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Abstract
It is computationally expensive to search the large parameter space associated
with a gravitational wave signal of uncertain frequency, such as might be
expected from the possible pulsar generated by SN1987A. To address this
difficulty we have developed a Markov Chain Monte Carlo method that
performs a time-domain Bayesian search for a signal over a 4 Hz frequency
band and a spindown of magnitude of up to 1 × 10−9 Hz s−1. We use Monte
Carlo simulations to set upper limits on signal amplitude with this technique,
which we intend to apply to a gravitational wave search.

PACS numbers: 04.80.Nn, 02.70.Uu, 06.20.Dk

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recent targeted searches for gravitational waves from radio pulsars have needed to consider
only four signal parameters: h0, the signal amplitude, cos ι, the inclination angle of the pulsar
towards the line of sight, ψ , the polarization angle of the gravitational wave and φ0, the initial
phase of the signal. In the absence of a detection, it is possible to set an upper limit on h0,
and therefore on the ellipticity of the pulsar in question. This is accomplished by defining
a Bayesian posterior probability density function (PDF) of the four signal parameters and
marginalizing it numerically on a grid. In the time domain, this search technique relies on
precise heterodyning of data from the gravitational wave detector, which itself requires accurate
information on the phase evolution of the signal. For known pulsars this is easily obtained
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by monitoring the timing of their radio wave pulses, which directly provides the frequency
and frequency derivatives of the gravitational signal (emitted at twice the object’s rotation
frequency) [1]. However, there are objects whose frequencies are not known accurately,
such as the reported remnant of Supernova 1987A [3]. To perform a search over a range
of frequencies would require a grid on frequency and frequency derivative with resolutions
approximately 1/Tobs and 1

/
T 2

obs respectively, which makes the number of search templates
very large (∼4.5 × 1011 for LIGO S3 data). We present an adaptation of this search based
on a Markov Chain Monte Carlo (MCMC) method which does not require an exhaustive
examination of the parameter space and therefore is able to search a range of frequencies in a
reasonable time.

2. MCMC parameter estimation

After heterodyning at close to the expected signal frequency, the gravitational wave signal
from a rotating triaxial neutron star has the form

y(tk; a) =
(

1

4
F+(tk;ψ)(1 + cos2 ι) − i

2
F×(tk;ψ) cos ι

)
h0 ei�(tk) (1)

where a represents the parameters responsible for generating the signal, F+ and F× are the
beam patterns for the + and × polarizations, and �(t) is the phase of the signal given to the
first two Taylor expansion terms by

�(t) = φ0 + 2π
[
δf (T − T0) + 1

2δḟ (T − T0)
2
]
. (2)

Here δf is the deviation of the signal frequency from the heterodyne frequency, and δḟ is
the deviation from first derivative of the heterodyne frequency [7]. By including these two
parameters we can search around the heterodyne frequency for a signal. The heterodyned data
are reduced to one complex sample per minute, Bk , with variance σk , allowing a frequency
range of [−1/120, 1/120] Hz around the heterodyne frequency to be searched. The search
in δḟ is limited to [−1 × 10−9, 1 × 10−9] Hz s−1 which is likely to include any possible
pulsar spindown rates. The search proceeds by heterodyning 480 separate frequency bands at
intervals of 1/120 Hz, and running parallel searches on each band. In this way we complete a
search over a 4 Hz range—suitable for the putative SN1987A pulsar.

The probability of a particular combination of the six parameters a representing a signal
in the data {Bk} is

p(a|{Bk}) ∝ p(a) exp

[
−

∑
k

|Bk − y(tk; a)|2
2σ 2

k

]
, (3)

which is the prior probability of a multiplied by the likelihood, p({Bk}|a). This proportional
definition is adequate for our application, as we will only be evaluating ratios of probabilities.

We now have a joint posterior probability distribution over the six parameters in vector
a, but in the presence of a signal the probability will be strongly concentrated around the
signal parameters. The Markov Chain Monte Carlo method takes advantage of this fact
by preferentially sampling the areas of greatest probability density, in proportion to that
probability [4, 2]. In this way we can approximate the posterior distribution p(a|{Bk}) by
allowing the Markov Chain to accumulate many samples, where the density of samples in an
area is then proportional to the probability density in that area. In order to accomplish this,
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a Markov Chain in state a chooses a candidate sample a′ from proposal distribution q1(a′|a),
and then accepts the candidate as the next state of the chain with probability

α1(a′|a) = min

[
1,

p(a′)p({Bk}|a′)q1(a|a′)
p(a)p({Bk}|a)q1(a′|a)

]
. (4)

If the proposal is not accepted, the current state a is recorded as a sample again and the
process repeats. The proposal distribution q1(a′|a) is a multivariate normal distribution, with
covariances determined by the correlation between parameters in trial runs. In practice, the
highly correlated parameters h0 and cos ι are replaced with a re-parametrization, such that
a1 = 1

4h0(1 + cos2 ι) and a2 = 1
2h0 cos ι. The frequency parameters are also changed to

fstart = δf + 1
2δḟ × tstart and fend = δf + 1

2δḟ × tend, being the signal frequency at the start
and end times of the data.

It is important that the chain explore the parameter space adequately, in order to find
the area of high probability. To this end, we have included a delayed rejection stage of the
algorithm, so that if a proposal a′ is rejected, a new candidate is generated from distribution
q2(a′′|a′, a), which has a narrower width and makes more conservative steps. These are
accepted with probability

α2(a′′|a) = min

[
1,

p(a′′)p({Bk}|a′′)q1(a′|a′′)q2(a|a′, a′′)(1 − α1(a′|a′′))
p(a)p({Bk}|a)q1(a′|a)q2(a′′|a, a′)(1 − α1(a′|a))

]
, (5)

where the proposal distributions are included to satisfy the principle of detailed balance. This
allows the chain to make small steps where a large step would be rejected.

In addition to these measures, there is also a burn-in period at the start of each MCMC
run where the exponent in equation (3) is multiplied by an inverse temperature factor β in
the proposed step. Initially β = 0.01, and gradually increases during the burn-in period to
β = 1, where equation (3) is restored. This decreases the likelihood of the chain getting stuck
in a local maximum of probability without exploring the space adequately. No samples from
the burn-in period are used in calculating the final PDF, as they do not represent the target
distribution p(a|{Bk}). In our implementation the burn-in lasts for 1×106 iterations, followed
by 100 000 iterations with every 50th used as a sample, so as to reduce correlation between
samples. The program is implemented in C, using the LIGO Algorithm Library to calculate
the beam patterns and time delays necessary for analysing a real signal [5].

3. Setting upper limits

In the standard time-domain search, if a signal is not detected it is useful to set an upper
limit on gravitational radiation emitted by the source under examination. This translates as
an upper limit on the ellipticity of the pulsar which can be used to constrain physical models
of a neutron star. This is achieved by marginalizing the posterior PDF over cos ι, ψ and φ0,
leaving a distribution on h0 which can then be integrated upward from h0 = 0 until 95% of the
probability is included in the interval. The upper limit of the interval is then the 95% upper
limit on h0 for the target.

In the MCMC routine however, if the signal is below a certain threshold then the chain
may not converge on the correct mode of the signal in the PDF [6]. This is partly due to the
narrowness of the mode in δf and δḟ , where the bulk of the probability lies within a single
frequency bin of width 1/Tobs with a very small attraction area.

A weak signal will raise probability only slightly in this bin, so that even if the chain were
to find the mode, it has a probability of jumping out and not returning. These factors therefore
preclude the evaluation of an upper limit simply by marginalizing the posterior PDF when
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Figure 1. The posterior PDFs (bars) for a 2000 sample chain which has converged on the injected
values of δf = 7 × 10−3 Hz and δḟ = −2.5 × 10−10 Hz s−1 (vertical lines), and the best normal
fits, having standard deviations 1.047 × 10−8 Hz and 5.7031 × 10−15 Hz s−1 respectively.

there is no detection. Instead, we performed a Monte Carlo simulation by injecting signals of
known parameters into noise, and running the MCMC code to try and recover them. Signals
are injected with known parameters by calculating the value of the signal at each timestamp tk
using LAL and adding it to each sample Bk in the input data file. Real data would have to be
heterodyned prior to this step, but the artificial noise is generated at 1/60 Hz so heterodyning is
unnecessary in the simulations. It can be shown that the probability of detecting a signal using
our method depends strongly on the injected values of h0 and cos ι, and much more weakly
on the value of ψ . To determine our upper limit for a particular set of data, we inject signals
of varying h0 and cos ι into the noise σk , then analyse the results of the MCMC routine to
determine if it has detected the signal. This is accomplished by observing the output PDFs in
δf and δḟ , and determining if the chain has converged or not. If the injected value lies within
three standard deviations of the mean, and the standard deviations themselves are less than one
frequency bin in size, the chain is judged to have converged. If the chain has not converged,
the samples are distributed widely over the entire δf range, and the standard deviation is
typically five orders of magnitude higher. Figure 1 shows the posterior PDFs in the δf and
δḟ parameters for a chain converged on a signal with injected parameters h0 = 1.3, cos ι = 0,
ψ = 0.281, φ0 = 4.234, δf = 7 × 10−3 Hz and δḟ = −2.5 × 10−10 Hz s−1, where the
noise level was σ = 1.0. Figure 2 shows the same type of plot for a signal with h0 = 0.7
and otherwise identical parameters; this chain failed to converge, so there is no concentrated
mode in the PDF. The attempted fit to a normal distribution to test convergence is therefore
very wide, and poorly fitted.

The injections are repeated, using a different starting point in parameter space
for the MCMC chain each time, and an empirical probability of signal recovery
P(detection|h0, cos ι, σk) for each point on the (h0, cos ι) plane is obtained from the set
of results. Figure 3 shows the result on the (h0, cos ι) plane of performing this procedure on
64 000 samples of white noise with a variance of σ = 1.0. The dark region shows where no
signal is detectable, above which is a small transition zone where there is a finite probability
of detection. With increasing iterations of the chain, the width of this zone reduces—we are
using a chain of 1100 000 iterations, of which the first 1000 000 are burn-in time and the
last 100 000 used for sampling the PDF. The white area above this transition zone represents
signals that are detected with very high probability. These are strong enough to cause the
chain to converge on them in every instance of the Monte Carlo simulation. It is clear from
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Figure 2. The δf and δḟ posterior PDFs (bars) for a 2000 sample chain which failed to converge
on the injected parameters (vertical lines). This distribution is clearly distinguishable from the
converged case using the criteria defined above.
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Figure 3. Results of Monte Carlo evaluation of probability of detection of a signal injected with
varying values of h0 and cos ι. This shows the strong dependence on both these parameters. The
transition from detectable to undetectable occurs over a narrow region for a particular value of
cos ι, but decreases in h0 as cos ι tends to 1.

the figure that this is strongly dependent on cos ι, as this acts a weighting factor between the
power in the real and imaginary parts of the heterodyned signal. The distribution is symmetric
about cos ι = 0, so only the positive half was calculated.

This result can then be marginalized by summing over cos ι and normalizing to give
a distribution on h0, as required for an upper limit. The probability of there being an
undetected gravitational wave is then 1 − P(detection|h0, σk), and the upper limit h95%

satisfies 1 − P(detection|h95%, σk) = 0.95. Note that P(·|·) is a probability rather than a
probability density. The upper limit determined from this stage is applicable to each of the
480 bands in the 4 Hz frequency interval because the values of σk are determined by estimating
the noise over the entire 4 Hz band at the heterodyne stage. The heterodyne then performs
filtering of this band to calculate the signal Bk in each 1/60 Hz interval, from which the
480 bands are derived.
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Figure 4. The marginalization of figure 3 onto the h0 axis. This shows that the 95% confidence
(represented by the horizontal line) may be drawn at h95% = 1.44.

Figure 4 shows this final distribution on h0, where the horizontal line represents 95%
confidence in detection, required for a 95% upper limit, which is achieved at h0 = 1.44. It is
useful to express this in terms of noise power spectral density, Sh, yielding the relation

h95% = 515.2

√
Sh

Tobs
, (6)

where the 512.2 is an indicator of the sensitivity of the search, empirically derived from the
simulation.

For a realistic example, consider a noise power spectral density of S(f ) = 6.6 ×
10−44 Hz−1, or h(f ) = 2.57 × 10−22, and a data run of 44 days, the upper limit would
then be approximately

h95% = 515.2

√
6.6 × 10−44

3801 600
= 6.8 × 10−23. (7)

4. Summary

This MCMC search method is capable of reliably detecting a signal above a certain threshold
and estimating its parameters including frequency and spindown. The computing time it takes
to perform the search is dependent only on the amount of data and the number of MCMC
iterations desired, which provides significant improvement over the previous time-domain
targeted search [8]. With the current version of the pipeline, to analyse the entire 4 Hz window
would take about 17 000 CPU hours on a 1.8 GHz Athlon processor, which is approximately
two days on the 366-CPU Merlin cluster at AEI Golm. In the absence of a signal an upper
limit can be set using Monte Carlo injections, which require a similar amount of processing
on top of the search itself. Additional work is under way to tune the algorithm further, which
may lead to improvements in sensitivity and speed of execution.

We hope that this technique could be applied to a search for gravitational radiation from
the possible pulsar in the remnant of SN1987A at 935 ± 2 Hz, and in the absence of detection
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place upper limits on the gravitational radiation emitted by this object if it were triaxial. The
method could also be easily applied to other similar objects.
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