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Abstract
In a space based gravitational wave antenna like LISA, involving long light 
paths linking distant emitter/receiver spacecrafts, signal detection amounts to 
measuring the light-distance variations through a phase change at the receiver. 
This is why spurious phase fluctuations due to various mechanical/thermal 
effects must be carefully studied. We consider here a possible pointing jitter 
in the light beam sent from the emitter. We show how the resulting phase noise 
depends on the quality of the wavefront due to the incident beam impinging 
on the telescope and due to the imperfections of the telescope itself. Namely, 
we numerically assess the crossed influence of various defects (aberrations 
and astigmatisms), inherent to a real telescope with pointing fluctuations.
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(Some figures may appear in colour only in the online journal)

1. Introduction

It is well-known that ground based gravitational wave (GW) antennas like Advanced Virgo 
[1] or Advanced LIGO [2], by which the first historical GW signals have been detected [3–5], 
cannot operate at frequencies below a few Hz due to seismic motions or density fluctuations 
in the deep ground, which directly couple to the interferometers’ mirrors. The very low fre-
quency domain is nevertheless extremely interesting from an astrophysical point of view. This 
is why from the beginning of the GW detection planning era, as soon as the 1970’s, various 
kinds of space antennas, obviously free of terrestrial issues, have been proposed [6, 10].

The most recent program is the laser interferometer space antenna (LISA) proposal, 
supported by the European Space Agency, in which three spacecrafts orbiting the sun in a 
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triangular constellation exchange light beams propagating along 2.5 Mkm long sides [7]. 
The GW signal is expected to be detected through the phase changes at the receiving space-
craft with respect to the local laser. LISA will search for GWs in the 10−4–10−1 Hz band. 
Obviously, care must be taken with the various noises able to compete with the extremely 
small GW signal. The LISA optical system will measure the distance between freely falling 
proof masses in each satellite. In order to detect the GWs it will be necessary to measure the 
distance between the proof masses with a precision of  <10 pm within a measurement band-
width of 1 Hz [8]. To maximize the optical coupling, the laser beams are exchanged through 
an emitting-and-receiving telescope. In this configuration, the amount of scattered light in the 
optical system is another point to keep under control, as stray light can give rise to noise in the 
heterodyne phase measurements. Because of the large ratio between the emitted and received 
powers of light through the same telescope it will be necessary to control scattered light [6, 8].

Presented in this paper are our results for the calculations of the phase noise due to point-
ing jitter for the LISA telescope when the emitted beam contains optical aberrations. This 
question has been addressed by Sasso et  al [9], who performed numerical evaluations by 
Monte-Carlo techniques. We present here explicit analytical expressions. Section 2 treats the 
propagation of a laser beam over a Mkm optical path, and shows the compromise between 
clipping losses (the emitting aperture is finite) and diffraction losses (the beam expands during 
propagation). Section 3 presents the calculation of the phase at the distant telescope when the 
initial wavefront is affected by distortion and pointing error.

In section 4 the calculations for the laser beam characteristics are carried out in the limit of 
a weak aberrations approximation, and an important result is derived for the spectral density 
of the phase noise in terms of a constant (in time) pointing error (bias), a beam jitter, and the 
characteristics of the measured telescope initial wavefront distortion. Conclusions are given 
in section 5. Appendix applies the expression obtained for the phase noise to different asymp-
totic regimes. In particular, we compare our results with those of Sasso et al [9] in the case of 
a flat emitted beam.

2. Propagation and clipping trade-off

We consider a telescope used for sending a laser beam at a long distance L (several Mkm) 
from a circular aperture. The half aperture (radius) is of the order of a  =  0.15 m, determined 
by technical limitations, and the wavelength λ is around 1 µm. It is thus clear that we are 
in the very far field regime (Fraunhofer) of the diffraction theory. The output optical ampl-
itude results essentially from the truncation by the finite telescope aperture of an ideally 
Gaussian beam of waist parameter w. The quantity v ≡ (a/w)2 is an essential parameter in 
the present study. We assume a complex amplitude of the optical field given by A(x, y), where 
(x ≡ r cosφ, y ≡ r sinφ), (r � a) are the coordinates in the transverse plane containing the 
aperture. In the far field, the propagated amplitude B amounts essentially to the Fourier trans-
form of A. In the following we denote ( p, q) the coordinates in the Fourier space, the Fourier 
transform of any function f (x, y) is thus f̃ ( p, q), with

f̃ ( p, q) ≡
∫

R2
eipx+iqyf (x, y) dx dy.

With this notation, the far field complex amplitude B propagated from an initial one A from 
z  =  0, to z  =  L is:

B(x, y, L) = − i
λL

exp

[
iπ

x2 + y2

λL

]
Ã
(

p ≡ 2πx
λL

, q ≡ 2πy
λL

)
, (1)
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where now (x, y) are the coordinates in the far plane. For an ideal Gaussian beam at waist, 
truncated at r  =  a, the amplitude at the output of the telescope would be

A(x, y) =

√
2P0

πw2 e−r2/w2
(r � a),

where P0 is the laser power, and w the Gaussian waist of the beam. The Fourier transform 
Ã( p, q) of A(x, y), with the notation (x = r cosφ, y = r sinφ) and p = ρ cosψ, q = ρ sinψ 
(ρ ≡

√
p2 + q2), due to the axial symmetry, is a function of ρ  only:

Ã(ρ) =

√
2P0

πw2

∫ 2π

0
dφ

∫ a

0
r dr e−r2/w2

eiρr cos(φ−ψ)

= 2π

√
2P0

πw2

∫ a

0
e−r2/w2

J0(ρr)r dr.

Using the series representing the Bessel function J0, this is

Ã(ρ) = 2π

√
2P0

πw2

∞∑
s=0

(−)s 1
s!2

(ρ
2

)2s
∫ a

0
e−r2/w2

r2s+1dr,

or as well (with ρ = 2πr/(λL), r being now evaluated in the far plane, at z  =  L),

Ã(ρ) = πw2

√
2P0

πw2

∞∑
s=0

(−)s 1
s!2

(ρw
2

)2s
∫ a2/w2

0
e−ttsdt.

With the change of variable r ≡ λLρ/(2π), this can be rewritten as

Ã(r) =
√

2πP0 a
∞∑

s=0

(−)s 1
s!

(πar
λL

)2s γs(v)
vs+1/2 , (2)

where we used the notation v ≡ a2/w2 and the following definition for convenience,

γn(x) ≡ 1 − e−x
n∑

s=0

xs

s!
. (3)

The relation with the classical incomplete gamma function γ(n, x) is explicitly 
γn(x) ≡ γ(n + 1, x)/n!. Displayed in figure 1 is the amplitude pattern Ã(r) at the remote tele-
scope and at distance r from the z axis, and in figure 2 the intensity pattern |Ã(r)|2. The diffrac-
tion due to clipping at the emission aperture shows a central lobe of diameter about  ∼30 km. 
At a distance L, the amplitude, according to equations (1) and (2) with r  =  0, is a constant over 
the receiving telescope aperture (we take p = q = ρ = 0):

B(0, 0, L) = − i
λL

√
2P0

πw2

∫ 2π

0
dφ

∫ a

0
r dr e−r2/w2

 (4)

= − i
λL

√
2P0πw2

(
1 − e−a2/w2

)
,

so that the intensity is

I(0, 0, L) = | B(0, 0, L) |2 = 2P0πw2

λ2L2

(
1 − e−a2/w2

)2
. (5)
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The collected power by the circular aperture of the receiving telescope of radius a is therefore, 
assuming a uniform value of the received intensity:

PL =
2P0π

2a2w2

λ2L2

(
1 − e−a2/w2

)2
=

2P0π
2a4

λ2L2

γ0(v)2

v
. (6)

Note that in the definition of v (v ≡ a2/w2), the value of a is fixed by technical constraints 
(a ∼ 15 cm is a reasonable value considering the LISA mission), so that, through v, it is in fact 
the beam parameter w that we assume adjustable. The ratio of received power at length L, PL 
to the initial laser power P0 can be expressed as

PL

P0
= 2(πF)2R(v), (7)

where

R(v) ≡ (1 − e−v)
2

v
 (8)

and F ≡ a2/(λL) is the Fresnel number. For a  =  15 cm and L  =  2.5 Mkm, the order of mag-
nitude is 2(πF)2 ∼ 1.41 × 10−9, or 1.41 pW mW−1. On the other hand, the clipping of the 
beam by an aperture of radius a causes a relative loss of power R0 given by

R0(v) = 1 − 1
P0

∫

∆

|A(x, y)|2dx dy = e−2v, (9)

where ∆ refers to the disk of radius a. For a given value of a, a much smaller value of w causes 
a large angle of diffraction, resulting in a small amount of power captured by a similar aper-
ture (of radius a) at long distance. Inversely, a much larger value of w causes by truncation a 
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Figure 1. Relative amplitude in the very far field for the ratio a/w  =  1.5 between the 
clipping radius a and the waist w at emission. The points at which the amplitude crosses 
zero (red line) correspond to dark rings in the diffraction pattern.
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large loss of power at emission. This is why a trade-off must be considered between these two 
extreme situations. If we consider figure 3, we see that the optimum of received power is about 
40% of the scale factor 2(πF)2 with a/w ∼ 1.12, (or v1 ∼ 1.25) for about 8% power lost at 
emission by truncation. We also see that the choice of a/w ∼ 1.5 (or v0 = 2.25), for instance, 
is not so far from optimal (R0  =  0.35 instead of 0.4), and corresponds to a much lower fraction 
of clipped laser power (∼1%). It could be better, regarding scattered light issues, to have such 
a reasonable clipping loss. We shall consider in the following the two options.

Let us note that, in a real implementation of the LISA optical metrology system, the tel-
escope essentially produces an image, at the emitting aperture, of the ‘interface aperture’ 
located on the optical bench (see section 4.4 of [6]). The clipping of the beam does not take 
place at the telescope output aperture or in the telescope structure, but on the optical bench, at 
the interface aperture. This is indeed where the clipped laser power is to be dumped with high 
rejection. But the trade off between the clipping factor and the collection efficiency remains 
the same.

3. Imperfect emitted amplitude

The aim of this section is to analytically evaluate the phase noise in the LISA detection sys-
tem caused by pointing fluctuations. In absence of constant pointing bias and aberrations, 
the effect of those fluctuations would be negligible for an ideal beam: a perfectly spherical 

Figure 2. Intensity pattern of the far field (log10 scale) for a/w  =  1.5. Units  =  km. After 
a numerical Fourier transform using a 512 × 512 grid. Arbitrary normalization: we are 
only interested in the global structure of the field.

J-Y Vinet et alClass. Quantum Grav. 36 (2019) 205003
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wavefront is invariant by a rotation. If however the beam is both imperfect (aberrations) and 
has a constant pointing error, there is a coupling between the aberrations and the beam jitter. 
We are interested in a small zone containing the receiving telescope, of same aperture 2a, thus 
for very small values of the Fourier components. For x, y ∼ a and L ∼ 2.5 Mkm, we have 
( p, q) ∼ 3.5 × 10−4 m−1. We assume the emitting aperture being a disk of radius a, emitting a 
laser beam of waist w, and having defects expressed by a spurious extra displacement F(x, y) 
(meters) of the wavefront. The initial amplitude is thus of the form

A(x, y, 0) = e−r2/w2
eikF(x,y) (k ≡ 2π/λ). (10)

We will expand the spurious displacement in a series of Zernike functions

F(x, y) =
∑
n,m

σn,mR(m)
n (r/a) cos(sin)mφ, (11)

where (recall our notations: x = r cosφ, y = r sinφ). We use the notation cos(sin) to recall 
that Zernike functions have both parities corresponding to ±m, without weighting the form-
ulas. The R(m)

n  are the Zernike polynomials [11],

R(m)
n (ρ) ≡

√
2(n + 1)

π(1 + δm,0)

(n−m)/2∑
s=0

(−1)s (n − s)!
s![(n + m)/2 − s]![(n − m)/2 − s]!

ρn−2s

 (12)
and σn,m (units: m) are scaling factors to be assessed from measurement, after the completion 
of the telescope. The σn,m have the following definition
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Figure 3. Clipping trade-off. Relative captured power at long distance (percentage of 
2(πF)2): R(v) (black, solid) and corresponding relative truncation losses at emission: 
R0(v) (red, dashed). It can be seen that going from a/w  =  1.12 to a/w  =  1.5 causes a 
small decrease of captured power, but a strong decrease of clipping losses, i.e. of light 
diffused in the spacecraft structure and expected to cause various issues.
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σn,m ≡
∫

∆

R(m)
n (ρ)F(ρ,φ) cos(sin)(φ)ρ dρ dφ (ρ ≡ r/a), (13)

where ∆ is the disk of radius a. The propagated field is therefore determined by the Fourier 
transform

Ã( p, q) =

∫

∆

eipxeiqye−r2/w2
eikF(x,y)dx dy . (14)

3.1. Weak aberrations approximation

3.1.1. Pointing fluctuations. We assume a constant pointing error (bias) (θ0,ψ0) due to a sys-
tematic (small) error, plus a very small time dependent jitter (θ1(t),ψ1(t)) caused by vari-
ous possible mechanical/thermal fluctuations. Both θ0  and θ1 are expected in the nanoradian 
range. We add an extra phase factor in the integral equation (14), of the form

eikx(θ0 cosψ0+θ1 cosψ1)eiky(θ0 sinψ0+θ1 sinψ1) = eikrθ cos(φ−ψ) (15)

with

θ ≡
√
θ2

0 + θ2
1 + 2θ0θ1 cos(ψ0 − ψ1) (16)

and

ψ ≡ arctan

[
θ0 sinψ0 + θ1 sinψ1

θ0 cosψ0 + θ1 cosψ1

]
. (17)

With these conventions, the far field at the receiver telescope (p   =  q  =  0) is (with equation (15))

Ã(0, 0) =

∫

∆

eikrθ cos(φ−ψ)e−r2/w2
eikF(x,y)dx dy. (18)

3.1.2. First order expansion. In a realistic device, aiming to send a laser beam over Mkms, 
one can assume high quality optics, so that the aberrations in the optical system are small 
compared to the wavelength (i.e. | kF |� 1). We therefore use the first order approximation 
(in kF) of equation (18)

Ã(0, 0) =

∫

∆

eikrθ cos(φ−ψ)e−r2/w2
[1 + ikF(x, y)] dx dy. (19)

With equation (11), this is

Ã(0, 0) =

∫ 2π

0
dφ

∫ a

0
r dr eikrθ cos(φ−ψ)e−r2/w2

 (20)

+ ik
∑
n,m

σn,m

∫ 2π

0
dφ

∫ a

0
r dr eikrθ cos(φ−ψ)e−r2/w2

R(m)
n (r/a) cos(sin)mφ.

We may use the well known formula,
∫ 2π

0
eiz cosα cos(sin)(m(α+ β))dα = 2πimJm(z) cos(sin)(mβ) (∀m ∈ N),

 (21)

J-Y Vinet et alClass. Quantum Grav. 36 (2019) 205003
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where the Jm(z) (m ∈ N) are the Bessel functions of the 1st kind. We then get

Ã(0, 0) = 2π
∫ a

0
r dr e−r2/w2

J0(krθ) (22)

+ 2ikπ
∑
n,m

σn,mim
∫ a

0
r dr e−r2/w2

R(m)
n (r/a)Jm(krθ) cos(sin)mψ.

This prompts two remarks. Firstly, only even order in m will contribute to the phase (pure 
imaginary terms). A consequence is that in the preceding series m is even, and consequently, 
regarding the structure of Zernike polynomials, n too. The spurious phase of the field is thus, 
for contributing terms,

δΦ2n,2m = k σ2n,2m i2m

∫ a
0 r dr J2m(kθr)R(2m)

2n (r/a)e−r2/w2

∫ a
0 r dr J0(kθr)e−r2/w2 cos(sin)2mψ. (23)

The special case δΦ0,0 = 1√
π

kσ0,0 is a constant phase factor (piston) and has no depend-
ence on θ. Secondly, krθ  being so small, high orders in m may be neglected (for small | z |, 
Jm(z) ∼ (z/2)m/m!). If we limit the expansion to the second order, we have contributions 
coming from (2n, 0) and (2n, 2). In the following two special cases, the definition equa-
tion (12) may be rewritten as

R(0)
2n (ρ) ≡ (−1)n

√
2n + 1

π

n∑
s=0

(−1)s (n + s)!
(n − s)!s!2

ρ2s, (24)

and

R(2)
2n (ρ) ≡ (−1)n−1

√
2(2n + 1)

π

n−1∑
s=0

(−1)s (n + s + 1)!
(n − s − 1)!s!(s + 2)!

ρ2s+2. (25)

Substituting J0(z) ∼ 1 − z2/4 and J2(z) ∼ z2/8 in (23) yields

δΦ2n,0 = kσ2n,0
Nn

D0
 (26)

where

D0 ≡
∫ a

0
e−r2/w2

(
1 − (kθr)2

4

)
r dr =

w2

2

(
γ0(v)−

k2a2θ2

4v
γ1(v)

)
.

 (27)
We have also:

Nn ≡ (−1)n w2

2

√
2n + 1

π

n∑
s=0

(−1)s (n + s)!
(n − s)!s!

1
vs

[
γs(v)− (s + 1)

k2a2θ2

4v
γs+1(v)

]
. (28)

In the same way, we have

δΦ2n,2 = kσ2n,2
Mn

D0
cos(sin)2ψ (29)

where

Mn ≡ (−1)n−1i2
w2

2
k2a2θ2

8

√
2(2n + 1)

π

n−1∑
s=0

(−1)s (n + s + 1)!
(n − s − 1)!s!

1
vs+2 γs+2(v).

 

(30)
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Staying at the second order in θ finally yields

δΦ2n,0 = kσ2n,0
k2a2θ2

4
(−1)n

√
2n + 1

π
 (31)

×
n∑

s=1

(−1)s (n + s)!
(n − s)!s!

[γ1(v)γs(v)− (s + 1)γ0(v)γs+1(v)]
vs+1γ0(v)2 ,

where a constant term, analogous to a piston was discarded, and

δΦ2n,2 = kσ2n,2
k2a2θ2

8
(−1)n

√
2(2n + 1)

π
 (32)

×
n−1∑
s=0

(−1)s (n + s + 1)!
(n − s − 1)!s!

γs+2(v)
vs+2γ0(v)

cos(sin)2ψ,

again with the notation v ≡ a2/w2. Equations (31) and (32) give the results we were looking 
for: the amplitude of the two main contributions to the spurious phase due to a jitter of the 
beam in presence of aberrations. In the following section, we give numerical results.

4. Quantitative results

4.1. Phase noise

We have kaθ/2 = θ/Θ, where Θ ≡ λ/(πa) is of the order of a µrad. The preceding theory 
thus holds for pointing errors smaller than the beam divergence that do not give rise to a link 
failure. For a quantitative assessment of the preceding formulas, we introduce the two follow-
ing functions (n � 1),

fn(v) ≡ 6
n∑

s=1

(−1)s (n + s)!
(n − s)!s!

[γ1(v)γs(v)− (s + 1)γ0(v)γs+1(v)]
vs+1γ0(v)2 (33)

and

gn(v) ≡ 3
n−1∑
s=0

(−1)s (n + s + 1)!
(n − s − 1)!s!

γs+2(v)
vs+2γ0(v)

. (34)

These functions have a simple behavior for the extreme values of v, and allow for orders of 
magnitude approximations. A version equivalent to equations (33) and (34), but more appro-
priate for numerical purpose, is, after some algebra:

fn(v) =
6vn

(1 − e−v)2

[
(1 − e−v)V(1)

n (v)− ve−vV(0)
n (v)

]
,

gn(v) =
3vn

1 − e−v V(1)
n (v), (35)

using this family of rapidly convergent series:

V(m)
n (x) ≡ (n + m)!

(n − m)!
e−x

∞∑
s=0

xs

s!
(s + n − m)!

(s + 2n + 1)!
(m � n). (36)

J-Y Vinet et alClass. Quantum Grav. 36 (2019) 205003
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The behavior of functions fn(v), gn(v) is shown on figures 4 and 5 (the vertical dashed lines 
correspond to the values v0 = 2.25 and v1 = 1.15). Finally,we have:

δΦ(v) =
∑
n�1

(−1)n [δΦ2n,0(v) + δΦ2n,2(v) cos(sin)2ψ] , (37)

with

δΦ2n,0 =
σ2n,0

λ

k2a2θ2

12
αn(v), (38)

δΦ2n,2 =
σ2n,2

λ

k2a2θ2

12
βn(v), (39)

where the notation

αn(v) ≡
√
(2n + 1)π fn(v), βn(v) ≡

√
2(2n + 1)π gn(v) (40)

has been used for brevity. This normalization choice yields moreover f1(0) = g1(0) = 1. 
After numerical treatment, it appears that these functions have values rapidly decreasing with 
n for v0 ∼ 2.25 (corresponding to w  =  0.1 m, a  =  0.15 m); see tables 1 and 2, and figure 5. 
They decrease even more rapidly for v1 = 1.25.

4.1.1. Spectral densities of the phase and length noises. If we return now to the defi-
nition of the angle θ (see equation  (16)), we consider a jitter angle θ1(t) much smaller 
than the constant bias θ0 , and moreover if we assume a jitter azimuthal angle of the form 
ψ1 = ψ1,0 + δψ1(t) (δψ1(t) � ψ1,0), then we can write for the time dependent part of θ

θ2(t) � 2θ0θ1(t) cos(ψ0 − ψ1,0). (41)

On the other hand, (equation (17)) gives

ψ = ψ0 +O(θ1(t)), (42)

so that with equations (38) and (39) we have the following global phase noise

δΦ(t) = −
∑
n�1

(−1)nδΦn(t), (43)

with

δΦn(t) =
2

3Θ2 θ0θ1(t)
[σ2n,0

λ
αn(v) +

σ2n,2

λ
βn(v) cos(sin)2ψ0

]
. (44)

The linear spectral density of the phase noise is therefore related to the spectral density of the 
angular jitter Sθ1( f ) by

S1/2
φ ( f ) = S1/2

θ1
( f )

2θ0

3Θ2

∑
n>0

(−1)n
[σ2n,0

λ
αn(v) +

σ2n,2

λ
βn(v) cos(sin)2ψ0

]
.

 (45)

The spectral density of length noise S1/2
δL ( f ) is related to the preceding by

S1/2
δL ( f ) =

λ

2π
S1/2
φ ( f ),
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so that finally

S1/2
δL ( f ) = S1/2

θ1
( f )

λ

2π
2θ0

3Θ2

∑
n>0

(−1)n
[σ2n,0

λ
αn(v) +

σ2n,2

λ
βn(v) cos(sin)2ψ0

]
.

 (46)
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Figure 4. Functions fn(v), main factors in the magnitude of phase noise due to (2n, 0) 
aberrations.
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Figure 5. Functions gn(v), main factors in the magnitude of phase noise due to (2n, 2) 
aberrations.
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With the currently assumed parameters (a  =  0.15 m), and with estimations such as θ0 ∼ 700 

nrad [12], and a spectral density S1/2
θ1

( f ) ∼ 10 nrad Hz−1/2 ×
√

1 + (3 mHz/f )4  [6], we get 

the following order of magnitude expression

S1/2
δL ( f ) = 1.55 × 10−10m Hz−1/2

√
1 + (3 mHz/f )4 × X, (47)

where

X ≡
∑
n�1

(−1)n
[σ2n,0

λ
αn(v0) +

σ2n,2

λ
βn(v0) cos(sin)2ψ0

]
.

In the worst case, when all significant aberration terms cumulate (for n � 1), then a rough 
order of magnitude is X ∼ 8σ/λ (more precisely 8.13 for v0 = 2.25, and 7.96 for v1 = 1.25), 
where σ is an averaged order of magnitude value of the various aberration weights σ2n,0,σ2n,2. 
The result is

S1/2
δL ( f ) ∼ 1200 pm Hz−1/2

√
1 + (3 mHz/f )4 × σ

λ
. (48)

This provides a prediction for the acceptable RMS values for the various aberrations if we use 
the allocation of  ∼2 pm Hz−1/2 stated in [13].

Table 1. fn, gn, αn, βn for v0 = 2.25.

n fn(v0) gn(v0) αn(v0) βn(v0)

1 0.790 0.518 2.425 2.247
2 0.359 0.206 1.423 1.156
3 0.087 0.048 0.408 0.316
4 0.015 0.008 0.077 0.059
5 0.002 9.8 10−4 0.011 0.008
6 1.9 ×10−4 1.0 ×10−4 1.2 ×10−3 9.2 ×10−4

7 1.7 ×10−5 8.8 × 10−6 1.2 ×10−4 8.6 ×10−5

8 1.3 ×10−6 6.7 ×10−7 9.4 ×10−6 6.9 ×10−6

Table 2. fn, gn, αn, βn for v1 = 1.25.

n fn(v1) gn(v1) αn(v1) βn(v1)

1 0.926 0.708 2.844 3.073
2 0.232 0.146 0.921 0.821
3 0.031 0.018 0.146 0.121
4 0.003 0.002 0.015 0.012
5 2.1 ×10−4 1.1 ×10−4 0.001 0.001

6 1.2 ×10−5 6.4 ×10−6 7.6 ×10−5 5.8 ×10−5

7 5.8 ×10−7 3.1 ×10−7 4.0 ×10−6 3.0 ×10−6

8 2.4 ×10−8 1.3 ×10−8 1.8 ×10−7 1.3 ×10−7
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5. Conclusion

A complete far-field modeling of the laser light intensity and phase for LISA is an important 
task that is not yet complete, but is necessary for the success of the LISA mission. In the study 
presented in this article we have analytically shown how the deleterious coupling of aberra-
tions in the emitting telescope optics with fluctuating pointing errors (a constant term plus a 
jitter) may cause an important noise in the optical field collected by the receiving telescope at a 
distance of 2.5 Mkm. If this noise were to be reduced by special care with the telescope optics, 
this would imply an RMS wavefront distortion of less than lambda/500, which does not seem 
to be achievable with state-of-the-art techniques. But two points are worth mentioning. On one 
hand, the limit of 2 pm/Hz−1/2 considered above is indeed the total allocation for all sources 
of tilt-to-length coupling (TTL) in the transmit path. The wavefront error considered in this 
paper is only a fraction of the total TTL, leading to an even more severe limit to wavefront 
dist ortions. On the other hand, efforts are being made towards an active control of the position 

 0  1  2  3  4  5  6  7  8  9 10
10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

n

α n,β
n

Figure 6. αn(v0) (red circles) and β(v0) (blue circles) for v0 = 2.25. αn(v1) (red 
diamonds) and β(v1) (blue diamonds) for v1 =1.25.
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of the aperture on the optical bench, which would allow a major reduction of tilt-to-length 
coupling [12] and subtraction of the remaining TTL using the Differential Wavefront Sensing 
signal after the appropriate coefficients have been determined. These aspects are beyond the 
goal of this paper which is to provide an analytical determination of the coefficients pertain-
ing to the mispointing-induced phase jitter when the emitted wavefront distorsion has been 
expressed in terms of Zernike polynomials. Our study here, as well as that by Sasso et al [1], 
are attempts to address some specific effects, and contribute to the ongoing effort to a compre-
hensive modeling of the LISA far-field intensity and phase distributions. Such simulations and 
modeling are needed to determine the requirements for LISA as it approaches the important 
period where the design of the full optical system will be defined.
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Appendix. Two asymptotic regimes

Equation (45) is much simpler in two opposite limits, corresponding respectively to very small 
or very large values of the parameter v ≡ (a/w)2. In these two cases, it is possible to get the 
result (phase noise) by more straightforward calculations. These checks are useful, in that they 
help provide confidence in the general result which relies on a somewhat involved calculation.

A.1. Phase noise with a very large beam waist parameter

First, let us recall for the reader that w � a means that the beam amplitude is uniform across 
the telescope aperture, so that the emitted beam is mostly an Airy-type beam. Its typical diver-
gence angle is determined by the telescope aperture 2a.

A.1.1. Phase noise after the present theory, with a much smaller than w. If the beam waist is 
large compared to the aperture of the emitting telescope, i.e. if v → 0, then we see numerically 
from equations (33) and (34), (see also figures 4 and 5), that fn(0) = gn(0) = 0 for n  >  1, and 
f1(1) = g1(1) = 1. Using equations (37)–(39), we get

δΦ(t) = −k2a2θ(t)2

12

√
3π

[σ2,0

λ
+

√
2
σ2,2

λ
cos(sin)2ψ

]
. (A.1)

A.1.2. Phase noise: direct calculation when a is much smaller than w. If the beam amplitude 
is nearly constant within the aperture of the emitting telescope, we can take the definition 
equation (23) and ignore the Gaussian factor e−r2/w2

, which yields

δφ = k
∑
n,m

σ2n,2mi2m An,m

A0
cos(sin)2mψ, (A.2)

with

A0 =

∫ a

0
J0(kθr)rdr = a2 J1(kθa)

kθa
, (A.3)
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and, using the theorem (see [11])

∫ 1

0
R(m)

n (ρ)Jm(ρu)ρdρ = (−1)(n−m)/2

√
2(2n + 1)
π(1 + δm,0)

Jn+1(u)
u

, (A.4)

we also get

An,m =

∫ a

0
J2m(kθa)R(2m)

2n (r/a)rdr = (−1)n−ma2

√
2(2n + 1)
π(1 + δm,0)

J2n+1(kθa)
kθa

,

 (A.5)
so that

δΦ = k
∑
n,m

σ2n,2m(−1)n−1i2
√

2(2n + 1)
π(1 + δm,0)

J2n+1(kθa)
J1(kθa)

cos(sin)2mψ. (A.6)

The n  =  0 term is independent on θ and may be ignored. Moreover, if we limit ourselves to sec-
ond order in kaθ, we are left with n = 1, m = 0, 1, and eventually, with J3(z)/J1(z) ∼ z2/24,

δφ = −k
k2a2θ2

24

√
3
π

[
σ2,0 +

√
2σ2,2 cos(sin)2ψ

]
, (A.7)

which is identical to equation  (A.1), and in agreement with the expression obtained in [9] 
(their equation (24c)).

A.2. Phase noise with a very large telescope aperture

In the case a � w, the telescope is large enough to emit the Gaussian beam without clipping. 
The far field is essentially a Gaussian beam with a half-divergence angle λ/πw, and with 
negligible Airy-type undulations.

A.2.1. Phase noise after the present theory when w is much smaller than a (almost no clip-
ping). If the beam width is small compared to the emitting telescope aperture, i.e. v → ∞, 
then the functions fn, gn reduce to:

fn(v) = 6n(n + 1)
1
v2 +O(v−4), gn(v) = 3n(n + 1)

1
v2 +O(v−4), (A.8)

giving, with equations (37)–(39):

δΦ(t) = −k2w2θ(t)2

2
w2

a2

∑
n

n(n + 1)
√
(2n + 1)π

[
σ2n,0

λ
+

1√
2
σ2n,2

λ
cos(sin)2ψ

]
. (A.9)

A.2.2. Phase noise: direct calculation when w is much smaller than a. If w � a, (i.e. the 
aperture of the emitting telescope has no clipping effect on the emitted beam) we can:

 •  Neglect the Zernike polynomials of order m  >  2, and limit others at the second order in 
r/a;

R(0)
2n (r/a) = (−1)n

√
2n + 1

π

[
1 − n(n + 1)

r2

a2

]
+O(r4/a4), (A.10)

R(2)
2n (r/a) = (−1)n−1

√
2(2n + 1)

π

n(n + 1)
2

r2

a2 +O(r4/a4). (A.11)
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 •  In equation (23), replace the limited integration [0, a] by [0,∞], so that the phase change 
becomes

δΦ =
∑
n�1

(−1)n An,0 + An,2 cos(sin)2ψ
A0

, (A.12)

with

A0 =

∫ ∞

0
J0(kθr)e−r2/w2

r dr =
w2

2
e−k2θ2w2/4, (A.13)

An,0 = kσ2n,0 A0

√
2n + 1

π

[
1 − n(n + 1)

w2

a2

(
1 − k2θ2w2

4

)]
, (A.14)

An,2 = kσ2n,2 A0

√
2(2n + 1)

π

n(n + 1)
2

w2

a2

k2θ2w2

4
, (A.15)

so that, for the part depending on θ, we have, according to the definition equation (A.12)

δΦ(t) = −k2w2θ(t)2

2
w2

a2

∑
n

n(n + 1)
√
(2n + 1)π

[
σ2n,0

λ
+

1√
2
σ2n,2

λ
cos(sin)2ψ

]
, (A.16)

in agreement with equation (A.9).
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