(y|ϑ) that describes how the observables come about for given parameter values. Inference
is eventually done via the parameters’ posterior distribution p(ϑ |y), which expresses the
information about the parameter values conditional on the observed data. The posterior
distribution is given by p(ϑ |y) ∝ p(ϑ)p(y|ϑ), as a consequence from Bayes’ theorem [1–3].
Inference on the measured signal’s parameters (or other properties) requires integration of the
posterior distribution over the parameter space, since one is usually interested in determining
figures such as posterior expectations, marginal (posterior) densities or confidence regions. We
approach the problem using Monte Carlo integration, for which we implemented an MCMC
algorithm. The algorithm is eventually supposed to be able to reliably find the global mode(s)
in the posterior distribution and then perform the integration, i.e. sample from the posterior
[3, 12].

2.2. Data and parameters

A GW signal is measured by LISA by monitoring the changes in proper distance between
the three satellites as they are orbiting the Sun. The data are sampled every 15 s, which is
also about the time it takes for a photon to travel from one satellite to another. The measured
response is not a simple ‘1:1’ mapping of the signal waveform to the data, especially when the
signal wavelength is of the order or below LISA’s arm length. Moreover, as LISA orbits, the
response will also be modulated by Doppler effects and affected by the change in the baseline
orientations over time.

The data produced by the spacecraft trio are combined to form three time-delay-
interferometry (TDI) variables, X, Y and Z [13]. These can be linearly recombined into
three stochastically independent components, out of which two are sensitive to GW signals
(A and E) and one component is only noise (T) [14]. In the following, we will only be
concerned with the former two variables, A and E. In the restricted 2.0 PN approximation,
the nine parameters defining a binary inspiral’s GW signal measured by LISA are chirp mass
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(mc), mass ratio (η), coalescence phase (φc), coalescence time (tc), ecliptic latitude (θ ),
ecliptic longitude (ϕ), luminosity distance (D), polarization (ψ) and inclination angle (ι) [15].

2.3. Model

For given data y from a single TDI variable the likelihood function is defined as a function of
the parameters ϑ by

p(y|ϑ) ∝ exp


−

∑
f

|ỹ(f ) − s̃(f, ϑ)|2
Sn(f )


 , (1)

where ỹ and s̃ are the (numerical) discrete Fourier transforms of data and signal waveform,
respectively, and Sn is the variable’s (one-sided) noise spectral density [16]. The data (y)

going into the likelihood here are the ‘A’ and ‘E’ TDI variables [14]. Assuming that these
are stochastically independent, the likelihood then is the product of the individual variables’
likelihoods. The signal waveform s̃ to which the data are matched is the corresponding TDI
response to the GW signal implied by the parameters ϑ . The noise spectrum Sn refers to the
noise in the corresponding (A and E) TDI variables.

3. Implementation

In order to infer the measured signal’s parameters, one first needs to find the global mode(s) in
the posterior distribution and then also to ‘explore’ the mode(s), i.e. simulate posterior samples.
We tackle that problem using MCMC methods, an approach that in particular requires many
likelihood evaluations. Likelihood computations are computationally expensive, since they
require several time-consuming steps: given a parameter set ϑ , one first needs to compute
the +/× polarization waveforms emitted by the inspiral event, then the TDI response of the
LISA interferometer to the GW signal and finally its Fourier transform, before parameters
can be related to the data through the likelihood. Since most of these (and more) steps are
common between a wide range of different types of analyses, we set up our software in a
modular style so that parts would be reusable and shareable in the form of modules. See our
accompanying paper [11] for another application that shares parts of the same code. So far,
this also includes a common framework to store and manipulate data internally, an interface
to the lisaXML data format [15], and the availability of Fourier transformation and spectrum
estimation capabilities based on the FFTW library [17]. Most importantly, the derivation of
LISA’s response (in terms of X/Y/Z or A/E TDI variables) to a gravitational wave signal
(given in terms of +/× polarizations, direction of source and polarization angle) was needed.
Here, we resorted to the LISA Simulator [18, 19], that was also used for the generation of the
MLDC data, and which is coded in C, allowing us to easily incorporate it into our code and
stay consistent with the provided data. Originally, the LISA Simulator was not intended to do
its computations repeatedly and quickly, and it was possible to speed up the code by storing
and reusing some intermediate steps. We implemented a simple Metropolis algorithm [3, 12]
to do inference on binary inspiral signals as defined for MLDC Challenge 1.2.1 [15]. The
eventual computation speed, depending on how much data are processed, is shown in table 1.
A similar implementation has been shown to be successful in the context of ground-based GW
measurements [6], and we are currently working on tuning and extending the basic algorithm.



S524 C Röver et al

chirp mass mc (Msun)

1 023 000 1 023 500 1 024 000

mass ratio η
0.194 0.196 0.198 0.200

coalescence phase φc (rad)

2.6 2.8 3.0 0.0 0.2

coalescence time tc (s)

16 545 400 16 545 500

ecliptic latitude θ (rad)

−0.4 −0.3 −0.2 −0.1 0.0

ecliptic longitude ϕ (rad)

3.70 3.80

luminosity distance D (Mpc)

24 000 26 000 28 000

polarisation angle ψ (rad)

2.70 2.72 2.74

inclination angle ι (rad)

1.30 1.32 1.34

Figure 1. Marginal posterior densities for all nine parameters. Dashed lines indicate the true
values.

Table 1. Computation speed of the MCMC code for different amounts of data (on an Intel Xeon
2.4 GHz processor). Most of the computation time (more than 95%) goes into deriving A/E TDI
responses from the +/× GW waveforms.

Amount of data
Seconds

Days Samples per iteration

364 221 146
182 220 75

91 219 38
46 218 19
23 217 10

4. Results

We applied the above framework to the data in MLDC Challenge 1.2.1. The signal waveform
was generated following the description given in [15], and we estimated the A/E variables’
noise spectral densities based on the section of data where the signal was absent.

We ran the code on the ‘training’ data set, starting from the true parameter values, and,
due to the low computation speed, only considered the last 217 samples (corresponding to
23 days of measurements) before coalescence for the analysis. The resulting speed of the
MCMC sampler still was rather slow, producing a posterior sample every 10 s. By only
considering the last part of the signal before coalescence we are of course neglecting some
information, but since the SNR of the injected signal was very high (almost 500), and most
of that is actualized in the last phase immediately before coalescence, we will still be left
with a high SNR. On the other hand, we will especially lose information about the location



Inference on inspiral signals using LISA MLDC data S525

1 023 000 1 023 500 1 024 000

0.
19

6
0.

19
8

0.
20

0

chirp mass mc (Msun)

m
as

s 
ra

tio
 η

230° 220° 210°

−
20

°
−

10
°

0°

longitude ϕ

la
tit

ud
e 

θ

Figure 2. Marginal joint posterior densities and 99% credibility regions for two pairs of parameters.
Dashed lines indicate the true values.

parameters (θ , ϕ), since these are encoded in the long-term evolution of the signal, so we
might find an increased degeneracy between these two parameters. As the efficiency of our
code continues to improve we will of course be analysing larger sections of data.

Table 2. Some summary statistics characterizing the marginal posterior distributions for individual
parameters. Mean and standard deviation describe location and accuracy, and the 99% central
credibility intervals contain the corresponding parameter with 99% probability, given the data at
hand.

Mean Standard deviation 99% c.c.i. True Unit

Chirp mass mc 1023 564 215 (1023 033, 1024 054) 1023 866 M�
Mass ratio η 0.1979 0.0013 (0.1948, 0.2006) 0.1995
Coalescence phase φc 2.97 0.14 (2.63, 0.13) rad
Coalescence time tc 16 545 459 36 (16 545 370, 16 545 535) 16 545 493 s
Ecliptic latitude θ −0.195 0.065 (−0.357,−0.019) −0.263 rad
Ecliptic longitude ϕ 3.817 0.023 (3.736, 3.859) 3.795 rad
Luminosity distance D 25 991 864 (23 754, 28 195) 27 000 Mpc
Polarization ψ 2.7226 0.0099 (2.6943, 2.7464) 2.7299 rad
Inclination angle ι 1.3182 0.0075 (1.2978, 1.3368) 1.3166 rad

Figure 1 shows the marginal posterior distributions for all nine individual parameters in
comparison to the true parameter values (there is no true value shown for φc, since we are using
a different parametrization: coalescence phase instead of initial phase). The true parameter
values are all well covered by the posterior distribution, not only in these one-dimensional
projections, but also for all bivariate distributions, two examples of which are shown in
figure 2; this demonstrates the consistency of the applied inference framework. Table 2
shows some summary statistics characterizing the posterior distribution and relating it to the
true parameter values. As one can see from figure 2, there is much posterior correlation, or
degeneracy, between the parameters. In particular, there are two groups of parameters that are
highly correlated with each other: firstly the two mass parameters, coalescence time and phase
(mc, η, tc, φc), and secondly, the two sky location parameters and the luminosity distance
(θ , ϕ,D). Correlation coefficients of parameter pairs within these groups are as high as
0.90–0.99, which greatly complicates sampling from the posterior. We also ran the code on
the ‘blind’ challenge 1.2.1 data set, for which we did not know the true parameter values, but
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due to the code’s speed and the size of the parameter space it would not converge and produce
results in time for the submission deadline for MLDC round 1.

While the MCMC algorithm is working in principle and performing the posterior
integration, more tuning is necessary to enhance its optimization properties, i.e. its capabilities
of finding modes by itself and its efficiency in manoeuvring through parameter space. Better
convergence properties are crucial not only to enhance the algorithm’s overall applicability,
but also to make sure it does not miss further posterior modes that may be of relevance.

5. Conclusions

We have presented a Bayesian inference framework for the analysis of GW signals as measured
by LISA. We ran a basic MCMC algorithm on data simulating a binary inspiral measurement
from the first round of the Mock LISA Data Challenges (MLDC). In a related effort [11],
sharing parts of the same code, we applied a similar model to the analysis of signals from
white dwarf binary systems. The MCMC implementation so far is a simple Metropolis
algorithm, and the results illustrate that this approach ultimately allows one to extract and
express the information about signal parameters contained in the data in a coherent manner.
While the integration of the posterior distribution over the parameter space is fully functional,
more work needs to be done on the MCMC sampler’s optimization capabilities as well as its
efficiency. We are working on a preprocessing stage to the MCMC algorithm to provide rough
parameter estimates as starting values for the MCMC sampler. We are also currently extending
the Metropolis sampler to a parallel tempering algorithm [6, 12] in a parallel implementation
[20]. The underlying model will also need to be generalized by including the noise spectrum
as an unknown, which might just mean the introduction of an additional ‘Gibbs step’ in the
MCMC sampler [3, 12].
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[5] Röver C, Meyer R and Christensen N 2006 Bayesian inference on compact binary inspiral gravitational radiation

signals in interferometric data Class. Quantum Grav. 23 4895–906
[6] Röver C, Meyer R and Christensen N 2007 Coherent Bayesian inference on compact binary inspirals using a

network of interferometric gravitational wave detectors Phys. Rev. D 75 062004
[7] Wickham E D L, Stroeer A and Vecchio A 2006 A Markov chain Monte Carlo approach to the study of massive

black hole binary systems with LISA Class. Quantum Grav. 23 S819–27
[8] Stroeer A, Gair J and Vecchio A 2006 Automatic Bayesian inference for LISA data analysis strategies Preprint

gr-qc/0609010
[9] Umstätter R, Christensen N, Hendry M, Meyer R, Simha V, Veitch J, Vigeland S and Woan G 2005 Bayesian

modeling of source confusion in LISA data Phys. Rev. D 72 022001

http://dx.doi.org/10.1103/PhysRevD.72.102002
http://dx.doi.org/10.1088/0264-9381/23/15/009
http://dx.doi.org/10.1103/PhysRevD.75.062004
http://dx.doi.org/10.1088/0264-9381/23/19/S20
http://www.arxiv.org/abs/gr-qc/0609010
http://dx.doi.org/10.1103/PhysRevD.72.022001


Inference on inspiral signals using LISA MLDC data S527

[10] Arnaud K A et al 2006 An overview of the Mock LISA Data Challenges. Laser Interferometer Space Antenna:
6th Int. LISA Symposium ed S M Merkowitz and J C Livas AIP Conf. Proc. 873 619–24

[11] Stroeer A et al 2007 Inference on white dwarf binary systems using the first round Mock LISA Data Challenges
data sets Class. Quantum Grav. 24 S541

[12] Gilks W R, Richardson S and Spiegelhalter D J 1996 Markov chain Monte Carlo in Practice (Boca Raton, FL:
Chapman and Hall/CRC Press)

[13] Armstrong J W, Estabrook F B and Tinto M 1999 Time-delay interferometry for space-based gravitational wave
searches Astrophys. J. 527 814–26

[14] Prince T A, Tinto M, Larson S L and Armstrong J W 2002 LISA optimal sensitivity Phys. Rev. D 66 122002
[15] MLDC Taskforce 2006 Document for Challenge 1 Draft v1.0 (August) http://svn.sourceforge.net/viewvc/

*checkout*/lisatools/Docs/challenge1.%pdf
[16] Finn L S and Chernoff D F 1993 Observing binary inspiral in gravitational radiation: one interferometer Phys.

Rev. D 47 2198–219
[17] Frigo M and Johnson S G 2003 FFTW 3.0.1: a C subroutine library for computing the discrete Fourier transform

(DFT) http://www.fftw.org
[18] Cornish N J, Rubbo L J and Poujade O 2006 The LISA Simulator version 2.1.1 http://www.physics.

montana.edu/LISA
[19] Cornish J N and Rubbo L J 2003 LISA response function Phys. Rev. D 67 022001
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