INSTITUTE OF PHYSICS PUBLISHING CLASSICAL AND QUANTUM GRAVITY

Class. Quantum Grav. 22 (2005) S901-S911 doi:10.1088/0264-9381/22/18/S04

LISA source confusion: identification and
characterization of signals

Richard Umstiitter!, Nelson Christensen?, Martin Hendry>,
Renate Meyer', Vimal Simha?, John Veitch?, Sarah Vigeland®
and Graham Woan?

1 Department of Statistics, University of Auckland, Auckland, New Zealand
2 Physics and Astronomy, Carleton College, Northfield, MN 55057, USA
3 Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK

E-mail: richard@stat.auckland.ac.nz, nchriste@carleton.edu, martin@astro.gla.ac.uk,
meyer@stat.auckland.ac.nz, vimal_simha@hotmail.com, jveitch@astro.gla.ac.uk,
vigelans@carleton.edu and graham@astro.gla.ac.uk

Received 30 March 2005, in final form 15 July 2005
Published 23 August 2005
Online at stacks.iop.org/CQG/22/S901

Abstract

The Laser Interferometer Space Antenna (LISA) is expected to detect
gravitational radiation from a large number of compact binary systems. We
present a method by which these signals can be identified and have their
parameters estimated. Our approach uses Bayesian inference, specifically the
application of a Markov chain Monte Carlo method. The simulation study that
we present here considers a large number of sinusoidal signals in noise, and
our method estimates the number of periodic signals present in the data, the
parameters for these signals and the noise level. The method is significantly
better than classical spectral techniques at performing these tasks and does not
use stopping criteria for estimating the number of signals present.

PACS numbers: 04.80.Nn, 02.70.Lq, 06.20.Dq

1. Introduction

LISA [1] is expected to detect a very large number of signals from compact binaries in the
10~2 mHz to 100 mHz band, making signal identification very difficult. Tens of thousands of
signals could be present in the data with significant signal-to-noise ratios. In the 0.1 mHz to
3 mHz band there will be numerous signals from white dwarf binaries. Sources above 5 mHz
should be resolvable, however, below 1 mHz there will be source confusion. In the 1 mHz to
5 mHz band we expect as many as 10° potential sources [2—4] resulting in an astoundingly
difficult data analysis problem. We direct the reader to Barack and Cutler [2] and Nelemans
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et al [5] for an in-depth description of the population of binary systems in the LISA operating
band, and how LISA’s performance is influenced by them.

The goal of this paper is to introduce the LISA data analysis community to a new approach
for identifying and characterizing these numerous signals. This method is designed to work
both in and out of the source confusion regime. We apply Bayesian Markov chain Monte
Carlo (MCMC) methods to a simplified problem that will serve as an example of the technique.
MCMC methods are a numerical means of parameter estimation, and are especially useful
when there are a large number of parameters [6]. We have already applied MCMC methods
to other gravitational radiation parameter estimation problems; for example, we have used
a Metropolis—Hastings (MH) algorithm [7, 8] for estimating astrophysical parameters for
gravitational wave signals from coalescing compact binary systems [9], and pulsars [10, 11].
We believe that MCMC methods could provide an effective means for identifying sources
in LISA data. We summarize our reversible jump MCMC technique in this paper. A more
detailed and comprehensive description can be found in our subsequent paper [12], where we
extend the work we have initiated here.

Here we present a summary of our study of some simple simulated data, comprising a
number of sinusoidal signals embedded in noise. By noise we mean the instrumental noise,
plus weak unresolved sources. Our reversible jump MCMC algorithm infers the parameters
for each (sufficiently large) sinusoidal signal, the magnitude of the noise and the number of
signals present. In our approach we solve both the detection and parameter estimation problems
without the need for evaluating formal model selection criteria. The method does not require a
stopping criterion for determining the number of signals and produces results which compare
very favourably with classical spectral techniques. The number of resolvable sources and the
noise level are parameters in our model; unresolved sources, along with instrumental noise,
contribute to the overall estimated noise level. A Bayesian analysis naturally encompasses
Occam'’s razor and a preference for a simpler model [13]. In addition, our MCMC method is
better than a classical periodogram at resolving signals that are very close in frequency, and
we provide an explanation of how to identify these signals.

The MCMC method that we present here performs source modelling rather than source
subtraction [14], and avoids the artefacts that can be generated by the sequential removal of
signals (though clearly the modelled sources can still be subtracted from the data if desired).
Signals for which there is sufficient evidence will be identified with a quoted confidence, and
sources that are too weak to be detectable will simply contribute to the noise, the level of
which we also estimate. We show that the noise level estimate from our method depends (as
it should) on both the inherent detector noise level and the presence of many low-level signals
too weak to be detected. A further benefit of using MCMC methods is that computation time
does not show an exponential increase with the number of parameters [6].

The problem of identifying an unknown number of sinusoids is neither new nor simple
[15, 16]. Previous studies have looked for a handful of unknown signals, here we show results
for 100 signals. MCMC methods are robust and dynamic, and we believe that ultimately it
will be possible to use them with LISA data to estimate the parameters of all modelled sources
types. In the future we will make the model more complex, taking into account the orbit of
the LISA spacecraft and binary source evolution.

2. Occam factors

One can approach the problem of identifying and enumerating sinusoidal signals in noise
from a number of different directions, but one thing is clear. Discrete noisy data can be fitted
exactly if one uses a sufficient number of components—the result is simply the discrete Fourier
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Figure 1. The evidences for models M (solid line, one parameter fit) and M, (dashed line, two
parameter fit) as a function of the datum d. Note that the evidence ratio always favours the simpler
model M when the datum is equally consistent with either.

transform of the data. Classically, we proceed by estimating the noise floor of the spectrum
and identify a threshold spectral power that divides the components between signals and noise.
In this way we prevent the model from over-fitting the noise. In an iterative fitting procedure,
this is achieved by halting when the statistics of the residuals fit the noise model well. One
very attractive, and well-known, feature of Bayesian inference is that these ideas are within
the fabric of the method. Indeed they are such a basic property of logical inference that there
is no need to refer to ideas such as ‘over-fitting” at all. More generally, the method discourages
us from using models that have more degrees of freedom than are necessary for the problem
in hand. Readers desiring a comprehensive and informative description of Bayesian methods
are encouraged to consult the following sources [13, 17-22].

One can see how this works in a simple example. Take two data models, M; and M,
constrained by a single datum, d. M has one parameter, a;, to describe the datum, whereas
M uses the sum of two parameters, s = a; + a, to describe the same datum. Which model is
better? Here we have no noise and no random variables, so this is not a problem for orthodox
statistics. However, if the datum is equally consistent with both models, we would clearly
prefer the simpler model M in favour of M,.

Within the Bayesian framework we consider the odds ratio of the two models:
_ pMild)  p(My) p(dIM,) 0

pMald)  p(My) p(dIMy)
We will set p(M)/p(M>) to unity, as we have no prior preference for either model, and
take the priors for a; and a; to be each uniform in the range 0 — R, making the prior for s
the convolution of two of these. The functional priors for a; under M/ and s under M, are

therefore

1 s/R? for 0<s <R
plarlM) = 5 p(siM2) {2/R—S/R2 for R <s <2R. @
The probability of the data, given either model, is simply a Dirac delta function centred on the
value of the datum, so we can calculate the evidences p(d| M) and p(d|M>) by marginalizing
over the allowed parameter values,

12

R q 1/R for 0<d<R
pd|M)) = /(; E‘S(d —ar)da; = {0 otherwise, ®
- d/R? for 0<d <R
p(dIMy) = / P(sIM2)8(d —s)ds = 42/R—d/R*  for R<d <2R )
0 0 otherwise,

as shown in figure 1. If the datum lies in the range 0 < d < R, the odds ratio is
(1/R)/(d/R?) = R/d, so that M, will always favoured over M in that range. If d = R the
odds ratio is unity, and if R < d < 2R the only possible model is M.
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This demonstrates why the simpler model is favoured even when the datum is equally
consistent with both: M, has more flexibility than is necessary to explain the datum and so
penalizes itself by spreading its evidence more thinly. Although in this example we consider a
probability ratio to determine our favoured model, when more than two models are available,
we can consider the model choice to be a parameter itself, and determine its marginal posterior
probability in the usual way.

A slightly more pertinent, though still highly restricted, example would be a data set {dy}
that consists of observations of the sum of m sinusoids of the form A; sin(27 f;¢) at times
t = t; and Gaussian noise with variance 2. We also know that 0 < m < 5, and A; and f;
can only take the discrete values A; € {1,...,5}and f; € {0.01,0.02, ..., 0.05}. For this
discrete problem, assuming uniform priors on m, A; and f; for each sinusoid, we can identify
the probability of any particular m, given the data, irrespective of the other signal parameters:

pOml{di}) o« 25—m Do D exp(=x7/2), ©)
AL h Apm.fu

where

m 2
1
== Z [ Z A; sin2w f,-tk):| ) (6)
k

i=1
Here it is the factor of 25™, originating from the m normalized priors for the model parameters,
that offsets the increasingly good x? fit that might come from large values of m and provides
our Occam factor.
This discrete problem can be solved by directly marginalizing over the nuisance amplitude
and frequency parameters. However, problems with more and/or with continuous parameters
are not approachable using such direct methods, and must be tackled in another way.

3. Parameter estimation

We consider the continuous case as a signal consisting of m superimposed sinusoids where m
is unknown. Therefore, we confine our attention to a set of models {M,, : m € {1, ..., M}}
where M is the maximum allowable number of sinusoids. Let d = [dy, ..., dy] be a vector
of N samples recorded at times t = [tq, ..., tx]. Model M,, assumes that the observed data
are composed of a signal plus noise: d; = f,,(¢;, @) +€;, for j =1,..., N, where the noise
terms €; are assumed to be i.i.d. N (0, a,%,) random variables. The signal of model M,, is
assumed to be of the form

m

futj, am) = Y [AT cos (2 f"1;) + B{™ sin (27 f"1;)]. (7)

i=1

Model M,, is therefore characterized by a vector

2
a, = [A(lm), Bl(m)’ I(WL)’ o Ainm)’ B(m) f(m) ] (8)

ITl

of 3m + 1 unknown parameters. The objective is to find the model M,, that best fits the data.
To this end, we use a Bayesian approach as in [21]. The joint probability of these data d given
the parameter vector a,, and model M,, is

1 .
pldim, an) o —zexp { = Y ld; =t an)P 1. ©)

m m i1
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We choose (now continuous) uniform priors for the amplitudes A", B and frequency f,""’
with ranges Agm) € [—Amax, Amaxls Bi(’") € [— Bmax, Bmax] and fi(m) €0, 0.5], respectively.
Furthermore, we use a uniform prior for m over {1, ..., M} and vague inverse gamma priors
for o,fl. By applying Bayes’ theorem, we obtain the posterior pdf

_ pm, a,)p(dim, ay)
pm, ayld) = D , (10)

where p(d) = Zlﬂi | f p(m, ay,)p(dm, a,)da,. We use a sampling-based technique for
posterior inference via MCMC [6]. MCMC techniques only require the unnormalized posterior
p(m, a,l|d) « p(m,a,)p(dlm, a,) to simulate from equation (10) in order to estimate the
quantities of interest. However, as the dynamic variable of the simulation does not have
fixed dimension, the classical MH techniques [7, 8] cannot be adopted when proposing trans-
dimensional moves between models where the model indicator m determines the dimension
(3m+1) of the parameter vector a,,. We therefore use the reversible jump Markov chain Monte
Carlo (RIMCMC) algorithm [23, 24] for model determination, as in [ 16]. For transitions within
the same model, we use the delayed rejection method [25, 26] which yields a better adaptation
of the proposals in different parts of the state space.

3.1. The RIMCMC for model determination

To sample from the joint posterior p(m, a,,|d) via MCMC, we need to construct a Markov
chain simulation with state space U ,A,'le (m xR¥™*1). When a new model is proposed we attempt
a step between state spaces of different dimensionality. Suppose that at the nth iteration of the
Markov chain we are in state (k, a;). If model M, with parameter vector a;, is proposed, a
reversible move has to be considered in order to preserve the detailed balance equations of the
Markov chain. Therefore, the dimensions of the models have to be matched by involving a
random vector r sampled from a proposal distribution with pdf ¢, say, for proposing the new
parameters a;, = t(ax, ) where t is a suitable deterministic function of the current state and
the random numbers. Here we focus on transitions that either decrease or increase models by
one signal, i.e. k¥’ € {k — 1,k + 1}. We use equal probabilities py .y = pr,x to either move
up or down in dimensionality. Without loss of generality, we consider k < k’.

If the transformation ty.x from (ax, r) to a;, and its inverse t,:,ik, = ti, are both
differentiable, then reversibility is guaranteed by defining the acceptance probability for
increasing a model by one signal according to [23] by

play, kK)p(dlay,, k') pi i
" plag, k) p(dla, k)q(r) prsk

|Jka'|}, (11)

i (ay|ax) = min {l

dtlay,
where |Jyor| = |%

proposal distribution.
In this context, two types of transformations, ‘split-and-merge’ and ‘birth-and-death’, are
obvious choices. Ina ‘split-and-merge’ transition, the proposed parameter vector a;, comprises

| is the Jacobian determinant of this transformation and g (7) is the

all (k — 1) subvectors of a, except a randomly chosen subvector a;) = (Agk), Bi(k), fi(k))/
which is replaced by two three-dimensional subvectors,

I (AR pK) (k) I (AR pK) (k)
aiy = (Ail ’ Bil ’ fl ) and A,y = (Aiz ’ Bi2 i )

1 5]

with roughly half the amplitudes but about the same frequency as a;).
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A three-dimensional Gaussian random vector (with mean zero), 7 = (r4, rp, r ), changes
the current state a;) to the two resulting states ay,;, a;,; through a linear transformation

k k k k k k
e (@), 1) = (3A+ra, 3B+ rp, [ 41, A —ra 3B —rp, ;0= 1)

— (B A ), 2
By analogy, the inverse transformation t,:; v ‘= sk accounts for the merger of two signals.
Note that the determinant of the Jacobian of the transformation t;,_, ;' is | Jy— | = 2, and that of
its inverse is 1/2. We use a multivariate normal distribution, N [0, diag (ai, aé, o}%)], for the
proposal distribution g (7). Care has to be taken in choosing suitable values for the proposal
variances to achieve reasonable acceptance probabilities in equation (11).

The second ‘birth-and-death’ transformation consists of the creation of a new signal with
parameter triple a;i) independent of other existing signals in the current model My. The
one-to-one transformation in this case is very simply given by typ (1) = r = a’(k +1) With
Jacobian equal to 1.

Here, ¢ is the three-dimensional pdf from which we draw proposals for the additional
signal. We use independent uniform distributions with frequency range 0 < f < 0.5 and
amplitude range (A,2 + Blz) Y 4, Where /4 is the radius for the two amplitudes of the signal
in polar coordinates. Again, the radii of the uniform proposal densities have to be tuned to
achieve an optimal acceptance rate.

3.2. The delayed rejection method for parameter estimation

For transitions within a model M,,, classical MCMC methods can be applied. Here, however,
we use an adaptive MCMC technique, the delayed rejection method [25-27] that we have
successfully applied to estimate parameters of pulsars [11]. The idea behind the delayed
rejection method is that persistent rejection indicates that locally, the proposal distribution is
badly calibrated to the target. Therefore, the MH algorithm is modified so that on rejection, a
second attempt to move is made with a proposal distribution that depends on the previously
rejected state. In this context, when a proposed MH move is rejected from a bold normal
distribution with large variance a second candidate can be proposed with a timid proposal
distribution for sampling the parameters for the individual sinusoids. Hence, the main objective
of the first stage is a coarse scan of the parameter space and therefore we choose the variances of
the parameters about one order of magnitude smaller than the prior ranges of the corresponding
parameters. Once a mode is found, we aim to draw representative samples in the second stage.

The precision of the frequency in a single-frequency model depends on the amplitude,
the variance o2 of the noise and the number of samples N of the data set [21, 28].
The precision of the frequency has been derived in [21] by a Gaussian approximation
to the posterior pdf of the frequency and calculation of its standard deviation, given by
of = (2m)~'[480% /N3 (A% + B?)]'/2. We therefore choose proposals with this standard
deviation.

3.3. Starting values

The starting values of a Markov chain are crucial for the length of the burn-in period, i.e. the
time needed for the chain to achieve convergence to the real posterior distribution. We perform
a fast Fourier transformation (FFT) prior to the simulation and use corresponding estimates as
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Figure 2. Posterior distribution of model number m with 5%, 50% and 95% posterior confidence
intervals of the corresponding noise levels.

starting values. Schuster introduced the periodogram [29]
1
C(f) = LR+, (13)

where R(f) = Z?’:l djcos(2rft;) and I(f) = Z;V:I d;sin2mft;) are the real and
imaginary parts from the sums of the discrete Fourier transformation. As a starting value for
m, we use the number m of local maxima in the periodogram that exceed a certain noise level
(lower than the expected one). We use the frequencies corresponding to the local maxima in
the periodogram, fj ;, as starting values for 0(,’:'10) and Ag; = 2R(fo.;)/N, Boi =21(f0.;)/N

(mo)
B™

as starting values for Afm“) and , respectively.

3.4. Identifying the sinusoids

Although the RIMCMC offers great ease in model selection, we still encounter the label-
switching problem, a general problem due to invariance of the likelihood under relabelling
that has been extensively discussed in the context of mixture models [30]. The sinusoids that
are contained in the model /72 with the highest posterior probability of m are permutations of
m coexistent sinusoids out of a number of sinusoids that we do not know but can estimate by
the upper limit m,x of the marginal posterior of m. Therefore, the parameter vector sampled
in each iteration of the Markov chain (corresponding to model /1) is a permutation of 7
parameter triples determining 7 out of mp,x sinusoids. The problem is to determine which
parameter triple belongs to which sinusoid.

The parameter that contributes significantly to identifying a sinusoid is its frequency. We
thus calculate the marginal posterior of the frequency and obtain the mp,x strongest peaks
together with their frequency ranges by finding the threshold that separates those peaks. It
is still possible that individual peaks contain more than one sinusoid or even none. This can
be assessed by a histogram similar to that in figure 2 but restricted to the frequency range
under consideration. To separate more than one present sinusoids, we then consider the two
amplitudes and apply an agglomerative hierarchical cluster analysis that involves all three
parameters. We use a modified Ward technique [31] that minimizes the within group variance
using a normalized Euclidean distance between the parameters by adjusting the frequency
range to the much larger range of the amplitudes.

4. Results

We created an artificial data set of 1000 samples from m = 100 sinusoids. The sinusoids
were randomly chosen with maximum amplitudes 1 and the noise standard deviation was
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o = 1. We will present our results with dimensionless units. We chose a uniform prior
for mon {0, 1,2,..., M = 60000}, and set Apax = Bmax = 5. The Markov chain ran for
10% iterations and was thinned by storing every 1000th iteration. The first 5 x 10° iterations
where considered as burn-in and discarded. The MCMC simulation was implemented in C
on a 2.8 GHz Intel P4 PC and took about 43 h to run. Figure 2 gives the histogram of the
posterior model probabilities obtained by the reversible jump algorithm. As each model M,,
is characterized by a different noise level o,,, we have also plotted the posterior distributions
of the noise standard deviations for increasing model order. Note that o, decreases with
higher model order m since a model comprising more sinusoids accounts for more noise. This
illustrates our previous statement that the total noise is the sum of instrumental noise and any
unresolved sources. Here, we subsequently choose and analyse model m = 95, corresponding
to the posterior mode of m as the best fitting model. The five unresolved signals were either
too small in amplitude to be detected or could not be resolved from neighbouring sinusoids.
In the first case the sinusoids will contribute to the overall noise level determination for model
m = 95. In the second case we estimate different parameters for the involved sinusoids.

We used all MCMC samples corresponding to model Moys. For ease of notation, we
denote the parameter vector of model Mogs by (A, By, fi, ..., Aos, Bos, fos). The complete
line power spectrum density can be estimated by the product of the conditional expectation of
the energy E (Al2 + Bﬂd, m, f,-) of each sinusoid i given its frequency f;, and the posterior pdf
of f; given the data, p(f;|d). One of the advantages of the Bayesian spectrum analysis is the
possibility to calculate confidence areas for the spectrum. Therefore, we group our MCMC
samples and calculate posterior confidence intervals for each frequency bin. A sufficient width
for the bins can be assessed by the frequency accuracy oy = (27 - snr) ! (48/N?%)!/2 given by
[21], where ‘snr’ is the signal-to-noise ratio. The ability to resolve periodic sources is set by
this expression, and we explore this topic in greater detail in our subsequent publication [12]. In
our example, the choice of 30 000 bins is sufficient to resolve sinusoids with an snr of about 2.
Figure 3 shows the real signals, the Bayes spectrum and the classical Schuster periodogram
mentioned in equation (13).

The plot for the real signals displays an individual energy contribution for each sinusoid
i of (Al2 + Biz)N /2. Normally a theoretical spectrum would consist of delta functions with
infinitely large energy peaks since the energy contribution is concentrated on an interval of
infinitely small width. Therefore, we just plotted the energy contribution on the energy scale
that yields a similar scaling as obtained by the periodogram.

In order to be able to display 95% confidence areas of the spectrum, we present three
magnified areas in figure 4. In plot (@) we see a sinusoid with rather small energy. The accuracy
of the frequency estimation is worse compared with the sinusoid of graph (b) which has a
significantly larger energy. The third graph (c) shows two very close sinusoids. The frequency
estimation is very inaccurate due to the interference of the two signals. This is consistent
with theoretical results by [21]. The interference of the two close signals is due to a phase
shift of 175°. The interference and hence the frequency estimation depends upon whether the
sinusoids are orthogonal [21] or not. Nevertheless, we are able to identify the existence of
two signals while the periodogram only reveals the existence of one. This displays the utility
of our method in a source confusion regime. Our method is able to separate and distinguish
nearby peaks better than classical techniques. Classically confused signals are distinguishable
in they are sufficiently strong; a comprehensive discussion of this point is presented in our
subsequent study [12].

The estimates of the amplitudes, however, always show huge values and confidence
intervals for sinusoids close in frequency. The huge energies are merely restricted by the
choice of priors for the amplitudes. The reason for this is due to the possible combinations to
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Figure 3. Comparison of real signals, classical Schuster periodogram and Bayesian spectrum.
Note that the total energy of the three spectra is similar but the lines have different accuracies.
Therefore, the energy of a single line is more concentrated due to the better accuracy of the
Bayesian spectrum estimate resulting in higher peaks. The theoretical spectrum consists of delta
functions for each sinusoid which would yield infinite peaks. Therefore, an energy contribution of
% (A[.2 + B[z) for each sinusoid with frequency f; is shown.

express a sum of sinusoids when the observation time is insufficiently long with respect to the
distance in frequency. In this case we cannot make accurate statements about the amplitudes
and hence energies of both sinusoids.

If we take a look at the single peak of the periodogram the energy that is considered is
subject to the data from a discrete and finite observation time, given by Zj'v=1 fu(tj, ay). This,
however, does not reflect the energy contribution of the real signals. The Bayesian estimates
of the amplitudes are honest by yielding large confidence areas for the energies of sinusoids
close in frequency, but produce small confidence intervals for isolated sinusoids.

5. Discussion

We have presented a Bayesian approach to identifying a large number of unknown periodic
signals embedded in noisy data. A reversible jump MCMC technique can be used to estimate
the number of signals present in the data, their parameters, and the noise level. This approach
allows for simultaneous detection and parameter estimation, and does not require a stopping
criterion for determining the number of signals. The MCMC method compares favourably
with classical spectral techniques.
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Figure 4. Three magnified areas for a comparison of the classical periodogram (dotted line)
and the Bayesian spectrum (continuous lines or dashed if referring to more than one sinusoid).
The areas within the thin lines (continuous or dashed) show the 95% confidence areas of the
energy for a sinusoid whereas the bold lines within the 95% confidence areas indicate the median
of the energy. The vertical lines show the delta functions of the theoretical spectrum. The
energies are stated. (a) Median and 95% confidence area of energy for sinusoid: £ = 78.2
[45.96,119.9]. Energies from corresponding real parameters: £ = 49.9 at f = 0.0500462.
(b) Median and 95% confidence area of energy for sinusoid: E = 476.1 [389.9, 570.7]. Energies
from corresponding real parameters: E = 459.5 at f = 0.162425. (¢) Median and 95% confidence
area of energy for sinusoids: E = 3497.2[819.7, 10 800.8], E = 2731.6 [261.8, 8809.1]. Energies
from corresponding real parameters: E = 462.7 at f = 0.360133, E = 66.9 at f = 0.360 65.

Our motivation for this research is to address the difficulty that LISA will ultimately
encounter in having too many signals present. LISA may see 100000 signals from binary
systems in the 1 mHz to 5 mHz band. We see our work as a new method that could help
LISA to identify and characterize these signals. The work here is a simplified problem, one
that neglects the time evolution of the signal and modulation due to LISA’s orbit. The next
step is to deal with these more complicated signals, and to develop a realistic strategy for
applying our MCMC methods to more realistic LISA data. The inclusion of Doppler shifts
due to the LISA orbit could potentially improve the ability to resolve signals that are very close
in frequency; this will be especially true when two sources are in different parts of the sky
and experience non-equal Doppler shifts. What is considered to be the confusion frequency
limit for LISA could decrease when the Doppler modulations of signal frequencies are folded
into the problem. We believe that MCMC methods, such as those presented here, provide a
practical and highly effective method of identifying and characterizing the large number of
signals that will exist in the LISA data.
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