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Abstract
We present a Bayesian Markov chain Monte Carlo technique for estimating
the astrophysical parameters of gravitational radiation signals from a neutron
star in laser interferometer data. This computational algorithm can estimate up
to six unknown parameters of the target, including the rotation frequency and
frequency derivative, using reparametrization, delayed rejection and simulated
annealing. We highlight how a simple extension of the method, distributed over
multiple computer processors, will allow for a search over a narrow frequency
band. The ultimate goal of this research is to search for sources at known
locations, but uncertain spin parameters; an example would be SN1987A.

PACS numbers: 04.80.Nn, 02.70.Uu, 06.20.Dk

1. Introduction

Rapidly rotating neutron stars could be an important source of gravitational wave signals.
Several mechanisms have been proposed that would cause them to emit quasi-periodic
gravitational waves [1, 2].

Interferometric gravitational wave detectors are now operating in numerous locations
around the world [3–6], and much work has gone into the development of dedicated search
algorithms for these signals. Radio observations can provide the sky location, rotation
frequency and spin-down rate of known pulsars, and this knowledge simplifies the analysis.
This was the case for the recent search for a signal from PSR J1939+2134 [7]. When the
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position and phase evolution of a source are not known, all-sky hierarchical strategies are
required, and these have huge computational requirements [8, 9].

Here we concentrate on the search for a gravitational wave signal from a known location,
but where spin parameters of the rotating neutron star are not well known (but within a narrow
band). SN1987A is a good example of a poorly parametrized source for which the sky location
is known, but where there are large uncertainties in the frequency and spin-down parameters of
a putative neutron star [10]. In particular, we consider a search with six unknown parameters:
the gravitational wave amplitude h0, the polarization angle ψ (which depends on the position
angle of the spin axis in the plane of the sky), the phase of the signal at a fiducial time φ0, the
inclination of the spin axis with respect to the line-of-sight ι and the deviations (from reference
values) of the signal frequency �f , and of the frequency derivative �ḟ .

We use a Bayesian Markov chain Monte Carlo (MCMC) technique for this analysis as
MCMC methods have been applied successfully to similar problems involving large numbers
of parameters [11]. In a previous study [14], we used a Metropolis–Hastings (MH) algorithm
[12, 13] for a similar search, but with only five parameters (�ḟ being absent). When the
frequency derivative �ḟ is included in the basic MH routine of [14], the large correlation
between �f and �ḟ makes the parameter search difficult, and the basic MH algorithm
becomes inefficient. In order to adequately sample the parameter space, we implemented
a combination of three different strategies for accelerating convergence of Markov chains:
reparametrization, the delayed rejection method of Tierney and Mira [15] (which is an adaptive
version of the MH algorithm) and simulated annealing [16] (which is a Monte Carlo approach
to global optimization). The parameter �f is highly correlated with �ḟ , and a strong
correlation also exists between h0 and cos ι. An initial transformation of these variables to
near orthogonality yields a more tractable parameter space that is more effectively sampled.

The heterodyne manipulation of the data used in this study is identical to that presented
(by two of us) in an end-to-end robust Bayesian method of searching for periodic signals in
gravitational wave interferometer data [17], and is also described in [7]. A brief summary of
this heterodyne technique is given in section 2. Our delayed rejection method, as well as the
reparametrization strategy, is presented in section 3. In section 4 we present the results of this
study, using synthesized signals, for this six-parameter problem. A brief discussion of the
long-term goals for this work is presented in section 5.

2. The gravitational wave signal

Gravitational waves from spinning neutron stars are expected to be weak at the Earth, so long
integration periods are necessary to extract the signal. It is therefore important to take proper
account of the antenna patterns of the detectors and the Doppler shift due to the motion of the
Earth.

As in previous studies [7, 14, 17] we consider the signal expected from a non-precessing
triaxial neutron star. The gravitational wave signal from such an object is at twice its rotation
frequency, fs = 2fr, and we characterize the amplitudes of each polarization with overall
strain factor, h0. The measured gravitational wave signal will also depend on the antenna
patterns of the detector for the ‘cross’ and ‘plus’ polarizations, F×,+, giving a signal

s(t) = 1
2F+(t;ψ)h0(1 + cos2 ι) cos �(t) + F×(t;ψ)h0 cos ι sin �(t). (1)

A simple slowdown model provides the phase evolution of the signal as

�(t) = φ0 + 2π
[
fs(T − T0) + 1

2 ḟ s(T − T0)
2
]
, (2)
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where

T = t + δt = t +
�r · �n
c

+ �T. (3)

Here, T is the time of arrival of the signal at the solar system barycentre, φ0 is the phase of the
signal at a fiducial time T0, �r is the position of the detector with respect to the solar system
barycentre, �n is a unit vector in the direction of the neutron star, c is the speed of light and �T

contains the relativistic corrections to the arrival time [18].
If fs and ḟ s are known from (for example) radio observations, the signal can be

heterodyned by multiplying the data by exp[−i�(t)], low-pass filtered and resampled, so
that the only time varying quantity remaining is the antenna pattern of the interferometer. We
are left with a simple model with four unknown parameters h0, ψ, φ0 and ι. If there is an
uncertainty in the frequency and frequency derivative then we have two additional parameters,
the differences between the signal and heterodyne frequency and frequency derivatives, �f

and �ḟ , giving a total of six unknown parameters.
A detailed description of the heterodyning procedure is presented elsewhere [7, 17].

Here we just provide a brief summary of this standard technique. The raw signal, s(t), is
centred near twice the rotation frequency of the neutron star, but is Doppler modulated due
to the motion of the Earth and the orbit of the neutron star if it is in a binary system. The
modulation bandwidth is typically 104 times less than the detector bandwidth, so one can
greatly reduce the effective data rate by extracting this band and shifting it to zero frequency.
In its standard form the result is one binned data point, Bk , every minute, containing all the
relevant information from the original time series but at only 2 × 10−6 the original data rate.
If the phase evolution has been correctly accounted for at this heterodyning stage, then the
only time-varying component left in the signal will be the effect of the antenna pattern of the
interferometer, as its geometry with respect to the neutron star varies with Earth rotation. Any
small error, �f , in the heterodyne frequency will cause the signal to oscillate at �f (plus the
residual Doppler shift).

The data points, Bk , are assumed to be uncorrelated. In this paper the Bk are generated
using white Gaussian noise with µ = 0 and σ = 1. The variance, σk , associated with each bin
is therefore known be unity a priori, and the noise is uncorrelated between bins. For real data,
this assumption may not hold. However, in practice we have found that when using sufficiently
small bandwidths with GEO and LIGO data the noise is not significantly correlated between
bins. It is also assumed that the noise is stationary over the 60 s of data contributing to each
bin. This is also consistent with current instrumental performances.

3. The adaptive Metropolis–Hastings algorithm

After heterodyning, the signal on which we wish to carry out our MCMC analysis has the
form [17]

y(tk;a)= 1

4
F+(tk;ψ)h0(1 + cos2 ι) ei��(t) − i

2
F×(tk;ψ)h0 cos ι ei��(t), (4)

where tk is the time of the kth bin and a = (h0, ψ, φ0, cos ι,�f,�ḟ ) is a vector of our
unknown parameters. ��(t) represents the residual phase evolution of the signal, equalling
φ0 + 2π [�f (T − T0) + �ḟ (T − T0)

2/2]. The objective is to fit this model to the data

Bk = y(tk;a) + εk, (5)
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where εk is assumed to be normally distributed noise with a mean of zero and known variance
σ 2

k . Assuming statistical independence of the binned data points, Bk , the joint likelihood that
these data d = {Bk} arise from a model with a certain parameter vector a is [17]

p(d|a) ∝
∏
k

exp

[
−1

2

∣∣∣∣Bk − y(tk;a)

σk

∣∣∣∣
2
]

= exp

[−χ2(a)

2

]
, (6)

where

χ2(a) =
∑

k

∣∣∣∣Bk − y(tk;a)

σk

∣∣∣∣
2

. (7)

In order to draw any inference on the unknown parameter vector a, we need the (posterior)
probability of a given d, which can be obtained from the likelihood via an application of
Bayes’ theorem. The unnormalized posterior density

p(a|d ) ∝ p(a)p(d|a) (8)

is the product of the prior density of a, p(a), and the joint likelihood. Accordingly, appropriate
priors have to be chosen for the particular parameters. In this study we use uniform priors
with prior ranges [−π, π ], [−π/4, π/4] and [−1, 1] for the angle parameters φ0, ψ and cos ι,
respectively. For h0 we also specify a uniform prior with boundary [0, 1000] in units of the
rms noise [17]. For the frequency and spin-down uncertainty, we use suitable uniform priors
with ranges of

[− 1
60 , 1

60

]
Hz and [−10−9, 10−9] Hz s−1 for �f and �ḟ , respectively.

The normalized posterior density p(a|d) = p(a)p(d|a)/p(d) cannot be evaluated
analytically, so we use Monte Carlo methods to explore p(a|d ). If we can simulate
from p(a|d), we can estimate all interesting quantities, including the posterior means of
all parameters from the corresponding sample means, to any desired accuracy by increasing
the sample size.

However, drawing independent samples in a six-dimensional parameter space is not
feasible. It has already been shown that MCMC methods can be used to parametrize
gravitational wave signals of low signal-to-noise ratio [14] with four unknown parameters.
These simulate a Markov chain, constructed so that its stationary distribution coincides with the
posterior distribution and the sample path averages converge to the expectations. A minimal
requirement for this is the irreducibility of the chain and hence the ability of the chain to reach
all parts of the state space [11]. A specific MCMC technique is the MH algorithm [12, 13]
which does not require the normalization constant, only the unnormalized posterior density
of equation (8). We employed the MH algorithm for the four- and five-parameter pulsar
detection problems [14]. The efficiency of the MH algorithm depends heavily on the choice
of the proposal density. Intuition suggests that the closer the proposal distribution is to the
target, the faster convergence to stationarity is achieved. Default choices such as a Gaussian
proposal or a random walk result in very slow mixing for this six-parameter problem. To
increase the speed of convergence, we employed an adaptive technique, adaptive in the sense
that it allows the choice of proposal distribution to depend upon information gained from the
already sampled states as well as the proposed but rejected states. The idea behind the delayed
rejection algorithm specified by [15] is that persistent rejection, perhaps in particular parts of
the state space, may indicate that locally the proposal distribution is badly calibrated to the
target. Therefore, the MH algorithm is modified so that on rejection, a second attempt to
move is made with a proposal distribution that depends on the previously rejected state. This
adaptive Monte-Carlo method [15] was generalized for the variable dimension case [19] and
renamed the ‘delayed rejection method’. Since we have a fixed dimension problem here we
implemented the original version [15], and also the generalization [19] that uses the reversible
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Stage 2
(timid)

Stage 1
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fictive
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accepted

fictive
Stage 1
rejected

an a′a′′

Figure 1. The delayed rejection method. In the case of rejection of the first, bold step a second,
more timid move is proposed. In order to maintain the reversibility of the Markov chain the
acceptance probability has to consider a fictive return path.

jump method. It turned out that the delayed rejection with the reversible jump method was
not that beneficial for this particular problem and thus we will explain the original delayed
rejection algorithm [15] here.

For the Metropolis–Hastings algorithm, a new state in a Markov chain is chosen first by
sampling a candidate a′ from a certain proposal distribution q1(a

′|an) usually depending on
the current state an and then accepting or rejecting it with a probability α1(a

′|an) depending
on the distribution of interest. This rejection is essential for the convergence of the chain to the
intended target distribution. The choice of a good proposal distribution is important to avoid
persistent rejections in order to achieve good convergence of a chain. However in different
parts of the state space different proposals are required. When a proposed MH move is rejected,
a second candidate a′′ can be sampled with a different proposal distribution q2(a

′′|a′,an) that
can depend on the previously rejected proposal. Since a rejection suggests a bad fit of the first
proposal, a different form of proposal can be advantageous in the second stage. To preserve
reversibility of the Markov chain and thus to comply with the detailed balance condition, the
acceptance probabilities for both the first and the second stages are given by [20]

α1(a
′|an) = min

(
1,

p(a′)p(d|a′)q1(an|a′)
p(an)p(d|an)q1(a′|an)

)
(9)

and

α2(a
′′|an) = min

(
1,

p(a′′)p(d|a′′)q1(a
′|a′′)q2(an|a′,a′′)[1 − α1(a

′|a′′)]
p(an)p(d|an)q1(a′|an)q2(a′′|an,a′)[1 − α1(a′|an)]

)
, (10)

respectively. Figure 1 illustrates the idea of delayed rejection. When the second stage proposal
step is applied due to rejection of the first, the chain has, in order to preserve the reversibility,
to imply a return path which comprises a fictive stationary Markov chain consisting of a fictive
stage 1 proposal step from a′′ to a′ which is rejected followed by an accepted fictive second
stage move to an [19]. Although the delayed rejection method provides better acceptance
rates over the two stages, cross-correlations between the parameters still impede convergence
of the Markov chain. Preliminary runs reveal that especially the parameters �f and �ḟ ,
and to a certain extent h0 and cos ι, are highly correlated after the Markov chain has found
a potential mode. The consequence of which is poor mixing of the chain and therefore a
reparametrization is required.

The coherence between �f and �ḟ is obvious since the data are sampled from time tstart

to tend, where the heterodyned signal traverses a frequency from fstart = �f + 1
2�ḟ · tstart

to fend = �f + 1
2�ḟ · tend; time t = 0 is an epoch time when f = �f . Hence it is much
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more natural to work with these frequencies as new parameters and vary them with a certain
correlation which influences �ḟ indirectly. The original parameters are then obtained by the
simple linear transformation

�f = fstart − 1
2�ḟ · tstart (11)

and

�ḟ = 2 · fend − fstart

tend − tstart
. (12)

Since the Jacobian of this transformation is constant the prior distributions for the new
parameters fstart and fend are flat as well.

Another cross-correlation can be observed between the parameters h0 and cos ι that arises
from the fact that h0 can be seen as a scaling factor and cos ι as a nonlinear weighting
between the plus and cross polarization parts of the model. As seen in equation (4), the plus
part is multiplied by the factor a1 = 1

4h0(1 + cos2 ι) while the cross part encloses the term
a2 = 1

2h0 cos ι. The original parameters can be derived from

h0 = 2

(
a1 +

√
a2

1 − a2
2

)
, (13)

and

cos ι = 2a2

h0
. (14)

As mentioned above, the prior distribution of the parameters h0 and cos ι are chosen uniform
with joint probability density function

f (h0, cos ι) =
{
(2lh0)

−1, if 0 � h0 < lh0 , −1 � cos ι � 1,

0, otherwise,
(15)

where for this study lh0 = 1000 in units of the rms noise. This implies a joint prior distribution
for the parameters a1 and a2 of the form

g(a1, a2) =
{

(2lh0)
−1, if |a2| � a1 <

4a2
2 +l2

h0
4lh0

� lh0
2

0, otherwise

}
|det J | (16)

with Jacobian

det J = 2√
a2

1 − a2
2

. (17)

Since the Jacobian is positive for the above restrictions, we can write

g(a1, a2) =



1

lh0

√
a2

1−a2
2

, if |a2| � a1 <
4a2

2 +l2
h0

4lh0
� lh0

2 ,

0, otherwise.
(18)

This joint prior density has the shape shown in figure 2. These reparametrizations result in a
fast mixing Markov chain but still, the choice of a suitable proposal distribution is essential.
Usually, a multivariate normal distribution is utilized for the proposal distributions q1(a

′|an)

and q2(a
′′|a′,an), with means equal to the current state and different variances depending on

the stage. Larger variances are chosen for the ‘bold’ first stage steps, while smaller variances
are more beneficial for the ‘timid’ second stage candidates. The covariance matrix has to
comprise the correlation between the parameters fstart and fend since this correlation indirectly
controls the parameter �ḟ as mentioned above. Hence choosing proposals for fstart and fend

with a correlation of 1 would imply no change of �ḟ because both parameters are changed
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Figure 2. Joint prior density of a1 and a2 for a given boundary lh0 for the parameter h0.

in the same way, while a correlation of 0 would have a great impact on �ḟ since fstart and
fend are changed completely uncorrelated. Thus the correlation between fstart and fend has
to be treated randomly in order to control �ḟ . Best results are obtained when a correlation
of 0 is chosen with probability 0.5 for the bold moves of �ḟ and a correlation of almost 1
otherwise for timid moves of �ḟ . The proposals for the parameters a1 and a2 are sampled
independently since they represent scaling factors for the plus and cross polarization parts,
respectively. Finally we have to consider the correlation between the original parameters ψ

and φ0 which are not reparametrized. Pilot runs show that they are highly correlated. Hence
the proposal distribution is adapted accordingly.

Unfortunately, the posterior distribution features very narrow modes in a large parameter
space that has to be scanned. Thus a simple normal distribution is not suitable for a proposal
distribution as pilot runs have revealed. Instead, a proposal distribution with long tails and
strong narrow mode is required. This can easily be achieved by generating a random sample
between two boundaries bl and bh for the standard deviation of the proposal by generating a
random weight for the weighted geometric mean of these two boundaries. Hence we sample
standard deviations according to σ = bw

h b1−w
l , where w ∼ β(a, b) is beta distributed with

parameters a and b. The resulting proposal distribution is symmetric with very long tails and a
strong narrow mode. In order to obtain higher standard deviations for the first stage the choice
of w ∼ β(2, 1) (with mean 2

3 ) is adequate while for the second stage w ∼ β(1, 2) (with mean
1/3) samples smaller standard deviations.

The implementation of the ideas outlined above leads to reasonable acceptance rates and
hence to a much better convergence of the Markov chain. While during the burn-in period
it is mainly the stage 1 candidates that are accepted, the Markov chain is driven mainly by
stage 2 candidates after the burn-in. But still, the stationary distribution features many distinct
modes that carry the risk of trapping the Markov chain. Therefore, we regard the posterior as
a canonical distribution

p(a|d ) ∝ p(a)p(d|a) ∝ p(a) exp

[
−χ2(a)

2

]

∝ exp

[
−χ2(a) − 2 log[p(a)]

2

]
∝ exp[−β(χ2(a) − 2 log[p(a)])] (19)
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with inverse temperature β. During the burn-in period, this inverse temperature can pass
through values starting at a low value (thus high temperature) and ending up at β = 1

2 which
coincides with the posterior distribution. This simulated annealing technique was introduced
by Metropolis et al [12] and allows scanning of the whole parameter space by permitting larger
steps. For the annealing schedule an exponential temperature curve is applied. For a certain
number of iterations ts , it starts with an inverse temperature β0 until it reaches β = 1

2 . The
inverse temperature follows the function

β(t) =
{

β0 exp
[

t
ts

log
(

β

β0

)]
, if 0 � t � ts ,

1
2 , if t > ts,

(20)

depending on the current iteration t. Since the starting temperature is dependent on the data
set which is influenced by the amplitude h0 of the signal it has to be adapted accordingly.

4. Results with simulated signals

We have synthesized fictitious data, and passed it through our six-parameter MCMC routine.
The presentation of results here is similar to that of the four- and five-parameter study of [14].
The artificial signals were embedded within white and normally distributed noise. The ability
of the MCMC algorithm to successfully find the signal and estimate the six parameters was
demonstrated, and is presented below. The artificial signals s(t) were synthesized assuming a
source at RA = 4 h 41 min 54 s and dec = 18◦23′32′′, as would be seen by the LIGO–Hanford
interferometer. The signals were then added to noise; we assumed a signal at 300 Hz and a
corresponding noise spectral density of that at frequency of h(f ) = 8 × 10−23 Hz−1/2. The
amplitude of the signal used in our test runs was varied in the range from h0 = 4.0 × 10−24

to 1.5 × 10−22. The length of the data set corresponded to 14 400 samples or 10 days of data
at a rate of one sample per minute (which was the rate used for the LIGO/GEO S1 analysis
described in [7]).

In figure 3 we display the MCMC generated posterior probability distribution functions
(pdfs) for an example signal. The real parameters for this signal were h0 = 1.5 × 10−22, ψ =
0.4, φ0 = 1.0 (both in radians), cos ι = 0.878,�f = 7.0 × 10−3 Hz and �ḟ = −2.5 ×
10−10 Hz s−1. For this example, the programme ran for 106 iterations. For a signal this large
only about 2.5 × 104 iterations were needed for the burn-in, and these data are discarded from
the analysis. Short-term correlations in the chain were eliminated by ‘thinning’ the remaining
terms; we kept every 250th item in the chain. The bandwidth of the Gaussian kernel density
estimator was chosen according to Silverman [21] as 0.9 times the minimum of the standard
deviation and the interquartile range divided by 1.34 times the sample size to the negative
one-fifth power.

In this example the MCMC yielded median values, 95% posterior probability intervals
and MCMC standard errors (se) of h0 = 14.91 × 10−23 (13.41 × 10−23 to 15.84 × 10−23),
se(h0) = 1.686 × 10−2, ψ = 0.439 (−0.552 to 0.707), se(ψ) = 7.505 × 10−3, φ0 = 0.964
(0.696 to 1.958), se(φ) = 7.510 × 10−3, cos ι = 0.884 (0.828 to 0.988), se(cos ι) =
1.103 × 10−3, �f = 6.999 997 72 × 10−3 Hz (6.999 992 17 × 10−3 Hz to 7.000 003 14 ×
10−3 Hz), se(�f ) = 2.386 × 10−10 and �ḟ = −2.499 9541 × 10−10 Hz s−1 (−2.500 0767 ×
10−10 Hz s−1 to −2.499 8272 × 10−10 Hz s−1), se(�ḟ ) = 2.386 × 10−10. The 95% posterior
probability interval is specified by the 2.5% and 97.5% percentiles of p(ai |d ). The MCMC
standard error gives a measure of how much the sample mean, as a point estimate of the
true posterior mean, changes over repeated MCMC simulations. This precision depends
on the number of iterations and the degree of autocorrelation within the sample. We used
Geweke’s [22] method, often referred to as ‘time-series standard error’ which is based on
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Figure 3. MCMC estimates of the posterior pdf (kernel density) for the six parameters
h0, ψ, φ0, cos ι,�f and �ḟ . This synthesized signal had real parameters of h0 = 15×10−23, ψ =
0.4, φ0 = 1.0, cos ι = 0.878,�f = 7.0 × 10−3 Hz and �ḟ = −2.5 × 10−10 Hz s−1. The mean
of the h0 distribution here is 14.84 × 10−23. The vertical lines show the real parameter values.

estimating the spectral density. The interested reader should note the paper by Geyer [23]
who develops improved window-estimates for the MCMC standard error by calculating the
‘optimal’ bandwidth using specific properties of the autocovariances of a Markov chain.

With the noise level used, h(f ) = 8 × 10−23, we were able to successfully detect signals
with amplitudes of h0 � 4.0 × 10−24 with 10 days of data. This should be compared with the
results presented in [14] where with just four parameters (h0, ψ, φ0 and cos ι), we were able
to confidently detect signals with an amplitude four times smaller. The addition of the new
frequency parameters has the disadvantage of complicating the search due to the corresponding
increase in the size of the parameter space. For our study, we let the initial burn-in of the
Markov chain last for as long as 3.5 × 105 iterations, and if the signal was not found by
this time the search was terminated. It may be possible to find smaller signals with a longer
burn-in.

Figure 4 shows the MCMC estimated posterior for the smallest value of the parameter h0

that we were able to identify with the MCMC code. The true parameter values for this run
were h0 = 4.0×10−24, ψ = 0.4, φ0 = 1.0, ι = 0.5 (cos ι = 0.878), �f = 7.0×10−3 Hz and
�ḟ = −2.5 × 10−10 Hz s−1. In this run, the MCMC yielded a mean value and 95% posterior
probability interval of h0 = 4.8 × 10−24 (3.4 × 10−24 to 7.4 × 10−24), se(h0) = 2.164 × 10−3.
Figure 5 displays the MCMC estimated posterior for the parameters �f and �ḟ , which
provides mean values and 95% posterior probability intervals of �f = 7.0 × 10−3 Hz
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Figure 4. MCMC estimate of the posterior pdf (kernel density) for the parameter h0 from
a six-parameter search using synthesized data. The real parameter value for this signal was
h0 = 4.0 × 10−24 (vertical line). This was the smallest signal detectable by the MCMC method
for the noise level used.
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Figure 5. MCMC estimate of the posterior pdfs (kernel densities) for the parameters �f and
�ḟ from a six-parameter search using synthesized data with the smallest detectable signal
h0 = 4.0 × 10−24. The real parameters for this signal (vertical lines) were �f = 7.0 × 10−3 Hz
and �ḟ = −2.5 × 10−10 Hz s−1.

(6.9998 × 10−3 Hz to 7.0002 × 10−3 Hz), se(�f ) = 3.460 × 10−9 and �ḟ = −2.500 ×
10−10 Hz s−1 (−2.505 × 10−10 Hz s−1 to −2.496 × 10−10 Hz s−1), se(�ḟ ) = 2.922 × 10−10.
As can be seen from figures 4 and 5, even with small signal level it is still possible to extract
the most astrophysically important parameters. For this MCMC run there were a total of
106 iterations, with the first 3.5 × 105 as the burn-in. For low amplitude signals that were
successfully found by the MCMC routine good estimates for the parameters h0, cos ι,�f and
�ḟ could be made; however, the posterior pdfs for the angular parameters ψ and φ0 tended
to spread uniformly across the allowed range of their a priori distributions.

5. Discussion and conclusions

In the simplest application, the method demonstrated here could complement searches for
signals from known pulsars [7, 17]; our method could be used to verify the frequency and
frequency derivative values. The real advantage of the technique would come about in a
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search for a signal at a known location, but where the frequency information pertaining to
the neutron star is not well known; a search for a signal from SN1987A [10] would be a
possible application. In the demonstration here the heterodyning process provides a band
of 1/60 Hz. It would be straightforward to expand this search to a bandwidth of 5 Hz by
running the code on 300 processors, a task easily accomplished on a cluster of computers. For
10 days of data, it takes a single 2.8 GHz personal computer approximately 1 h to conduct
about 3.3×104 iterations of our MCMC code. There are more iterations done per time interval
at the beginning of a run because at that time more stage-1 steps are accepted.

The code has also been successfully tested on real interferometer data, where the noise
spectral density is coloured, containing artificially injected signals; these results will appear in
a subsequent publication. The heterodyning process and the noise estimation procedure [17]
were still successful. The MCMC routine was also successful and robust with these data. In
summary, we believe that these MCMC methods offer great potential benefits for gravitational
radiation searches where the signals depend on a large number of parameters.
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