
1

Classical and Quantum Gravity

Optimizing signal recycling for detecting a 
stochastic gravitational-wave background

Duo Tao1 and Nelson Christensen1,2

1  Physics and Astronomy, Carleton College, Northfield, MN 55057,  
United States of America
2  ARTEMIS, Université Côte d’Azur, Observatoire Côte d’Azur, CNRS, CS 34229, 
F-06304 Nice Cedex 4, France

E-mail: duo.tao@ligo.org and nelson.christensen@oca.eu

Received 8 January 2018, revised 26 April 2018
Accepted for publication 30 April 2018
Published 17 May 2018

Abstract
Signal recycling is applied in laser interferometers such as the Advanced 
Laser Interferometer Gravitational-Wave Observatory (aLIGO) to increase 
their sensitivity to gravitational waves. In this study, signal recycling 
configurations for detecting a stochastic gravitational wave background are 
optimized based on aLIGO parameters. Optimal transmission of the signal 
recycling mirror (SRM) and detuning phase of the signal recycling cavity 
under a fixed laser power and low-frequency cutoff are calculated. Based 
on the optimal configurations, the compatibility with a binary neutron star 
(BNS) search is discussed. Then, different laser powers and low-frequency 
cutoffs are considered. Two models for the dimensionless energy density 
of gravitational waves Ωgw( f ) = Ωα( f/fref)

α, the flat model α = 0 and the 
α = 2/3 model, are studied. For a stochastic background search, it is found 
that an interferometer using signal recycling has a better sensitivity than an 
interferometer not using it. The optimal stochastic search configurations are 
typically found when both the SRM transmission and the signal recycling 
detuning phase are low. In this region, the BNS range mostly lies between 160 
and 180 Mpc. When a lower laser power is used the optimal signal recycling 
detuning phase increases, the optimal SRM transmission increases and the 
optimal sensitivity improves. A reduced low-frequency cutoff gives a better 
sensitivity limit. For both models of Ωgw( f ), a typical optimal sensitivity limit 
on the order of 10−10 is achieved at a reference frequency of fref = 25 Hz.
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1.  Introduction

The search for a stochastic gravitational wave background (SGWB) has been important in our 
understanding of the universe, even if the SGWB has yet to be detected [1–5]. The Advanced 
Laser Interferometer Gravitational-Wave Observatory (aLIGO), one of the most sensitive sci-
entific instruments in the world, had the capability to detect gravitational waves in its first and 
second observation runs [6–12]. Advanced Virgo [13], observing in the second observing run 
with aLIGO also participated in two detections [11, 12]. In the coming observation runs, it is 
expected that more about the SGWB will be understood as the detectors’ sensitivities improve 
and the LIGO-Virgo network can make deeper searches [14, 15].

The introduction of the signal recycling system in aLIGO improves the sensitivity of the 
interferometers [16]. In this paper, we will show that an interferometer system with signal 
recycling is more sensitive for detecting the SGWB than a system without. Also, we derive 
the optimal configurations of the signal recycling mirror (SRM) that could achieve an optimal 
sensitivity for detecting a SGWB with a dimensionless energy density Ωgw( f ) on the order of 
10−10.

It is important to note that the purpose of this paper is not to promote the use (for example 
by LIGO and Virgo) of signal recycling optimized for a search for a SGWB. The purpose is to 
understand the different optimization regimes, especially with respect to searches for compact 
binary systems. As will be described below, there are important and interesting differences 
between interferometer configurations optimized for a SGWB search and a search for gravita-
tional waves from binary neutron star inspiral. We also find configurations where both of these 
searches can simultaneously effectively occur.

In this study the sensitivities of the Advanced LIGO interferometers are simulated with 
the the Gravitational Wave Interferometer Noise Calculator (GWINC) [17]; the sensitivities 
are assumed to be the same for the two detectors. This is the software that has been used to 
produce predictions of the performance of Advanced LIGO [16, 18, 19]. The signal recycling 
results presented here were generated with GWINC based on the analysis of Buonanno and 
Chen [20, 21].

Section 2 presents the general approach to optimize the SGWB search and the result for a 
particular power usage and frequency cutoff. Section 3 considers the optimization under dif-
ferent laser powers and low-frequency cutoffs. Section 4 considers the Ωgw( f ) ∝ f 2/3 power-
law model [14] for the SGWB. Section 5 summarizes the results of this project and considers 
possible topics of future work.

2.  Optimization for the SGWB search

2.1.  Signal recycling parameters

The aLIGO optical configuration is displayed in figure 1 [16]. The SRM is a mirror at the 
output port of the interferometer, sending part of the signal (output beam) back into the inter-
ferometer to create resonances at certain frequencies in order to amplify the signal sensitivity 
[22, 23].

We are interested in two parameters pertaining to the signal recycling configuration, the 
transmission of the SRM and the signal recycling detuning phase. It should be noted that the 
transmission is the light power transmission, the percentage of power transmitted through the 
mirror, in contrast to the amplitude transmission. It is given as [20]

T = 1 − R − λSR� (1)
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where R is the reflectivity, T is the transmission and λSR is the loss inside the signal recycling 
cavity (SRC). This is the sum of mismatch loss and beamsplitter loss. In this work, we assume 
that the mismatch loss is zero. This is the mismatch between the modes in the arms and the 
SRC. The beamsplitter loss is assumed to be 2 × 10−3. It should be stressed that the improve-
ment derived from the use of signal recycling is very sensitive to these losses [21]. In this pres-
ent study we strive to mimic previous calculations predicting the performance of Advanced 
LIGO [16–18]. Consequently, T could not be greater than 99.8% unless T  =  1 when there is 
no signal recycling. Another parameter considered in this work is the signal recycling detun-
ing phase [17, 20]. Note that Advanced LIGO, so far in its initial observing runs, has operated 
in a broadband mode where the signal recycling detuning phase has been set to zero [16].

2.2.  Sensitivity limit Ωgw( f )

A gravitational wave makes a slight modification to flat space. Using linearized general 
relativity

gµν ≈ ηµν + hµν ,� (2)

where gµν is the spacetime metric, ηµν is the flat space Minkowski metric, and hµν is the 
perturbation to the metric; in this case hµν is the gravitational wave. Gravitational waves have 
two possible polarizations, and like electromagnetic waves, their effect is transverse to the 
direction of propagation.

Gravitational wave detectors, like Advanced LIGO and Advanced Virgo, were constructed 
to measure a gravitational wave strain, with amplitude h(t) (a dimensionless quantity). In real-
ity, a gravitational wave detector will produce a signal, s(t), that is the sum of the gravitational 
wave stain, h(t), and noise, n(t), namely

s(t) = h(t) + n(t),� (3)

Figure 1.  The aLIGO optical configuration, reproduced from [16]. © IOP Publishing 
Ltd. All rights reserved. The SRM is shown and the input power at the power recycling 
mirror is assumed for the first part of this analysis to be 125 W.
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where n(t) � h(t). The SGWB will just appear as noise in a single detector. The way to detect 
the SGWB is therefore to use two detectors, and perform a correlation on the two output 
signals. Imagine two co-located detectors, subjected to the same gravitational wave h(t), then

〈s1(t)s2(t)〉 = 〈(n1(t) + h(t))(n2(t) + h(t))〉 ,� (4)

where the brackets indicate a time average. If the noise in each detector is statistically inde-
pendent from one another, and also with the SGWB, then

〈s1(t)s2(t)〉 ≈ 〈h(t)h(t)〉 .� (5)

In order for there to be no correlated noise, the detectors should be displaced from one 
another [24]. The two Advanced LIGO detectors are separated by 3000 km. However, even 
with substantial separation it has been demonstrated that global magnetic field noise from the 
Schumann resonances can have a coherence between the LIGO and Virgo sites [25, 26]. For 
this present study we will ignore these magnetic field correlations. Because of the distance 
separation and the fact that the two interferometers are not perfectly aligned with respect 
to one another, extracting the common SGWB signal from the correlation between the two 
detectors becomes more complicated; see [1, 23, 27] for explicit details on how this is accom-
plished for LIGO and Virgo.

The correlation between the outputs of two gravitational wave detectors, located at �x1 and 
�x2, will be proportional to the root mean square (rms) of the gravitational wave strain, h2

rms. 
This can be related to the one-sided spectral density of the gravitational wave, Sh( f ), or

h2
rms =

〈∑
i,j

hijhij

〉
=

∫ ∞

0
dfSh( f ) .� (6)

Sh( f ) can then be related to the gravitational wave energy density,

ρgw =

∫ ∞

0
dfSh( f )

πc2f 2

8G
.� (7)

We can then relate the energy density of the SGWB, ρgw, and the energy density per unit 
frequency, ρgw( f ),

ρgw =

∫
ρgw( f )df .� (8)

Noting that ρgw( f ) is a function of the frequency of the gravitational waves, we can then define 
another quantity Ωgw( f ) in equation (9) as [23]

Ωgw( f ) =
1
ρc

dρgw

d ln f
=

fρgw( f )
ρc

.� (9)

Ωgw( f ) is the energy density of the SGWB per logarithmic frequency interval, normalized by 
ρc, the closure density of the universe. We can express a frequency dependence of the energy 
density by writing

Ωgw( f ) = Ωα( f/fref)
α� (10)

where fref is a reference frequency. Based on this, it is found that the detection sensitivity limit 
is given as [23]

Ωα �
25πc2

16ρcG

√
2
T

[ ∫ γ2(�x1, �x2, f )
h4

n( f ) f 6−2αf 2α
ref

df
]−1/2

,� (11)
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where γ(�x1, �x2, f ) is the overlap reduction function [23]; this quantity takes into account the 
distance separation between two detectors, and their relative orientation [27]. hn( f ) is the 
interferometers’ noise spectrum (assumed to be the same for the two detectors used in the cor-
relation experiment) and T is the integration time, which in this case is assumed to be a year. 
For most of the work in this study we assume Ωgw( f ) is a constant for SGWB, i.e. α = 0, and 
thus we have

Ωgw( f ) = Ω0.� (12)

When Ωgw( f ) is a constant, according to equation (11), the detection limit Ω0 is

Ω0 �
25πc2

16ρcG

√
2
T

[ ∫ γ2(�x1, �x2, f )
h4

n( f ) f 6 df
]−1/2

.� (13)

While a constant energy density would diverge for an integral over all frequencies, for the 
present study we are only concerned with the frequency dependence of the SGWB energy 
density over the bandwidth of the detectors.

According to equation (13), the sensitivity to a SGWB will be best at low frequencies for 
aLIGO because the overlap reduction function is larger there, plus the f−6 dependence; cer-
tainly the frequency dependence of the interferometers’ noise hn( f ) will also play an important 
part in the sensitivity to a SGWB. The computation is done by GWINC [17].

2.3. The method

We calculate all the sensitivity results for configurations with signal recycling detuning phase 
from −180◦ to 180◦ and SRM transmission from 0% to 100%. Note that we would aban-
don any results greater than 99.8% other than 100% so as to avoid conflict with equation (1) 
but it turns out that none of the optimization results produced in this work has transmission 
between 99.8% and 100%. Therefore, we search for the optimal sensitivity in a 2D domain of 
[transmission × phase]. The step size through the parameter space determines the accuracy of 
the optimization. Using smaller steps would improve the accuracy of the optimization results. 
However, computational resources limit the size of the steps such that if the steps are too 
small, there will be too many candidate configurations produced and the amount of computa-
tions would be unfeasible. Therefore, we take the following two-step approach to obtain a 
finer optimization without too much computational burden.

	 1.	�We start with a full scan over the whole region with transmission resolution of 0.1% and 
phase resolution of 1◦. Transmission ranges from 0% to 100% and the phase ranges from 
−180◦ to 180◦. Therefore, there will be 1000 × 180 = 180 000 configurations considered 
and the accuracy of the results is 0.1% and 1◦.

	 2.	�Then, we do a localized scan within the accuracy limit around the optimized configu-
rations we get in the first step. Suppose that in the first step we find the transmission 
T and the phase φ that achieve the best sensitivity. We then scan the 2D domain 
[T − 0.1%, T + 0.1%]× [φ− 1◦,φ+ 1◦] with a transmission resolution of 0.01% and a 
phase resolution of 0.1◦, both ten times finer than the first step. Thus, the second step 
involves 20 × 20 = 400 configurations in total.

Hence, the method above gives results with accuracy of 0.01% in transmission and 0.1◦ in 
phase.

We are aware that this method has its shortcomings such that in the second step we might 
be approximating a local extremum. If there are multiple local extrema and in the first step 
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we locate a local extremum that is not the global extremum due to insufficient resolution, the 
second step will only get us closer to the local extremum. The problem of insufficient resolu-
tion always exists when we optimize a function numerically. However, we shall explain at the 
end of this section that this might not be a significant problem.

We have examined using alternative optimization methods such as gradient descent or 
a simplex search to find the optimal transmission and phase. The benefit of using a more 
advanced optimization algorithm is the time efficiency. One would use them when it is beyond 
the computing capability to enumerate all possible inputs. Fortunately, in this present study, 
both the transmission and the phase have a limited range. We can find optimal values with sat-
isfactory accuracy using a grid search. Therefore, compared to the alternatives, the grid search 
gives us the full picture of the behavior, finds the global optimum to a satisfactory accuracy 
without overwhelming our computational ability, and does not have much technical risk due to 
its simplicity. Therefore, the grid search is our most feasible choice in this particular situation.

2.4.  Optimization results

We assume 125 W incident on the power recycling mirror. Using the method described above, 
it is found that 1.5% transmission and 2.7◦ of signal recycling detuning phase give us the 
optimal SGWB sensitivity with the limit of Ω0 being 6.8 × 10−10. Due to the fact that the 
smallest grid size used in the second step to locate this optimum configuration is 0.01% for 
transmission and 0.1◦ for the signal recycling detuning phase, the uncertainties in the results 
are 0.01% for transmission and 0.1◦ for the signal recycling detuning phase. Taking the uncer-
tainties into account, the results for the optimization of an interferometer with 125 W of laser 
power input for the SGWB search are 1.5%± 0.01% for transmission, and 2.7◦ ± 0.1◦ for the 
signal recycling detuning phase.

The optimal noise spectrum for 125 W is shown in figure 2. We can see a dip in the low 
frequency range around 25 Hz, which should explain why this configuration does well for 
SGWB search. The f−6 term in equation (13) gives the low frequency noise spectrum much 
more weight than the high frequency part so a low frequency improvement is more effective 
to enhance the SGWB sensitivity.

2.5.  Comparison with other configurations

The total noise spectrum of a SGWB optimized configuration is compared with other configu-
rations in figure 3. There are three other configurations with which we have interest: no signal 
recycling, the configuration optimized for a binary neutron star (BNS) search and the nominal 
configuration.

	 1.	�No signal recycling: when there is no signal recycling installed in the interferometer, all 
light passes so we set the transmission to one. The noise spectrum is shown in figure 3. 
The sensitivity limit for Ω0 is 1.1 × 10−8.

	 2.	�Optimal BNS search: this configuration (transmission 20% and detuning phase 16◦) has 
an optimal BNS range of 207.9 Mpc [16]. The noise spectrum is shown in figure 3. We 
can see that its optimization is different than the optimal SGWB spectra in figure 2. The 
former has its best sensitivity around mid-frequency 100 Hz while the latter benefits the 
most from low-frequency improvements. The sensitivity limit for Ω0 is 2.3 × 10−9.

	 3.	�Nominal configuration: the nominal configuration (transmission 33% and phase zero) 
has a flat and smooth noise spectrum, displayed in figure 3. The sensitivity limit for Ω0 is 
2.3 × 10−9.

D Tao and N Christensen﻿Class. Quantum Grav. 35 (2018) 125002
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From all of the three comparison plots presented in figure 3, it can be seen that the optimal 
SGWB configuration has a significant improvement at low frequencies. At the same time, 
there is a sacrifice of mid-frequency performance around 100 Hz. The low-frequency sensitiv-
ity is more important for a SGWB search, hence the better sensitivity for Ω0.

Parameters for the optimal SGWB search and the other three configurations are summa-
rized on table 1. The SGWB optimized configuration is about three times more sensitive than 
the BNS optimized configuration for SGWB search. Also, the BNS optimized configuration 

Figure 2.  The noise spectrum for the optimal SGWB configuration at 125 W, with the 
low-frequency cutoff as 10 Hz. The signal recycling detuning phase is 2.7◦ and the 
transmission is 1.5% [17].

Figure 3.  Comparison of the detector sensitivity optimized for a SGWB search with 
other configurations: no signal recycling (transmission  =  1, phase  =  0), BNS optimized 
(transmission  =  20%, phase  =  16◦) and nominal configuration (transmission  =  33% 
and phase  =  0).

D Tao and N Christensen﻿Class. Quantum Grav. 35 (2018) 125002
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has a BNS range 53 Mpc further than the BNS range of the SGWB configuration. If we were 
to choose one configuration to use for both the SGWB search and the BNS search among the 
four configurations in table 1, the BNS optimized configuration would probably be the pre-
ferred choice since it has the best BNS range and a reasonable SGWB Ω0 limit.

2.6.  Compatibility with BNS search

In this section, we will address the question as to whether there is a particular signal recycling 
configuration such that a SGWB search could be compatible with a BNS search. There are 
two approaches used here.

The first approach is quantitative. We are looking for a configuration that has good sensi-
tivities for both the SGWB search and the BNS search. Based on this, we can limit the scope 
to configurations having nominally good sensitivities for the SGWB search. Thus, we list all 
configurations that give Ω0 < 10−9 and calculate the maximum BNS range among them. It is 
found that the maximum BNS range is 165 Mpc. Compared with the 207.9 Mpc for the BNS 
optimized configuration and 191 Mpc for the nominal configuration, these configurations are 
significantly less effective for a BNS search.

The second approach is qualitative. We plot all Ω0 and BNS ranges on a 2D region of the 
(transmission  ×  detuning phase) space. The plots are shown in figure  4. Both the SGWB 
search and the BNS search are optimized on the center of the left edge where the phase and 
transmission are low. However, the darkest region of the SGWB plot is even closer to the 
origin than the optimal (brightest) region of the BNS range. The optimal configuration of the 
SGWB search has even lower transmission and phase. It also deteriorates more quickly as 
the transmission and phase increases. When it gets close to the high BNS range region, the 
sensitivity rapidly worsens.

2.7.  Issues with potential extrema

With the information in figure 4, we are now able to address the issue left in part C. In part 
C, we were worried about the validity of our method such that there might be a global opti-
mal configuration between the smallest steps of our scanning of the phase and transmission. 
However, examining the colors in figure 4, we notice that there is not another region that has 
Ω0 comparable to the darkest region around the origin. Thus, since we located the extremum 
in the low-phase and low-transmission region, it is unlikely for other local extrema to compete 
with it.

Table 1.  Parameters for the four configurations involved in the comparison. The 
BNS ranges and the Ω0 are calculated assuming an input laser power of 125 W and  
low-frequency cutoff 10 Hz.

Configuration SRM transmission

Signal recycling  
detuning phase  
(degrees) Ω0

BNS 
Range(Mpc)

No recycling 1 0 1.1 × 10−8 116.6

Optimal BNS 0.2 16 2.3 × 10−9 207.9

Optimal SGWB 0.015 2.7 6.8 × 10−10 154.4

Nominal 0.33 0 2.3 × 10−9 191.2

D Tao and N Christensen﻿Class. Quantum Grav. 35 (2018) 125002
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3.  Using a different laser power and low-frequency cutoff

For all the work above, we have assumed a laser power of 125 W and low-frequency cutoff of 
10 Hz. In this section, we will optimize the signal recycling parameters using different laser 
powers and low-frequency cutoffs, while keeping all of the other aLIGO (target sensitivity) 
noise terms the same.

3.1.  Optimal configurations

The relation between power and the optimization is investigated in two groups: low power 
below 5 W and high power above 5 W up to 200 W. We use a smaller step size for lower laser 
power. For the high power group, we use a step size of 5 W. Namely, we optimize all interfer-
ometers with laser powers from 5 W to 200 W, in steps of 5 W. For the low power, we use a step 
size of 0.5 W. Thus, we optimize all interferometers with laser powers from 0.5 W up to 5 W 
in steps of 0.5 W. For each laser power, three low-frequency cutoffs, 10 Hz, 15 Hz and 20 Hz, 
are considered. Therefore, combining 49 input powers with three low-frequency cutoffs for 
each power, the signal recycling of 147 possible interferometer parameters are optimized for 
the SGWB search. We find the optimal signal recycling configurations (i.e. the SRM transmis-
sion and the signal recycling detuning phase that produce the lowest Ω0 limit) for all the 147 
input power and low-frequency cutoff combinations. The results are shown in figure 5; note 

Figure 4.  Plots of log10(Ω0) and the BNS range as functions of SRM transmission 
and signal recycling detuning phase. These calculations assume a laser power input of 
125 W and low-frequency cutoff of 10 Hz. On the left are plots of log10(Ω0) and on the 
right are plots of BNS range. We can see that both are optimized in the low-phase low-
transmission region close to the origin. However, the optimal region for Ω0 is smaller 
and closer to the origin than the optimal region of the BNS range. This is clear in the 
zoomed-in plots on the bottom.

D Tao and N Christensen﻿Class. Quantum Grav. 35 (2018) 125002
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that this figure shows the results for the three options for the low-frequency cutoff: 10 Hz, 15 
Hz and 20 Hz.

The top plot of figure 5 shows the SRM transmission that produces the lowest Ω0 limit as 
a function of laser power. If we increase the input laser power, we should increase the SRM 
transmission if the input power is below 5 W but decrease the SRM transmission if the input 
power is above 5 W. For example, with a 10 Hz cutoff, if we increase the laser power from 
0.5 W to 5 W, we should increase the SRM transmission from 5.5% to 19.8% to achieve the 
lowest Ω0 limit. However, if we keep increasing the input power from 5 W to 200 W, we find 
the SRM transmission that produces the lowest Ωgw limit decreases from 19.8% to 1.0%.

The bottom plot of figure 5 shows the signal recycling detuning phase of the optimal con-
figuration as a function of the input power. We should decrease the signal recycling detuning 
phase if we increase the input power. For example, if the input power is 0.5 W, the detuning 

Figure 5.  Optimal SRC configurations as a function of input laser power. The plot 
shows the SRM transmission and the signal recycling detuning phase that produce the 
lowest Ω0 limit, for input laser powers between 0.5 W and 200 W. The top plot shows 
that if we increase the input power, we should increase the transmission when the laser 
power is below 5 W, but decrease the transmission above 5 W. The bottom plot shows 
that when we increase the input laser power, we should decrease the detuning phase, in 
order to produce the best sensitivity to SGWB.

D Tao and N Christensen﻿Class. Quantum Grav. 35 (2018) 125002
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phase that gives the lowest Ω0 is 118°. If we instead use 200 W laser, we should decrease the 
phase to 1.7°. According to figure 5, the phase goes down to zero.

3.2.  Optimal Ω0

The relation between laser power, low-frequency cutoff and the optimal sensitivity Ω0 is pre-
sented in figure 6. These correspond to the optimal configurations found in figure 5. As the 
power decreases, the sensitivity improves and is the best around 1.5 W. The optimal powers are 
1.5 W for 10 Hz and 15 Hz cutoff, and 2 W for 20 Hz cutoff. For 10 Hz cutoff and 1.5 W laser 
power, the optimal Ω0 is 5.7 × 10−10, which is the global optimal sensitivity among all inter-
ferometer configurations considered. When the laser power is above 5 W, the sensitivity gets 
worse as the laser power increases. Assuming a 10 Hz cutoff, the optimal Ω0 is 6.5 × 10−10 at 
5 W and it worsens (albeit not significantly) to 6.9 × 10−10 at 200 W. Also, reducing the low-
frequency cutoff improves the sensitivity. For example, when we use a 125 W laser, a 10 Hz 
cutoff has a limit of 6.8 × 10−10 for Ω0 while a 20 Hz cutoff has 7.8 × 10−10.

In addition, another two observations can be made from the high power region of figure 6.

	 •	�The optimal sensitivity improves as power increases from zero until it reaches the optima 
at about 2 W. As the power keeps increasing from the optimal sensitivity, the sensitivity 
gets worse. However, we can see an interesting behavior in that Ω0 increases faster at 
the beginning and slows down later. The consequence of this is that, if we examine the 
increasing of Ω0 between 2 W and 200 W, we can see that most of the increase happens 
between 2 W and 10 W. The difference of Ω0 between 10 W and 200 W is less than the 
difference between 2 W and 10 W.

	 •	�The relation between the low-frequency cutoff and the optimal Ω0 limit is non-linear. 
The gap between the 20 Hz line and the 15 Hz line in figure 6 is much larger than the 
gap between the 15 Hz line and the 10 Hz line. This reflects the rapid change in the 
interferometer’s sensitivity at low frequencies.

In order to look further into how the laser power affects sensitivity, we compare the noise 
spectra of some example laser powers in figure 7. The noise spectra for 2 W, 5 W, 50 W, 125 W 

Figure 6.  Plot of the SGWB sensitivity limit versus laser power and low-frequency 
cutoff. It can be seen that the best sensitivity for the SGWB is around  ∼2 W.

D Tao and N Christensen﻿Class. Quantum Grav. 35 (2018) 125002
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and 200 W optimal configurations are plotted. One can see that the high frequency minimum 
shifts to the low frequency region as power decreases, lowering the noise at the low frequency 
region at the cost of high frequencies. Eventually at 5 W, both dips are below 100 Hz and this 
contributes to the low-frequency optimization. This explains the improvement of SGWB sen-
sitivity when using low laser power.

Contributing to the low frequency improvements is the reduction of the quantum noise 
(the sum of the radiation pressure noise and shot noise). Laser power is directly related to the 
radiation pressure noise [20], which dominates the quantum noise at low frequencies [28]. 
Considering the significance of the low-frequency behavior of hn( f ) we arrive at the point 
where lower laser power gives lower radiation pressure noise, which in turn leads to the low-
frequency improvement shown, in figure 7 and finally gives a better sensitivity limit as seen in 
figure 6. This is further displayed in figure 8. With the laser power at 5 W the quantum noise 
is dominant below 20 Hz, and then above 30 Hz. With 2 W of laser power the quantum noise 
has been reduced, and the Brownian noise for the mirror coatings dominates in the important 
low-frequency regime (18 Hz to 38 Hz in this example).

4.  Optimizing the search for a compact binary produced SGWB

In equation  (10), we write a general model for the frequency dependence of Ωgw( f ) with 
two parameters α and the reference frequency fref. For all the work above, we assumed a flat 
SGWB model, α = 0, as is given in equation (12). Here we explore a model that represents 
the background produced by compact binary mergers (binary black holes or binary neutron 
stars) over the history of the universe [14, 15], where α = 2/3 is assumed. Certainly there are 
proposed SGWBs where the frequency dependence is different [2], but we concentrate on the 
two models that are most likely to be detected by the advanced detector network in the coming 
years [15]. We will now optimize the signal recycling for a SGWB search with this α = 2/3 
frequency dependence and compare the results with the flat α = 0 model.

Figure 7.  Dependence of the optimal SGWB noise spectra on laser power. The 
powers considered are 2 W, 5 W, 50 W, 125 W and 200 W, and the plotted spectra use 
optimal signal recycling configurations. With the decrease of laser power, the bottom 
part of the spectra becomes narrower, and the local minimum on the right shifts to 
lower frequencies. This low frequency improvement leads to a better sensitivity for the 
SGWB search.
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4.1. The α = 2/3 model and sensitivity limit

If we use α = 2/3 in equation (10), we get

Ωgw( f ) = Ω2/3(
f

fref
)2/3.� (14)

We can represent the detection sensitivity limit with Ω2/3 and, according to equation (11), the 
sensitivity limit is

Ω3/2 �
25πc2

16ρcG

√
2
T

[ ∫ γ2(�x1, �x2, f )

h4
n( f ) f 14/3f 4/3

ref

df
]−1/2

.� (15)

The use of α = 3/2 somewhat mitigates the fact that the low-frequency noise spectrum con-
tributes more to the sensitivity limit than the high frequency spectrum with the f−14/3 in the 
place of f−6 in the integrand. The low-frequency spectrum is still much more important than 
that for higher frequencies.

Figure 8.  Optimal SRC configurations, and the contributing noise sources, for 5 W 
(top) and 2 W (bottom) of input laser power. These plots can be compared with figure 2 
for 125 W. For 5 W the quantum noise is dominant below 20 Hz, and then above 30 Hz. 
For 2 W of laser power the quantum noise has been reduced, and the Brownian noise 
for the mirror coatings dominates in the important low-frequency regime, in this case 
from 18 Hz to 38 Hz.
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Figure 9.  The optimization of the SGWB search assuming the α = 2/3 model given in 
equation (14). On the top is the SRM transmission and in the middle is the signal recycling 
detuning phase. On the bottom is the limit on Ω2/3 as is given in equation (11) for different 
low-frequency cutoffs. The relations are all similar to the flat model shown in figure 5.
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4.2. The optimization results

Assuming α = 2/3, we find the optimal transmission and signal recycling detuning phase for 
every laser power usage. The results are shown in the top and middle plots of figure 9, which 
are very similar to the results in figure 5. The optimal transmission initially increases with 
laser power, then decreases for higher powers. The optimal phase decreases with as the power 
increase. Therefore, the use of the α = 2/3 power law model does not significantly affect the 
optimal configurations.

The optimal Ω2/3 as a function of laser power is shown in the bottom plot of figure 9. The 
relation is also similar to the flat model in figure 6, with Ω2/3 increasing with laser power or 
low-frequency cutoff above ∼ 2 W and decreasing below. The similarity is not surprising 
considering that in both equations (13) and (11), the low-frequency noise spectrum contributes 
more than the high frequency spectrum when α = 2/3.

4.3.  Comparisons of the α = 0 model and α = 2/3 models

The work above optimizes signal recycling for the SGWB search using both the flat α = 0 
model and the power law α = 2/3 model (see equation (10)). In this section, we investigate 
how the flat optimal configurations perform when the power law model is assumed and, simi-
larly, how the power law optimal configurations perform when the flat model is assumed.

For each set of the optimal configurations of the flat model, we compute its Ω2/3 limit given 
as equation (11). Also, for each set of optimal configurations for the power law model, we 
compute its Ω0 limit given as equation (13). We have comparisons for each frequency cutoff 
of 10 Hz, 15 Hz and 20 Hz. The comparison plots are shown in figure 10.

Figure 10.  Comparisons of the sensitivities optimized for the α = 2/3 power law and 
the flat α = 0 SGWB models. On the top, left, middle, right are 10 Hz, 15 Hz, 20 Hz 
comparisons assuming the flat model. Bottom is the same assuming the power law 
model. Based on the comparisons, it is found that an optimal configuration for one 
model has a sensitivity close to the optimal sensitivity in another model.
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The plots on the first row of figure 10 show the Ω0 limit computed using the α = 0 model 
in equation (13) as a function of laser power, and the plots on the second row shows Ω2/3 limit 
computed using the α = 2/3 model in equation (15). The plots in the left, middle and right 
columns assume 10 Hz, 15 Hz and 20 Hz low-frequency cutoff respectively. In all the plots, 
we compare two sets of configurations: configurations optimized for the α = 0 model (red 
line) and the configurations optimized for the α = 2/3 model (blue line). It can be seen in all 
the six plots in figure 10 that the gaps between the lines are approximately 10−11. Therefore, 
the sensitivity limits achieved by either optimal configurations are close to each other, so we 
can use the configurations optimized for either model to detect the SGWB.

5.  Conclusion

The SRM transmission and signal recycling detuning phase are optimized for the SGWB 
search with different laser powers, low-frequency cutoffs and models for the frequency 
dependence of Ωgw( f ). For a 125 W laser and a low-frequency cutoff at 10 Hz, the optimal 
transmission is found to be 1.5 ± 0.01% and the optimal phase 2.7 ± 0.1◦, giving a limit on 
Ω0 of 6.8 × 10−10 for a year of observation time. The sensitivity for the SGWB search and 
BNS search for four configurations are compared. It is confirmed that a signal recycled inter-
ferometer system is more sensitive for SGWB and BNS searches. Also, the BNS optimized 
configuration is found to have relatively good sensitivity for both the SGWB search and the 
BNS search. However, we subsequently found that it is difficult to achieve better sensitivities 
for both the SGWB and BNS searches.

There might be some ways to address the compatibility issue of the BNS search and 
the SGWB searches, which could lead to potential future studies. First, we might consider 
replacing the SRM to produce different transmission and detuning phase for different tasks. 
However, that would be simple in our simulation studies but could lead to more on-site engi-
neering challenges. On the other hand, if we cannot change the configurations very easily, 
the best we can do is to find a trade-off between the BNS search and the SGWN search. For 
example, we can define a metric involving both Ωgw and the BNS range. Then, we scan the 
SRM transmission and detuning phase to optimize the metric, in order to achieve a balance 
between the two sensitivities.

The optimization is then generalized to interferometers with different laser powers and 
frequency cutoffs. It turns out that using lower laser powers above 2 W results in higher opti-
mal transmission, higher optimal signal recycling detuning phase and better sensitivity for a 
SGWB search. Besides, the cutoff frequency does not have a significant effect on the optimal 
configurations but a lower cutoff gives better sensitivity. The best sensitivity for a SGWB was 
found with a laser power of 1.5 W and a 10 Hz low-frequency cutoff, giving a limit on Ω0 of 
5.7 × 10−10 for a year of observation time.

Finally, we consider the SGWB produced by all the compact binary mergers in the history 
of the universe. This gives us a power law model given in equation (14). The α = 2/3 power 
law model does not significantly change the optimization. Actually, configurations optimized 
for the flat α = 0 model have sensitivities that are close to the optimal sensitivities for the 
α = 2/3 power law model. This would mean that an optimized configuration, either for the 
flat model or the power law model, would have good sensitivities for both.

In the future, one might envision implementing even more complicated signal recy-
cling systems. The addition of an internal signal recycling mirror between the SRM and 
the beamsplitter and an optomechanical filter module were recently proposed to achieve a 
broadband resonance [29]. Besides, different models for a SGWB can also be considered. 
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Gravitational-wave emission from the BNS post-merger remnant is expected to produce a 
SGWB above 1 kHz [29]. It will be of scientific interest to look further into the optimization 
of more complicated signal recycling systems for different models of the SGWB above 1 kHz.
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